Compactness by compensation and nonlinear parabolic type equation

Marin Mišur ${ }^{a}$ and Darko Mitrović ${ }^{b}$

${ }^{a}$ University of Zagreb, Croatia, pfobos@gmail.com
${ }^{b}$ University of Montenegro, Montenegro, matematika@t-com.me

Panov's result

The most general version of the classical L^{2} results has recently been proved by E. Yu. Panov (2011):
Assume that the sequence $\left(\mathbf{u}_{n}\right)$ is bounded in $L^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right), 2 \leq p<\infty$, and converges weakly in $\mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)$ to a vector function u.

Let $q=p^{\prime}$ if $p<\infty$, and $q>1$ if $p=\infty$. Assume that the sequence

$$
\sum_{k=1}^{\nu} \partial_{k}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right)+\sum_{k, l=\nu+1}^{d} \partial_{k l}\left(\mathbf{B}^{k l} \mathbf{u}_{n}\right)
$$

is precompact in the anisotropic Sobolev space $W_{l o c}^{-1,-2 ; q}\left(\mathbf{R}^{d} ; \mathbf{R}^{m}\right)$, where $m \times r$ matrices \mathbf{A}^{k} and $\mathbf{B}^{k l}$ have variable coefficients belonging to $L^{2 \bar{q}}\left(\mathbf{R}^{d}\right), \bar{q}=\frac{p}{p-2}$ if $p>2$, and to the space $C\left(\mathbf{R}^{d}\right)$ if $p=2$.

We introduce the set $\Lambda(\mathrm{x})$

$$
\Lambda(\mathbf{x})=\left\{\boldsymbol{\lambda} \in \mathbf{C}^{r} \mid\left(\exists \boldsymbol{\xi} \in \mathbf{R}^{d} \backslash\{0\}\right):\left(i \sum_{k=1}^{\nu} \xi_{k} \mathbf{A}^{k}(\mathbf{x})-2 \pi \sum_{k, l=\nu+1}^{d} \xi_{k} \xi_{l} \mathbf{B}^{k l}(\mathbf{x})\right) \boldsymbol{\lambda}=\mathbf{0}_{m}\right\},
$$

and consider the bilinear form on \mathbf{C}^{r}

$$
\begin{equation*}
q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\eta})=\mathbf{Q}(\mathbf{x}) \boldsymbol{\lambda} \cdot \boldsymbol{\eta}, \tag{1}
\end{equation*}
$$

where $\mathbf{Q} \in L_{l o c}^{\bar{q}}\left(\mathbf{R}^{d} ; \operatorname{Sym}_{r}\right)$ if $p>2$ and $\mathbf{Q} \in C\left(\mathbf{R}^{d} ; \operatorname{Sym}_{r}\right)$ if $p=2$.
Finally, let $q\left(\mathbf{x}, \mathbf{u}_{n}, \mathbf{u}_{n}\right) \rightharpoonup \omega$ weakly in the space of distributions.
The following theorem holds
Theorem. Assume that $(\forall \boldsymbol{\lambda} \in \Lambda(\mathbf{x})) q(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\lambda}) \geq 0$ (a.e. $\left.\mathbf{x} \in \mathbf{R}^{d}\right)$ and $\mathbf{u}_{n} \rightharpoonup \mathbf{u}$, then $q(\mathbf{x}, \mathbf{u}(\mathbf{x}), \mathbf{u}(\mathbf{x})) \leq \omega$.
The connection between q and Λ given in the previous theorem, we shall call the consistency condition.
Goal: to formulate and extend the results from the preceeding theorem to the $L^{p}-L^{q}$ framework for appropriate (greater than one) indices p and q where $p<2$.

Localisation principle

For $\alpha \in \mathbf{R}^{+}$, we define $\partial_{x_{k}}^{\alpha}$ to be a pseudodifferential operator with a polyhomogeneous symbol $\left(2 \pi i \xi_{k}\right)^{\alpha}$, i.e.

$$
\partial_{x_{k}}^{\alpha} u=\left(\left(2 \pi i \xi_{k}\right)^{\alpha} \hat{u}(\boldsymbol{\xi})\right)^{\Sigma} .
$$

In the sequel, we shall assume that sequences $\left(\mathbf{u}_{r}\right)$ and $\left(\mathbf{v}_{r}\right)$ are uniformly compactly supported. This assumption can be removed if the orders of derivatives $\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ are natural numbers.

