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Symmetric positive systems

K. O. Friedrichs: Symmetric hyperbolic linear differential equations,
Commun. Pure Appl. Math. 7 (1954) 345–392.
Unified treatment of linear hyperbolic systems like Maxwell’s, Dirac’s, or higher
order equations (e.g. the wave equation).

A generalisation:
K. O. Friedrichs: Symmetric positive linear differential equations,
Commun. Pure Appl. Math. 11 (1958), 333–418.

Goals:
– treating the equations of mixed type, such as the Tricomi equation:

y
∂2u

∂x2
+
∂2u

∂y2
= 0 ;

– unified treatment of equations and systems of different type;

– more recently: better numerical properties.

All of Gårding’s theory of general elliptic equations, or Lerray’s of general
hyperbolic equations, is not covered.
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Friedrichs’ system (KOF1958)

Assumptions:
d, r ∈ N, Ω ⊆ Rd open and bounded with Lipschitz boundary Γ;

Ak ∈W1,∞(Ω; Mr(C)), k ∈ 1..d, and B ∈ L∞(Ω; Mr(C)) satisfying

(F1) matrix functionsAk are hermitian:Ak = A∗k ;

(F2) (∃µ0 > 0) B + B∗ +

d∑
k=1

∂kAk > 2µ0I (ae on Ω) .

The operator L : L2(Ω;Cr) −→ D′(Ω;Cr)

Lu :=

d∑
k=1

∂k(Aku) + Bu

is called the symmetric positive operator or the Friedrichs operator, and

Lu = f

the symmetric positive system or the Friedrichs system.
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Symmetric hyperbolic systems (KOF1954)

d∑
k=1

Ak∂ku + Du = f

In divergence form:

d∑
k=1

∂k(Aku) + (D− ∂kAk)u = f

It is symmetric if all matrices Ak are real and symmetric; and uniformly
hyperbolic if there is a ξ ∈ Rd such that for any x ∈ Cl Ω the matrix ξkA

k(x)
is positive definite.

Such systems can easily be transformed into Friedrichs’ systems.

It is known that the wave equation, the Maxwell and the Dirac system can be
written as an equivalent symmetric hyperbolic system.
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An example – scalar elliptic equation

Ω ⊆ R2, µ > 0 and f ∈ L2(Ω) given.

−4u+ µu = f

can be written as a first-order system{
p +∇u = 0

µu+ divp = f
,

which is a Friedrichs system with the choice of

A1 =

 0 0 1
0 0 0
1 0 0

 , A2 =

 0 0 0
0 0 1
0 1 0

 , B =

 1 0 0
0 1 0
0 0 µ

 .
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Example – heat equation

. . . with zero initial and Dirichlet boundary condition:
∂tu−div x(A∇xu) + b · ∇xu+ cu = f in ΩT

u = 0 on 〈0, T 〉 × Γ

u(0, ·) = 0 on Ω

...as a Friedrichs system:{
∇xud+1 + A−1ud = 0

∂tud+1 + div xud + cud+1 −A−1b · ud = f
,

(note that we use u = (ud, ud+1)>, where ud = −A∇u, and ud+1 = u). Indeed

[
0 0
0> 1

]
∂t

[
ud
u

]
+

d∑
i=1


0 · · · 0 · · · 0
...

. . . 0 · · · 0
0 · · · 0 · · · 1
... · · · 0 · · · 0
0 · · · 1 · · · 1

 ∂xi
[
ud
u

]
+

[
A−1 0

−(A−1b)> c

] [
ud
u

]
=

[
0
f

]
.

The condition (F1) holds. The positivity condition B + B> > 2µ0I is fulfilled
if and only if c− 1

4
A−1b · b is uniformly positive.
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Boundary conditions

Boundary conditions are enforced via a matrix valued boundary field:

Aν :=
d∑
k=1

νkAk ∈ L∞(Γ; Mr(C)) ,

where ν = (ν1, ν2, · · · , νd) is the outward unit normal on Γ, and

M ∈ L∞(Γ; Mr(C)).

Boundary condition
(Aν −M)u|Γ = 0

is sufficient for treatment of different types of usual boundary conditions.
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Assumptions on boundary matrix M

We assume (for ae x ∈ Γ) [KOF1958]

(FM1) (∀ ξ ∈ Cr) (M(x) + M(x)∗)ξ · ξ > 0 ,

(FM2) Cr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
.

