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Abstract settings

• A. Ern, J. L. Guermond, G. Caplain (2007), N. Antonić, K. Burazin
(2009, 2010, 2011), N.A., K. B., M. Vrdoljak (2013, 2014), K. B., M.
Erceg (2016)...

• L - complex Hilbert space (L′ antidual of L),
• D ⊆ L - dense subspace
• L, L̃ : D → L linear unbounded operators satisfying

(∀ϕ,ψ ∈ D) 〈Lϕ|ψ〉L = 〈ϕ|L̃ψ〉L, (T1)

(∃c > 0)(∀ϕ ∈ D) ‖(L+ L̃)ϕ‖L ≤ c‖ϕ‖L, (T2)

(∃µ0 > 0)(∀ϕ ∈ D) 〈(L+ L̃)ϕ|ϕ〉L ≥ 2µ0‖ϕ‖2L. (T3)
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Classical complex Freidrichs operator

Let d, r ∈ N, Ω ⊆ Rd open and bounded with Lipshitz boundary,
D = C∞c (Ω;Cr), L = L2(Ω;Cr), Ak ∈W1,∞(Ω; Mr(C)), k ∈ 1..d and
C ∈ L∞(Ω; Mr(C)) satisfying

(F1) Ak = A∗k

(F2) (∃µ0 > 0) C + C∗ +

d∑
k=1

∂kAk ≥ 2µ0I (ae on Ω).

Operators L, L̃ : D → L defined as

Lu :=

d∑
k=1

∂k(Aku) + Cu

L̃u := −
d∑

k=1

∂k(A∗ku) + (C∗ +

d∑
k=1

∂kA
∗
k)u

satisfy (T1)–(T3).
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Operator L is called the symmetric positive operator or the Friedrichs
operator and

Lu = f

the symmetric positive system or the Friedrichs system.

- introduced in K. O. Friedrichs: Symmetric positive linear differential
equations, Communications on Pure and Applied Mathematics 11
(1958), 333-418

- goal: treatment of the equations of mixed type, such as the Tricommi
equation

y
∂2u

∂x2
+
∂2u

∂y2
= 0,

unified tretment of equations and systems of different type

- convenient for the numerical treatment
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Formulation of the problem

• (D, 〈 · | · 〉L) is an inner product space, where

〈 · | · 〉L := 〈 · | · 〉L + 〈 L · | L· 〉L .

• ‖ · ‖L is called the graph norm.

• W0 - the completion ofD in the graph norm . . . L, L̃ ∈ L(L;W ′0)
• W0 ↪→ L ≡ L′ ↪→W ′0

Lemma
The graph space

W := {u ∈ L : Lu ∈ L} = {u ∈ L : L̃u ∈ L}

is Hilbert space with respect to 〈 · | · 〉L.

Problem: for given f ∈ L find u ∈W such that Lu = f .

Find sufficient conditions on V ≤W such that L|V : V → L is an isomorphism.
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Boundary operator

Boundary operator D ∈ L(W ;W ′) is defined by

W ′〈Du, v〉W := 〈 Lu | v 〉L − 〈u | L̃v 〉L u, v ∈W.

Lemma
Under assumptions (T1)–(T2), operator D is selfadjoint

W ′〈Du, v〉W = W ′〈Dv, u〉W

and satisfies

kerD = W0

imD = W 0
0 := {g ∈W ′ : (∀u ∈W0) W ′〈g, u〉W = 0}.

In particular, imD is closed in W ′.
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Different sets of boundary conditions

I. Let V and Ṽ be subspaces of W that satisfy

(∀u ∈ V ) W ′〈Du, u〉W ≥ 0

(∀v ∈ Ṽ ) W ′〈Dv, v〉W ≤ 0
(V1)

V = D(Ṽ )o, Ṽ = D(V )o. (V2)

II. A subspace V of W is maximal nonnegative if

(∀u ∈ V ) W ′〈Du , u 〉W ≥ 0, (X1)

there is no subspace which is larger then V and satisfies (X1). (X2)

III. Let M ∈ L(W ;W ′) be an operator satisfying

(∀u ∈W ) W ′〈 (M +M∗)u , u 〉W ≥ 0, (M1)

W = ker(D −M) + ker(D +M). (M2)

(V 1)− (V 2) ⇐⇒ (X1)− (X2) ⇐⇒ (M1)− (M2)
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Well-posedness theorem

Theorem
Let L be complex Hilbert space, D its dense subspace and define linear
operators L, L̃ : D → L satisfying

(∀ϕ,ψ ∈ D) 〈Lϕ|ψ〉L = 〈ϕ|L̃ψ〉L, (T1)

(∃c > 0)(∀ϕ ∈ D) ‖(L+ L̃)ϕ‖L ≤ c‖ϕ‖L, (T2)

