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Optimal design problem (single state)

Ω ⊆ Rd open and bounded, f ∈ L2(Ω) given;

stationary diffusion
equation with homogenous Dirichlet b. c.:{

−div (A∇u) = f
u ∈ H1

0(Ω)
, (1)

where A is a mixture of two isotropic materials with conductivities
0 < α < β: A = χαI + (1− χ)βI, where χ ∈ L∞(Ω; {0, 1}),∫

Ω χ dx = qα, for given 0 < qα < |Ω|.
For given Ω, α, β, qα and f we want to find such material A which
minimizes the compliance functional (total amount of heat/electrical energy
dissipated in Ω):

J(χ) =

∫
Ω

f (x)u(x)dx =

∫
Ω

A(x)∇u(x) · ∇u(x) dx −→ min ,

where u is the solution of the state equation (1).
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Relaxation by homogenisation

χ ∈ L∞(Ω; {0, 1}) · · · θ ∈ L∞(Ω; [0, 1])
A = χαI + (1− χ)βI A ∈ K(θ) a.e. on Ω

classical material composite material - relaxation

Definition
A sequence of matrix functions Aε is said to H-converge to A∗ if for every f
the sequence of solutions of{

−div (Aε∇uε) = f
uε ∈ H1

0(Ω)

satisfies uε ⇀ u in H1
0(Ω), Aε∇uε ⇀ A∗∇u in L2(Ω; Rd ), where u is the

solution of the homogenised equation{
−div (A∗∇u) = f
u ∈ H1

0(Ω) .
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Krešimir Burazin Benasque, September 2015 4/18



University of Osijek - Department of Mathematics

Composite material

Definition
If a sequence of characteristic functions χε ∈ L∞(Ω; {0, 1}) and
conductivities

Aε(x) = χε(x)αI + (1− χε(x))βI

satisfy χε ⇀ θ weakly ∗ and Aε H-converges to A∗, then it is said that A∗

is homogenised tensor of two-phase composite material with proportions θ
of first material and microstructure defined by the sequence (χε).

Example – simple laminates: if χε depend only on x1, then

A∗ = diag(λ−θ , λ
+
θ , λ

+
θ , . . . , λ

+
θ ) ,

where

λ+
θ = θα + (1− θ)β ,

1

λ−θ
=
θ

α
+

1− θ
β

.

Set of all composites:

A := {(θ,A) ∈ L∞(Ω; [0, 1]×Md (R)) :

∫
Ω
θ dx = qα , A ∈ K(θ) a.e. }
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Effective conductivities – set K(θ)

G–closure problem: for given θ find all
possible homogenised (effective)
tensors A∗

K(θ) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev):

λ−θ ≤ λj ≤ λ+
θ j = 1, . . . , d

d∑
j=1

1

λj − α
≤ 1

λ−θ − α
+

d − 1

λ+
θ − α

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d − 1

β − λ+
θ

,

minA J is a proper relaxation of
minL∞(Ω;{0,1}) I

2D:

3D:

λ1

λ2

λ3
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α
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Multiple state optimal design problem

State equations{
−div (A∇ui) = fi
ui ∈ H1

0(Ω)
i = 1, . . . ,m

State function u = (u1, . . . , um)


I(χ) =

∑m
i=1 µi

∫
Ω fiui dx→ min

u = (u1, . . . , um) state function for A = χαI + (1− χ)βI

χ ∈ L∞(Ω; {0, 1}) ,
∫

Ω
χ dx = qα ,

for some given weights µi > 0. Proper relaxation:

J(θ,A) =
m∑

i=1

µi

∫
Ω

fiui dx→ min on

A := {(θ,A) ∈ L∞(Ω; [0, 1]×Md (R)) :

∫
Ω
θ dx = qα , A ∈ K(θ) a.e. }
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How do we find a solution?

A. Single state equation: [Murat & Tartar,
1985] This problem can be rewritten as a
simpler convex minimization problem.

I(θ) =

∫
Ω

fu dx −→ min

T =
{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω θ = qα

}
θ ∈ T , and u determined uniquely by −div (λ+

θ ∇u) = f

u ∈ H1
0(Ω)

B. Multiple state equations: Simpler
relaxation fails:

I(θ) =
m∑

i=1

µi

∫
Ω

fiui dx −→ min

T =
{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω θ = qα

}
θ ∈ T , and ui determined uniquely by −div (λ+

θ ∇ui) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m ,

In spherically symmetric case the simpler
relaxation can be done!
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Relaxed designs

A := {(θ,A) ∈ L∞(Ω; [0, 1]×Md (R)) :

∫
Ω
θ dx = qα , A ∈ K(θ) a.e. }

Further relaxation:

B . . .
∫

Ω θ dx = qα

λ−θ ≤ λmin(A) , λmax(A) ≤ λ+
θ

B is convex and compact and J is
continuous on B, so there is a
solution of minB J.

O λ1

λ2

α
θ = 1

α

β
θ = 0

β

λ+θ

λ+θ

λ−θ

λ−θ

K(θ)
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Equivalence of minB J and minT I

Theorem

I There is unique u∗ ∈ H1
0(Ω; Rm) which is the state for every solution

of minB J and minT I.

I If (θ∗,A∗) is an optimal design for the problem minB J, then θ∗ is
optimal design for minT I.

I Conversely, if θ∗ is a solution of optimal design problem minT I, then
any (θ∗,A∗) ∈ B satisfying A∗∇u∗i = λ+(θ∗)∇u∗i almost
everywhere on Ω (e.g. A∗ = λ+(θ∗)I) is an optimal design for the
problem minB J.

I If m < d, then there exists minimizer (θ∗,A∗) for J on B, such that
(θ∗,A∗) ∈ A, and thus it is also minimizer for J onA.
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problem minB J.