Such M is called the admissible boundary condition.

The boundary problem: for given f ∈ L2(Ω;Cr) find u such that{
Lu = f

(Aν −M)u|Γ = 0
.
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Elliptic equation – different boundary conditions

M Aν −M (Aν −M)

[
p
u

]
|Γ

= 0 0 0 −ν1

0 0 −ν2

ν1 ν2 0

  0 0 2ν1

0 0 2ν2

0 0 0


u|Γ = 0

 0 0 ν1

0 0 ν2

−ν1 −ν2 0

  0 0 0
0 0 0

2ν1 2ν2 0


ν · (∇u)|Γ = 0

 0 0 ν1

0 0 ν2

−ν1 −ν2 2α

  0 0 0
0 0 0

2ν1 2ν2 2α

 ν · (∇u)|Γ + αu|Γ = 0

All above matrices M satisfy (FM).

A1 =

[
0 0 1
0 0 0
1 0 0

]
, A2 =

[
0 0 0
0 0 1
0 1 0

]
, B =

[
1 0 0
0 1 0
0 0 µ

]
.
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Different ways to enforce boundary conditions

Instead of
(Aν −M)u = 0 on Γ ,

Lax proposed boundary conditions with

u(x) ∈ N(x) , x ∈ Γ ,

where N = {N(x) : x ∈ Γ} is a family of subspaces of Cr.

Boundary problem: {
Lu = f

u(x) ∈ N(x) , x ∈ Γ
.
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Assumptions on N

maximal boundary conditions: (for ae x ∈ Γ) [PDL]

(FX1)
N(x) is non-negative with respect to Aν(x):

(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ;

(FX2)
there is no non-negative subspace with respect to

Aν(x), which (properly) contains N(x) ;

or [RSP&LS1966]

Let N(x) and Ñ(x) := (Aν(x)N(x))⊥ satisfy (for ae x ∈ Γ)

(FV1)
(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0

(∀ ξ ∈ Ñ(x)) Aν(x)ξ · ξ 6 0

(FV2) Ñ(x) = (Aν(x)N(x))⊥ and N(x) = (Aν(x)Ñ(x))⊥ .
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Equivalence of different descriptions of boundary conditions

Theorem. It holds

(FM1)–(FM2) ⇐⇒ (FX1)–(FX2) ⇐⇒ (FV1)–(FV2) ,

with
N(x) := ker

(
Aν(x)−M(x)

)
.

In fact, for a weak existence result some additional assumptions are needed
[JR1994], [MJ2004].

13



Classical results on well-posedness

Friedrichs:
– uniqueness of the classical solution
– existence of a weak solution (under some additional assumptions)

Contributions (and particular cases):
C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, . . .
– the meaning of traces for functions in the graph space,
– weak well-posedness results under additional assumptions (on Aν),
– regularity of solution,
– numerical treatment.

Shortcommings:
– no satisfactory well-posedness result,
– no intrinsic (unique) way to pose boundary conditions.

However, since the beginning of 21st century the numerical advantages of FS
have overshadowed that.
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New approach...

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of
Hilbert operators related to Friedrichs’ systems, Comm. Partial Diff. Eq. 32
(2007) 317–341.

– abstract setting (operators on Hilbert spaces),

– intrinsic criterion for the bijectivity of Friedrichs’ operator,

– avoiding the question of traces for functions in the graph space,

– investigation of different formulations of boundary conditions,

. . . and new open questions.

They considered only the real case.
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Assumptions

Let L be real (complex) Hilbert space (L′ is (anti)dual of L), D ⊆ L a dense
subspace, and T, T̃ : D −→ L linear unbounded operators satisfying

(T1) (∀ϕ,ψ ∈ D) 〈Tϕ | ψ 〉L = 〈ϕ | T̃ψ 〉L ,

(T2) (∃ c > 0)(∀ϕ ∈ D) ‖(T + T̃ )ϕ‖L 6 c‖ϕ‖L ,

(T3) (∃µ0 > 0)(∀ϕ ∈ D) 〈 (T + T̃ )ϕ | ϕ 〉L > 2µ0‖ϕ‖2L .

(T, T̃ ) is referred to as a joint pair of abstract Friedrichs operators.

