Complex Friedrichs systems and
applications

Ivana Crnjac

J. J. STROSSMAYER UNIVERSITY OF OSIJEK
DEPARTMENT OF MATHEMATICS

Trg Ljudevita Gaja 6

31000 Osijek, Croatia
http://www.mathos.unios.hr

icrnjac@mathos.hr

Joint work with:

N. Antonié¢, K. Burazin, M. Erceg

[INTERNATIONAL WORKSHOP ON PDES: ANALYSIS AND MOBETING PP

GCeLEBRATING 801 ANNIVERSARY OF PROFESSOR NEDZAD LIMIG | 22.6.2016




Non-stationary theory of Friedrichs operator

Stationary theory of Friedrichs operator Abstract settings
Applications

Abstract settings

A. Ern, J. L. Guermond, G. Caplain (2007), N. Antoni¢, K. Burazin
(2009, 2010, 2011), N.A., K. B., M. Vrdoljak (2013, 2014), K. B., M.
Erceg (2016)...

L - complex Hilbert space (L antidual of L),

e D C L - dense subspace

L, L : D — L linear unbounded operators satisfying

(Ve, 9 € D) (Lol = (p|LY) 1, (T1)

Be>0)(VpeD) |[(L+L)elL < cllelr, (T2)

(Buo > 0)(Vp € D) ((L+L)plo)r = 2mollel.  (T3)
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Classical complex Freidrichs operator

Letd, r € N, Q C R open and bounded with Lipshitz boundary,
D=CX(Q;C"),L=L%QC"), Ay € Wh(Q;M,(C)), k € 1..d and
C € L>*(Q; M,.(C)) satisfying

(F1)  Ac=Aj
d
(F2) (3po >0) C+C*+ Z OpAyp >2ugl  (aeon Q).
k=1

Operators £, £ : D — L defined as

d
Z(’?k(Aku) + Cu

Lu =
k=1

~ d d

Lu = =) Oc(Aju)+(C*+) 0kAj)u
k=1 k=1

satisfy (T1)—(T3).
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Operator L is called the symmetric positive operator or the Friedrichs
operator and

Lu=f
the symmetric positive system or the Friedrichs system.

- introduced in K. O. Friedrichs: Symmetric positive linear differential
equations, Communications on Pure and Applied Mathematics 11
(1958), 333-418

- goal: treatment of the equations of mixed type, such as the Tricommi
equation

0%u 4 0%u _0
Yor2 oy:
unified tretment of equations and systems of different type

- convenient for the numerical treatment
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Formulation of the problem

e (D,(-|-),) isaninner product space, where
(1de=Clop+ (L 1L,
|| - ||z is called the graph norm.

® ¥ - the completion of D in the graph norm ... £, £ € L(L; W)
o Wo—wL=L — Wé

Lemma
The graph space

Wi={ueclL:LuelL}={uelL:Lucl}

is Hilbert space with respectto (- |-) ..

Problem: for given f € L find u € W such that Lu = f.

Find sufficient conditions on V' < W such that £}y, : V' — L is an isomorphism.
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Boundary operator

Boundary operator D € L(W; W) is defined by

wi(Du,v)w = (Lu|v)y — (u|Lv)y  u,veW.

Lemma
Under assumptions (T1)—(T2), operator D is selfadjoint

w (Du, v)w = w(Dv,u)w
and satisfies

kerD = Wy
imD = W):={geW':(VuecWy) wliguw

In particular, im D is closed in W'.

0}.

Ivana Crnjac Complex Friedrichs systems and applications

6/18



Stationary theory of Friedrichs operator
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Different sets of boundary conditions

. Let V and V be subspaces of W that satisfy
(V'U, S V) W' <DU,U>W >0
(Yo e V) wi(Dv,v)w <0

V=D({V), V=DV (V2)

(V1)
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Different sets of boundary conditions

. Let V and V be subspaces of W that satisfy
(V'U, S V) W' <DU,U>W >0

(Yo e V) wi(Dv,v)w <0 VD
V=D({V), V=DV (V2)
Il. A subspace V' of W is maximal nonnegative if
VueV) wi{Du,u)w >0, (X1)
there is no subspace which is larger then V'and satisfies (X1). (X2)
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Different sets of boundary conditions

. Let V and V be subspaces of W that satisfy
(V'U, S V) W' <DU,U>W >0

(Yo e V) wi(Dv,v)w <0 V)
V=D({V), V=DV (V2)

Il. A subspace V' of W is maximal nonnegative if
NVueV) w({Du,u)w >0, (X1)
there is no subspace which is larger then V'and satisfies (X1). (X2)

lll. Let M € L(W;W') be an operator satisfying
NMueW) wi((M+MYu,u)y >0, (M1)
W =ker(D — M) + ker(D + M). (M2)
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Stationary theory of Friedrichs operator
Non-stationary theory of Friedrichs operator
Applications Graph spaces