Lemma. Assume that sequences $\left(\mathbf{u}_{n}\right)$ and $\left(\mathbf{v}_{n}\right)$ are bounded in $L^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ and $L^{q}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, respectively, and converge toward $\mathbf{0}$ and \mathbf{v} in the sense of distributions.
Furthermore, assume that sequence $\left(\mathbf{u}_{n}\right)$ satisfies:

$$
\begin{equation*}
\mathbf{G}_{n}:=\sum_{k=1}^{d} \partial_{k}^{\alpha_{k}}\left(\mathbf{A}^{k} \mathbf{u}_{n}\right) \rightarrow \mathbf{0} \text { in } W^{-\alpha_{1}, \ldots,-\alpha_{d} ; p}\left(\Omega ; \mathbf{R}^{m}\right) \tag{2}
\end{equation*}
$$

where either $\alpha_{k} \in \mathbf{N}, k=1, \ldots, d$ or $\alpha_{k}>d, k=$ $1, \ldots, d$, and elements of matrices \mathbf{A}^{k} belong to $L^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right)$, $\bar{s} \in\left(1, \frac{p q}{p+q}\right)$.
Finally, by $\boldsymbol{\mu}$ denote a matrix H-distribution corresponding to subsequences of $\left(\mathbf{u}_{n}\right)$ and $\left(\mathbf{v}_{n}-\mathbf{v}\right)$. Then the following relation holds

$$
\left(\sum_{k=1}^{d}\left(2 \pi i \xi_{k}\right)^{\alpha_{k}} \mathbf{A}^{k}\right) \boldsymbol{\mu}=\mathbf{0}
$$

Compactness by compensation result

 Introduce the set$\Lambda_{\mathcal{D}}=\left\{\boldsymbol{\mu} \in L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}(\mathrm{P})\right)^{\prime}\right)^{r}:\left(\sum_{k=1}^{n}\left(2 \pi i \xi_{k}\right)^{\alpha_{k}} \mathbf{A}^{k}\right) \boldsymbol{\mu}=\mathbf{0}_{m}\right\}$,
where the given equality is understood in the sense of $L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}(\mathrm{P})\right)^{\prime}\right)^{m}$.
Let us assume that coefficients of the bilinear form q from (1) belong to space $L_{l o c}^{t}\left(\mathbf{R}^{d}\right)$, where $1 / t+1 / p+1 / q<1$.

Definition. We say that set $\Lambda_{\mathcal{D}}$, bilinear form q from (1) and matrix $\boldsymbol{\mu}=\left[\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{r}\right], \boldsymbol{\mu}_{j} \in L^{\bar{s}}\left(\mathbf{R}^{d} ;\left(C^{d}(\mathrm{P})\right)^{\prime}\right)^{r}$ satisfy the strong consistency condition if $(\forall j \in\{1, \ldots, r\}) \boldsymbol{\mu}_{j} \in$ $\Lambda_{\mathcal{D}}$, and it holds

$$
\langle\phi \mathbf{Q} \otimes 1, \boldsymbol{\mu}\rangle \geq \mathbf{0}, \quad \phi \in L^{\bar{s}}\left(\mathbf{R}^{d} ; \mathbf{R}_{0}^{+}\right)
$$

Theorem. Assume that sequences $\left(\mathbf{u}_{n}\right)$ and $\left(\mathbf{v}_{n}\right)$ are bounded in $L^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$ and $L^{q}\left(\mathbf{R}^{d} ; \mathbf{R}^{r}\right)$, respectively, and converge toward \mathbf{u} and \mathbf{v} in the sense of distributions. Assume that (2) holds and that

$$
q\left(\mathbf{x} ; \mathbf{u}_{n}, \mathbf{v}_{n}\right) \rightharpoonup \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right) .
$$

If the set $\Lambda_{\mathcal{D}}$, the bilinear form (1), and matrix H-distribution $\boldsymbol{\mu}$, corresponding to subsequences of $\left(\mathbf{u}_{n}-\mathbf{u}\right)$ and $\left(\mathbf{v}_{n}-\mathbf{v}\right)$, satisfy the strong consistency condition, then
$q(\mathbf{x} ; \mathbf{u}, \mathbf{v}) \leq \omega$ in $\mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)$.

H-distributions

H-distributions were introduced by N. Antonić and D. Mitrović (2011) as an extension of H-measures to the $L^{p}-L^{q}$ context
M. Lazar and D. Mitrović (2012) extended and applied them on a velocity averaging problem.