Recall the Friedrichs operator: D := C∞c (Ω;Cr), L = L2(Ω;Cr) and
T, T̃ : D −→ L be defined by

Tu :=
d∑
k=1

∂k(Aku) + Bu ,

T̃u :=−
d∑
k=1

∂k(Aku) + (B∗ +
d∑
k=1

∂kAk)u ,

where Ak and B are as above (they satisfy (F1)–(F2)).

Then T and T̃ satisfy (T1)–(T3) . . . fits in this framework.
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Extension of operators, starting from (T, T̃ ) = (T1, T̃1)

D is an inner product space when equipped with graph norm stemming from

〈 · | · 〉T := 〈 · | · 〉L + 〈T · | T · 〉L .

By W0 denote the completion of D in the graph norm, same for T̃ by (T2).
W0 6 L by (T1), and both T and T̃ extend to bounded operators from W0 to
L, which we denote by (T2, T̃2).

The following embedding are dense and continuous (we have a Gel’fand triplet):

W0 ↪→ L≡L′ ↪→W ′0 .

Let T3 := T̃ ′2 ∈ L(L;W ′0) be the Banach adjoint of T̃ ′2 : W0 −→ L, and
T̃3 := T ′2. Thus we have defined (T3, T̃3).

Note that the graph space

W := {u ∈ L : Tu ∈ L} = {u ∈ L : T̃ u ∈ L} 6 L

is a Hilbert space with respect to 〈 · | · 〉T .
(T4, T̃4) are defined as restrictions of T3 and T̃3 to W .

17



Well-posedness for abstract Friedrichs operator

This produces the maximal pair of abstract Friedrichs operators (T4, T̃4),

mapping T4, T̃4 : W → L, which are associated to the initial pair (T, T̃ ).

Find sufficient conditions for a subspace W0 6 V 6W such that
T4|V : V −→ L is an isomorphism.

As the continuity in the graph norm holds for any restriction to a closed
subspace V of W , the key question is bijectivity.
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Boundary operator

Sufficient coditions were obtained by [EGC2007] and [AB2010] using

Boundary operator D ∈ L(W ;W ′):

W ′〈Du, v 〉W := 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W .

D is symmetric: W ′〈Du, v 〉W = W ′〈Dv, u 〉W and satisfies

kerD = W0

imD = W 0
0 := {g ∈W ′ : (∀u ∈W0) W ′〈 g, u 〉W = 0} .

For a given joint pair of abstract FO (T, T̃ ), a pair (V, Ṽ ) of subspaces of W is

said to allow the (V)-boundary conditions relative to (T, T̃ ) when:

(V1) the boundary operator has opposite sign on V and on Ṽ , in the sense that
(∀u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ;

(V2) the image via D of either space has, as annihilator, the other space, namely

V = D(Ṽ )0 and Ṽ = D(V )0 .
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For classical Friedrichs operator

If T is the Friedrichs operator L, then for u, v ∈ C∞c (Rd;Cr) we have

W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

With the assumptions:

(FV1)
(∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ,

(∀ ξ ∈ Ñ(x)) Aν(x)ξ · ξ 6 0 ,

(FV2) Ñ(x) = (Aν(x)N(x))⊥ and N(x) = (Aν(x)Ñ(x))⊥ ,

we are lead to consider subspaces V and Ṽ in the functional framework:

(V1)
(∀u ∈ V ) W ′〈Du, u 〉W > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W 6 0 ,

(V2) V = D(Ṽ )0 , Ṽ = D(V )0 .
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Well-posedness theorem

[u | v ] := W ′〈Du, v 〉W = 〈Tu | v 〉L − 〈u | T̃ v 〉L , u, v ∈W

is an indefinite inner product on W , and we consider subspaces V and Ṽ
satisfying:

(V1)
(∀ v ∈ V ) [ v | v ] > 0 ,

(∀ v ∈ Ṽ ) [ v | v ] 6 0 ;

(V2) V = Ṽ [⊥] , Ṽ = V [⊥] .

([⊥] stands for [ · | · ]-orthogonal complement)

Theorem. Under assumptions (T1)− (T3) and (V 1)− (V 2), the operators
T|V : V −→ L and T̃|Ṽ : Ṽ −→ L are isomorphisms.