(∃µ0 > 0)(∀ϕ ∈ D) 〈(L+ L̃)ϕ|ϕ〉L ≥ 2µ0‖ϕ‖2L. (T3)

Let V, Ṽ ≤W satisfy
(∀u ∈ V ) W ′〈Du, u〉W ≥ 0

(∀v ∈ Ṽ ) W ′〈Dv, v〉W ≤ 0
(V1)

V = D(Ṽ )o, Ṽ = D(V )o. (V2)

Operators L|V : V → L and L̃|Ṽ : Ṽ → L are isomorphisms.1

1In real case: [AE&JLG&GC2007].
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Consider abstract Cauchy problem{
u′(t) + Lu(t) = f

u(0) = u0,

where u : [0, T 〉 → L, T > 0 is the unknown function, f : 〈0, T 〉 → L,
u0 ∈ L and L is abstract Friedrichs operator that satisfy (T1)–(T2) and

(∀ϕ ∈ D) Re
〈

(L+ L̃)ϕ |ϕ
〉
L
≥ 0. (T3’)

Let V ≤W satisfy (V1)–(V2). Then the following is valid

Theorem
−L|V is the infinitesimal generator of a contraction C0-semigroup
(T (t))t≥0 on L.2

2In real case: [BE2016].
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Friedrichs systems in Hs spaces

Let s ∈ R, L = Hs(Rd;Cr), D = C∞c (Rd;Cr) and assume that
constant matrices C, Ak, k ∈ 1..d, satisfy (F1) and (F2):

Ak = A∗k ,

(∃µ0 > 0) C + C∗ ≥ 2µ0I (ae on Ω) .

Operators

Lu :=

d∑
k=1

∂k(Aku) + Cu

and

L̃u := −
d∑

k=1

∂k(Aku) + C∗u

satisfy (T1)–(T3), boundary operator D is trival and V = Ṽ = W .
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Linear Dirac system

Consider system of equations

γ0∂tψ + γ1∂1ψ + γ2∂2ψ + γ3∂3ψ + Bψ = f, (1)

where ψ : [0, T 〉 ×R3 → C4 is unknown function, f : 〈0,T〉 → C4,

B =

[
b1I 0
0 b2I

]
for b1, b2 : R3 → C and 2× 2 unit matrix I, while

γ0 =

[
I 0
0 −I

]
, γk =

[
0 σk

−σk 0

]
, k = 1, 2, 3.

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
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System (1) can be written as evolution Friedrichs system

∂tψ + Lψ = F,

where F = γ0f and Lψ =

3∑
k=1

Ak∂kψ + Cψ for

Ak =

[
0 σk

σk 0

]
, C = γ0B.

Spaces involved:

D = C∞c (R3;C4)

L = L2(R3;C4), (or Hs(R3;C4))

W = {u ∈ L2(R3;C4) :

3∑
k=1

Ak∂ku ∈ L2(R3;C4)}

D is trivial, V = Ṽ = W .
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Dirac-Klein-Gordon system

{
−i(γ0∂t + γ1∂1 + γ2∂2 + γ3∂3 +M)ψ = φψ

∂2t φ−∆φ+m2φ = ψ∗γ0ψ
(2)

where unknown functions are ψ = ψ(t, x) : R1+3 → C4 and
φ : R1+3 → R, while M,m ≥ 0 and γk, k = 1..3 are same as in
previous example.

Remark
For two Friedrichs systems

∂tu1 + L1u1 = f1

∂tu2 + L2u2 = f2

system
∂tu+ Lu = f

is also a Friedrichs system with L =

[
L1 0
0 L2

]
, u =

[
u1
u2

]
, f =

[
f1
f2

]
.
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For the second system of equations in (2) we introduce

v =

v1v2
v3

 =

 φ
∂tφ
−∇φ


in order to get an evolution Friedrichs system

∂tv + L2v = f2,

where L2v =

3∑
k=1

∂kAkv + C2v, f2 =


0

|ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2
0
0
0


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Dirac-Maxwell system


− i

2π
(γ0∂t + γ1∂1 + γ2∂2 + γ3∂3)ψ +mβψ =

3∑
k=0

Akγ
kψ

(−∂
2

∂t
+ ∆)Ak = −γkψ · ψ, k = 0..3,

(3)

where γ0 = I and γk, k = 1, 2, 3 as before. Unknown functions are

ψ : R1+3 → C4 andA =
[
A0 A1 A2 A3

]>
, while m ≥ 0 and

β =

[
I 0
0 −I

]
. Analog procedure as in previous example gives us Friedrichs

system
∂tu + Lu = F,

where u =


ψ
v0
v1
v2
v3

 , vk =

 Ak

∂tAk

−∇Ak

 , fk =


0

γkψ · ψ
0
0
0

 , k = 0..3
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Thank you for your attention!
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