We need multiplier operators with symbols defined on a manifold P determined by an d-tuple $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbf{R}_{+}^{d}$ where $\alpha_{k} \in \mathbf{N}$ or $\alpha_{k} \geq d$:

$$
\mathrm{P}=\left\{\boldsymbol{\xi} \in \mathbf{R}^{d}: \sum_{k=1}^{d}\left|\xi_{k}\right|^{2 \alpha_{k}}=1\right\},
$$

We shall use the following variant of H -distributions.
Theorem. Let $\left(u_{n}\right)$ be a bounded sequence in $L^{p}\left(\mathbf{R}^{d}\right), p>$ 1 , and let $\left(v_{n}\right)$ be a bounded sequence of uniformly compactly supported functions in $L^{q}\left(\mathbf{R}^{d}\right), 1 / q+1 / p<1$, weakly converging to 0 in the sense of distributions. Then, after passing to a subsequence (not relabelled), for any $\bar{s} \in\left(1, \frac{p q}{p+q}\right)$ there exists a continuous bilinear functional B on $L^{\bar{s}^{\prime}}\left(\mathbf{R}^{d}\right) \otimes C^{d}(\mathrm{P})$ such that for every $\varphi \in L^{s^{\prime}}\left(\mathbf{R}^{d}\right)$ and $\psi \in C^{d}(\mathrm{P})$, it holds

$$
B(\varphi, \psi)=\lim _{n \rightarrow \infty} \int_{\mathbf{R}^{d}} \varphi(\mathbf{x}) u_{n}(\mathbf{x})\left(\mathcal{A}_{\psi \mathrm{P}} v_{n}\right)(\mathbf{x}) d \mathbf{x}
$$

where $\mathcal{A}_{\psi_{\mathrm{P}}}$ is the Fourier multiplier operator on \mathbf{R}^{d} associated to $\psi \circ \pi_{\mathrm{P}}$.
The bilinear functional B can be continuously extended as a linear functional on $L^{\bar{s}^{\prime}}\left(\mathbf{R}^{d} ; C^{d}(\mathrm{P})\right)$.

Case $L^{p}-L^{p^{\prime}}, p>1$

In the case $1 / p+1 / q=1$, applying the same proof gives us continuous bilinear functional on $C\left(\mathbf{R}^{d}\right) \otimes C^{d}(\mathrm{P})$. Using Schwartz's kernel theorem, we can only extend it to a distribution from $\mathcal{D}^{\prime}\left(\mathbf{R}^{d} \times \mathrm{P}\right)$.
Introduce the truncation operator $T_{l}(v)=v$ if $|v| \leq l$ and $T_{l}(v)=0$ if $|v| \geq l$, for $l \in \mathbf{N}$.

Theorem. Assume that

- sequences $\left(\mathbf{u}_{r}\right)$ and $\left(\mathbf{v}_{r}\right)$ are bounded in $L^{p}\left(\mathbf{R}^{d} ; \mathbf{R}^{N}\right)$ and $L^{p^{\prime}}\left(\mathbf{R}^{d} ; \mathbf{R}^{N}\right)$, where $1 / p+1 / p^{\prime}=1$, and converge toward \mathbf{u} and \mathbf{v} in the sense of distributions;
- for every $l \in \mathbf{N}$, the sequences $\left(T_{l}\left(\mathbf{v}_{r}\right)\right)$ converge weakly in $L^{p^{\prime}}\left(\mathbf{R}^{d} ; \mathbf{R}^{N}\right)$ toward \mathbf{h}^{l}, where the truncation operator T_{l} is understood coordinatewise;
- there exists a vector valued function $\mathbf{V} \in$ $L^{p^{\prime}}\left(\mathbf{R}^{d} ; \mathbf{R}^{N}\right)$ such that $\mathbf{v}_{r} \leq \mathbf{V}$ holds coordinatewise for every $r \in \mathbf{N}$;
- (2) holds with $a_{s k l} \in C_{0}\left(\mathbf{R}^{d}\right)$ and that $q_{j m} \in C\left(\mathbf{R}^{d}\right)$. Assume that

$$
q\left(\mathbf{x} ; \mathbf{u}_{r}, \mathbf{v}_{r}\right) \rightharpoonup \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right) .
$$

If for every $l \in \mathbf{N}$, the set $\Lambda_{\mathcal{D}}$, the bilinear form (1), and the (matrix of) H-distributions $\boldsymbol{\mu}_{l}$ corresponding to the sequences $\left(\mathbf{u}_{r}-\mathbf{u}\right)$ and $\left(T_{l}\left(\mathbf{v}_{r}\right)-\mathbf{h}^{l}\right)_{r}$ satisfy the strong consistency condition, then it holds

$$
q(\mathbf{x} ; \mathbf{u}, \mathbf{v}) \leq \omega \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}^{d}\right)
$$

References

[1] N. Antonić, D. Mitrović: H-distributions: An Extension of H-Measures to an $L^{p}-L^{q}$ Setting, Abstr. Appl. Anal. (2011), Article ID 901084, 12 pages.
[2] M. Lazar, D. Mitrović: On an extension of a bilinear functional on $L^{p}\left(\mathbf{R}^{n}\right) \times E$ to Bôchner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. Paris 351 (2013) 261-264.
[3] E. Yu. Panov: Ultraparabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 47-62.
[4] L. Tartar: H-measures, a new approach for studying homogenisation, oscillation and concentration effects in PDEs, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 193-230.