In the real case [EGC2007].
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Correspondence — maximal b.c.

maximal boundary conditions: (for ae x ∈ Γ)

(FX1) (∀ ξ ∈ N(x)) Aν(x)ξ · ξ > 0 ,

(FX2)
there is no non-negative subspace with respect to

Aν(x), which contains N(x) ,

subspace V is maximal non-negative in (W, [ · | · ]):

(X1) V is non-negative in (W, [ · | · ]): (∀ v ∈ V ) [ v | v ] > 0 ,

(X2) there is no non-negative subspace in (W, [ · | · ]) containing V .
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Correspondence — admissible b.c.

admissible boundary condition: there exists a matrix function
M : Γ −→ Mr(C) such that (for ae x ∈ Γ)

(FM1) (∀ ξ ∈ Cr) (M(x) + M(x)∗)ξ · ξ > 0 ,

(FM2) Cr = ker
(
Aν(x)−M(x)

)
+ ker

(
Aν(x) + M(x)

)
.

abstract admissible boundary condition: there exists M ∈ L(W ;W ′) such that

(M1) (∀u ∈W ) W ′〈 (M +M∗)u, u 〉W > 0 ,

(M2) W = ker(D −M) + ker(D +M) .
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Equivalence of different descriptions of b.c.

Theorem. (classical) It holds

(FM1)–(FM2) ⇐⇒ (FV1)–(FV2) ⇐⇒ (FX1)–(FX2) ,

with
N(x) := ker

(
Aν(x)−M(x)

)
.

Theorem. [EGC2007, AB2010] It holds

(M1)–(M2) ⇐⇒ (V1)–(V2) ⇐⇒ (X1)–(X2) ,

with
V := ker(D −M) .
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Hilbert space framework

Theorem. [Ern, Guermond, Caplain, 2007] Let (T, T̃ ) be a joint pair of

Friedrichs systems and let (V, Ṽ ) satisfy (V1)–(V2). Then T4|V : V → L and

T̃4|Ṽ : Ṽ → L are closed bijective realisations of T and T̃ , respectively.

Can we say something more about extensions T4, T̃4, and conditions (V)?

Theorem. (T, T̃ ) is a joint pair of abstract Friedrichs operators iff

(i) T ⊆ T̃ ∗ and T̃ ⊆ T ∗;
(ii) T + T̃ is a bounded self-adjoint operator in L with strictly positive bottom;

(iii) domT = dom T̃ = W0 and domT ∗ = dom T̃ ∗ = W .

In fact: T4 = T̃ ∗ and T̃4 = T ∗.
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Bijective realisations with signed boundary map

Theorem. Let (T, T̃ ) be a pair of operators on the Hilbert space L satisfying

conditions (T1)–(T2), and let (V, Ṽ ) be a pair of subspaces of L. Then (V2) is
equivalent to

i) W0 ⊆ V ⊆W, W0 ⊆ Ṽ ⊆W ,

ii) V and Ṽ are closed in W , and

iii) (T̃ ∗|V )∗ = T ∗|Ṽ , (T ∗|Ṽ )∗ = T̃ ∗|V .

We are seeking bijective closed operators S ≡ T̃ ∗|V such that

T ⊆ S ⊆ T̃ ∗ ,

and thus also S∗ is bijective and T̃ ⊆ S∗ ⊆ T ∗.
In the following we work with closed T and T̃ .

Let (T, T̃ ) be a joint pair of closed abstract Friedrichs operators on the Hilbert

space L. For a closed T ⊆ S ⊆ T̃ ∗ such that (domS, domS∗) satisfies (V 1)
we call (S, S∗) an adjoint pair of bijective realisations with signed boundary

map relative to (T, T̃ ).
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Questions:

1) Sufficient conditions on V ? X

2) Existence of V ⊆W such that (T̃ ∗|V , (T̃ ∗|V )∗) is an adjoint pair of bijective

realisations with signed boundary map relative to (T, T̃ )?

3) Existence of infinitely many such V ?

4) Classification of all such V ?
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Existence of infinitely many V ’s

Theorem. Let (T, T̃ ) be a joint pair of closed abstract Friedrichs operators on
the Hilbert space L.

(i) There is an adjoint pair of bijective realisations with signed boundary map.
Furthermore, there is an adjoint pair (Tr, T

∗
r ) of bijective realisations with

signed boundary map relative to (T, T̃ ) such that

W0 + kerT ∗ ⊆ domTr and W0 + ker T̃ ∗ ⊆ domT ∗r .