Different sets of boundary conditions

. Let V and V be subspaces of W that satisfy
(V'U, S V) W' <DU,U>W >0

(Yo e V) wi(Dv,v)w <0 V)
V=D({V), V=DV (V2)

Il. A subspace V' of W is maximal nonnegative if
NVueV) w({Du,u)w >0, (X1)
there is no subspace which is larger then V'and satisfies (X1). (X2)

. Let M € L(W; W) be an operator satisfying
NMueW) wi((M+MYu,u)y >0, (M1)
W =ker(D — M) + ker(D + M). (M2)

(V1) = (V2) <= (X1)—(X2) <= (M1)—(M2)
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Well-posedness theorem

Theorem

Let L be complex Hilbert space, D its dense subspace and define linear
operators L, L : D — L satisfying

(Vo,9 € D) (Lol = (p|LP)r, (T1)
(Bc>0) (Ve eD)  |(L+L)ellL <cllellr, (T2)
(Gpo > 0)(Vp € D) (L + L)plo)r > 2uollel3 (T3)

LetV, V<w satisfy
(Vu S V) w (Du, u)W >0
(V’U S ‘N/) w <DU,U>W <0

V=DV, V=DV (V2)

Operators Ly : V' — L and £~|‘~, :V — L are isomorphisms."

'In real case: [AE&JLG&GC2007].
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Non-stationary complex Friedrichs systems

Consider abstract Cauchy problem
u'(t) + Lu(t) =f
u(0) = uog,

where u : [0,7) — L, T' > 0 is the unknown function, f : (0,7) — L,
up € L and L is abstract Friedrichs operator that satisfy (T1)—(T2) and

(Ve eD) Re((L+Lplp) >0. (T3)

Let V < W satisfy (V1)—(V2). Then the following is valid

Theorem

—£|V is the infinitesimal generator of a contraction Cy-semigroup
(T(t))tz() on L.2

%In real case: [BE2016].
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H ® spaces

Friedrichs systems in /7° spaces

Lets € R, L = H*(R%, C"), D = C(R%; C") and assume that
constant matrices C, Ay, k € 1..d, satisfy (F1) and (F2):

A=A},

(Fpo>0) C+C*>2upl (aeon Q).

Operators
d
Lu:= Z@k(Aku) + Cu
k=1
and
d
Lu:=— Z@k(Aku) + C*u
k=1

satisfy (T1)—(T3), boundary operator D is trival and V = V=Ww.
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Applications Examples
Linear Dirac system
Consider system of equations
0+~ O + 77020 + 7°O3p + Bep =, (1

where 1) : [0, T) x R3 — C*is unknown function, f : (0, T) — C*,

B = [bél bOI for b1, by : R? — Cand 2 x 2 unit matrix I, while
2

I 0 0 o
0 k _ —
Y= |:O _I:|a Y= |: k :|7 ]{7_13273

L fo1 o o —i 5 10
"_[1 0}’ G_[i 0}’ 77l -1
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System (1) can be written as evolution Friedrichs system

Op + Lyp = F,

3
where F = 7%f and L1 = Z A0 + Cup for
k=1
0 o

— _ 0
Ak[ak 0], C =+"B.

Spaces involved:
D = CX(R%CY
L = L*R?CY), (or H*(R? CY)

3
W o= {ueL*R%C": ) Agdpu € LR CY)}
k=1

D istrivial, V = V=Ww.
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Dirac-Klein-Gordon system

—i(Y00; + 701 + 7202 + 7205 + M)y = ¢
¢ — A¢p+m?p = *y
where unknown functions are 1) = (¢, z) : R*3 — C* and

¢ : R — R, while M, m > 0and~v*, k = 1..3 are same as in
previous example.

(2)

Remark
For two Friedrichs systems

Owup + L1y = fi
Otuz + Louz = f
system
Oiu+ Lu="f

) o oA L1 0 _|wm _|f
is also a Friedrichs system with L = {0 52} ,u= [Uz} = {ﬁ] .
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For the second system of equations in (2) we introduce

vy ¢
V = | Vg = 8t¢
V3 Vo

in order to get an evolution Friedrichs system
OV + Lov = 1,
0

3 [1[* + |92 * = [93]* — [4a]?
where Lov = Z oAV + Cov, fr = 0

k=1 0
0
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Dirac-Maxwell system

. 3
(00 7101 720+ D))+ mBY = 3 Awr N
k=0 3
32

— _ Ak —

where 70 = I and v*, k = 1,2, 3 as before. Unknown functions are
$:RY3 5 Cland A= [Ag A As As]', whiem > 0and

I
h= [ g } . Analog procedure as in previous example gives us Friedrichs

0 I
system
Oowu+ Lu=F,

P 0
Vo Ay 'ka 1

whereu= |vi|, k= | G Ax |, fk = 0 , k=0.3
Vo —V.Ak 0
V3 0
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