(ii) If both ker T̃ ∗ 6= {0}, kerT ∗ 6= {0}, then (T, T̃ ) admits uncountably many
adjoint pairs of bijective realisations with signed boundary map.
Else, if either ker T̃ ∗ = {0} or kerT ∗ = {0}, then there is exactly one adjoint

pair of bijective realisations with signed boundary map relative to (T, T̃ ). Such

a pair is precisely (T̃ ∗, T̃ ) when ker T̃ ∗ = {0}, and (T, T ∗) when kerT ∗ = {0}.
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Grubb’s universal classification [G1968, . . . ]
Start with a pair (A0, A

′
0) of closed operators on L such that

A0 ⊆ (A′0)∗ =: A1 and A′0 ⊆ (A0)∗ =: A′1 ,

A0 +A′0 is bounded on L and extends to an everywhere defined, bounded,
self-adjoint operator in L with strictly positive bottom.
We refer to any such (A0, A

′
0) as a joint pair of closed abstract Friedrichs

operators. This definition implies that

domA0 = domA′0 =: W0 and domA1 = domA′1 =: W .

We are interested in restrictions A1|V and A′1|Ṽ onto suitable subspaces V and

Ṽ of L which satisfy conditions (V1)–(V2). Equivalently, this is the class of
restrictions such that

W0 ⊆ V ⊆W and W0 ⊆ Ṽ ⊆W ,

which satisfy that A1|V and A′1|Ṽ are mutually adjoint (thus, in particular,
A1|V and A′1|Ṽ are closed operators) and

(∀u ∈ V ) W ′〈Du, u 〉W = 〈A1u | u 〉L − 〈u | A′1u 〉L > 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W = 〈A1v | v 〉L − 〈 v | A′1v 〉L 6 0 .
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Grubb’s universal classification (cont.)
We shall refer to any such pair (A1|V , A′1|Ṽ ) as an adjoint pair of bijective
realisations with signed boundary map relative to the given joint pair of closed

abstract Friedrichs operators (A0, A
′
0) = (T , T̃ ).

For their adjoints we have

A1 := (A′0)∗ = T̃ ∗ and A′1 := (A0)∗ = T ∗ .

It is immediate that there is a one-to-one correspondence between all pairs of
isomorphisms induced by (T, T̃ ), and all adjoint pairs of bijective realisations

with signed boundary map relative to (A0, A
′
0), i.e.

(
T , T̃

)
.

Since AR = A1|V is closed and bijective onto L, then (A1|V )−1 is necessarily
everywhere defined and bounded, so we may also speak of A1|V as of an
isomorphic realisation of A0 with signed boundary map.
It is worth remarking that the fact that a closed operator S satisfies
A0 ⊆ S ⊆ A1 is equivalent to A′0 ⊆ S∗ ⊆ A′1.

The interest towards such pairs (A1|V , A′1|Ṽ ) is two-fold: first, when
(V1)–(V2) hold, A1|V and A′1|Ṽ are bijections onto L, thus providing a
sufficient criterion of well-posedness of the abstract Friedrichs system;
moreover, (V1)–(V2) encode the most relevant class of boundary conditions, as
it may be seen from a large variety of concrete examples of boundary value
problems on which such conditions are modelled.
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Grubb’s universal classification (cont.)
Let (A0, A

∗
0) and (A1, A

∗
1) be two pairs of mutually adjoint, closed and densely

defined operators in L, with properties as above, which admit a further pair
(Ar, A

∗
r) of reference operators that are closed, satisfy A0 ⊆ Ar ⊆ A1,

equivalently A′0 ⊆ A∗r ⊆ A′1, and are invertible with everywhere defined
bounded inverses A−1

r and (A∗r)
−1. Then there are decompositions

domA1 = domAr u kerA1 and domA′1 = domA∗r u kerA′1

pr = A−1
r A1 , pr′ = (A∗r)

−1A′1 ,

pk = I − pr , pk′ = I − pr′ .

There is a one-to-one correspondence between

(A,A∗)

A0 ⊆ A ⊆ A1

A′0 ⊆ A∗ ⊆ A′1

←→


(B,B∗)

V ⊆ kerA1 closed

W ⊆ kerA′1 closed

B : V → W densely defined

B 7→ AB : domAB =
{
u ∈ domA1 : pku ∈ domB , PW(A1u) = B(pku)

}
,

A 7→ BA : domBA = pkdomA , V = domBA , BA(pku) = PW(A1u) ,

where PW is the orthogonal projections from L onto W.

Important: A is injective, resp. surjective, resp. bijective, if and only if so is B.
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Grubb’s universal classification (cont.)

When AB corresponds to B as above, then

domAB = {w0 + (Ar)
−1(Bν + ν′) + ν | w0 ∈ domA0

& ν ∈ domB & ν′ ∈ kerA′1 �W}

AB(w0 + (Ar)
−1(Bν + ν′) + ν) = A0w0 +Bν + ν′

We shall apply this theory on a joint pair of closed abstract Friedrichs systems.
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Classification of bijective realisations with signed boundary map

For simplicity here we use the notation of Grubb’s universal classification.

(A0, A
′
0) a joint pair of closed abstract Friedrichs operators, A1 := (A′0)∗,

A′1 := A∗0, and let (Ar, A
∗
r) be an adjoint pair of bijective realisations with

signed boundary map relative to (A0, A
′
0).

(AB , A
∗
B) a generic pair of closed extensions A0 ⊆ AB ⊆ A1.
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Classification of bijective realisations with signed boundary map (cont.)

(1)
(∀ ν ∈ domB)
(∀ ν′ ∈ kerA′1 �W)

{
〈 ν | A′1ν 〉L − 2 Re 〈 pk′ν | Bν 〉L 6 0

〈 pk′ν | ν′ 〉L = 0

(2)
(∀µ′ ∈ domB∗)
(∀µ ∈ kerA1 � V)

{
〈A1µ

′ | µ′ 〉L − 2 Re 〈B∗µ′ | pkµ′ 〉L 6 0
〈µ | pkµ′ 〉L = 0 ,

Theorem. Any of the following three facts,
(a) conditions (1) and (2) hold true, or
(b) condition (1) holds true and B : domB →W is a bijection, or
(c) condition (2) holds true and B∗ : domB∗ → V is a bijection,

is sufficient for (AB , A
∗
B) to be another adjoint pair of bijective realisations

with signed boundary map relative to (A0, A
′
0).

Assume further that domAr = domA∗r . Then the following properties are
equivalent:

(i) (AB , A
∗
B) is another adjoint pair of bijective realisations with signed boundary

map relative to (A0, A
′
0);

(ii) the mirror conditions (1) and (2) are satisfied.
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Example: First order ode
Take L := L2(0, 1), D := C∞c (0, 1) and define T, T̃ : D → L by

Tφ :=
d

dx
φ+ φ and T̃ φ := − d

dx
φ+ φ .

We have

domT = dom T̃ = H1
0(0, 1) =: W0

domT ∗ = dom T̃ ∗ = H1(0, 1) =: W ,

Further define

A0 := T , , A′0 := T̃ , A1 := T̃ ∗ , A′1 := T ∗ .

As W ′〈Du, v 〉W = u(1)v(1)− u(0)v(0), for

V := Ṽ := {u ∈ H1(0, 1) : u(0) = u(1)} ,

we have that Ar := A1|V , A∗r = A′1|V for an adjoint pair of bijective
realisations with signed boundary map.

As kerA1 = span{e−x} and kerA′1 = span{ex}, so

pku = −u(1)− u(0)

1− e−1
e−x , pk′u =

u(1)− u(0)

e− 1
ex .
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Example (cont.)

The corresponding spaces are V = kerA1, W = kerA′1, while Bα,β : V → W is
defined by

Bα,βe
−x = (α+ iβ)ex

where (α, β) ∈ R2 \ {(0, 0)}.
(1) simplifies to check

〈 e−x | A′1e−x 〉L − 2Re 〈 pk′e−x | Bα,βe−x 〉L 6 0

⇐⇒ α 6 −e−1

{(Aα,β , A∗α,β) : α 6 −e−1 , β ∈ R} ∪ {(Ar, A∗r)}

domA
(∗)
α,β =

{
u ∈ H1(0, 1) :

(
2e−1−(+)α(1 + e)− iβ(1 + e)

)
u(1)

=
(

2 + α(1 + e)− (+)iβ(1 + e)
)
u(0)

}
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Thank you for your attention!
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