I If m < d, then there exists minimizer (θ∗,A∗) for J on B, such that
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Krešimir Burazin Benasque, September 2015 10/18



University of Osijek - Department of Mathematics

Simpler relaxation in case of spherical symmetry

Theorem
Let Ω ⊆ Rd be spherically symmetric, and let the right-hand sides
fi = fi(r), r ∈ ω, i = 1, . . . ,m be a radial function. Then there exists a
minimizer (θ∗,A∗) of the optimal design problem minA J which is a radial
function.

More precisely

a) For any minimizer θ of functional I over T , let us define a radial
function θ∗ : Ω −→ R as the average value over spheres of θ: for
r ∈ ω we take

θ∗(r) := −
∫
∂B(0,r)

θ dS ,

where S denotes the surface measure on a sphere. Then θ∗ is also
minimizer for I over T .
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Simpler relaxation in case of spherical symmetry. . . cont.

Theorem

b) For any radial minimizer θ∗ of I over T , let us define A∗ as a simple
laminate with layers orthogonal to a radial direction er and local
proportion of the first material θ∗. To be specific, we can define
A∗ : Ω −→ Md (R) in the following way:

I If x = re1 = (r , 0, 0, . . . , 0), then

A∗(x) := diag (λ+(θ∗(r)), λ−(θ∗(r)), λ+(θ∗(r)), . . . , λ+(θ∗(r))) .

I For all other x ∈ Ω, we take the unique rotation R(x) ∈ SO(d) such
that x = |x|R(x)e1, and define

A∗(x) := R(x)A∗(Rτ (x)x)Rτ (x) .

Then (θ∗,A∗) is a radial optimal design for minB J.
Moreover, (θ∗,A∗) ∈ A, and thus it is also a solution for minA J.
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Optimality conditions for minT I

Lemma
θ∗ ∈ T is a solution minT I if and only if there exists a Lagrange multiplier
c ≥ 0 such that

θ∗ ∈ 〈0, 1〉 ⇒
m∑

i=1

µi |∇u∗i |2 = c ,

θ∗ = 0 ⇒
m∑

i=1

µi |∇u∗i |2 ≥ c ,

θ∗ = 1 ⇒
m∑

i=1

µi |∇u∗i |2 ≤ c ,

or equivalently
m∑

i=1

µi |∇u∗i |2 > c ⇒ θ∗ = 0 ,

m∑
i=1

µi |∇u∗i |2 < c ⇒ θ∗ = 1 .
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Ball with nonconstant right-hand side

In all examples α = 1, β = 2.

Ω = B(0, 2) ⊆ R2, one state equation, f (r) = 1− r

State equation in polar coordinates −1

r

(
rλ+
θ(r)u′

)′
= 1− r .

Integration gives |u′(r)| = ψ(r)
αθ(r)+β(1−θ(r)) , where ψ(r) = |2r2−3r |

6 .

Conditions of optimality: there exists a constant γ :=
√

c > 0 such that
for optimal θ∗ we have:

|u′(r)| > γ ⇒ θ∗(r) = 0

⇒ gβ := ψ
β > γ

|u′(r)| < γ ⇒ θ∗(r) = 1

⇒ gα := ψ
α < γ

θ∗ ∈ 〈0, 1〉 ⇒ |u′(r)| = γ

⇒ θ∗(r) = βγ−ψ(r)
γ(β−α)

3
4

2

0

r

|u′|

γ1

γ2

gβ
γ3

γ4
gα
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Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint
−
∫

Ω θ
∗ dx = η := qα

|Ω| ∈ [0, 1], which is algebraic equation for γ.

η1 η2 η3 10 η

γ

γ1

γ2

γ3

γ4

2
0

r

|u′|

γ

gβ
gα

pγ1 qγ1 pγ2qγ2 pγ3 q
γ
3

α

β

α

β

Krešimir Burazin Benasque, September 2015 15/18



University of Osijek - Department of Mathematics

Ball with nonconstant right-hand side

Lagrange multiplier γ is uniquely determined by the constraint
−
∫

Ω θ
∗ dx = η := qα

|Ω| ∈ [0, 1], which is algebraic equation for γ.

η1 η2 η3 10 η

γ

γ1

γ2

γ3

γ4

2
0

r

|u′|

γ

gβ
gα

pγ1 qγ1 pγ2qγ2 pγ3 q
γ
3

α

β

α

β
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Multiple states

Two state equations on a ball Ω = B(0, 2)
I f1 = χB(0,1) , f2 ≡ 1 ,

I

{
−div (λ+

θ ∇ui) = fi
ui ∈ H1

0(Ω)
i = 1, 2

I µ

∫
Ω

f1u1 dx +

∫
Ω

f2u2 dx→ min

Solving state equation

u′i (r) =
ψi(r)

θ(r)α + (1− θ(r))β
, i = 1, 2 ,

with

ψ1(r) =


− r

2
, 0 ≤ r < 1 ,

− 1

2r
, 1 ≤ r ≤ 2 ,

and ψ2(r) = − r

2
.

Similarly as in the first example: ψ := µψ2
1 + ψ2

2 , gα := ψ
α2 , gβ := ψ

β2 .
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Geometric interpretation of optimality conditions

20 r

c

gβ

gα

A: 0 < µ ≤ 1
20 r

c

4
√
µ

gβ

gα

B: 1 < µ ≤ 4

20 r

c

4
√
µ

gβ

gα

C: 4 < µ ≤ 16
20 r

c

gβ

gα

D: 16 < µ

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation −

∫
Ω θ
∗ dx = η.
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Optimal θ∗ for case B

2
0

r

c

c

gβ

gα

pc1 qc1 qc2 qc3

α

β β

gβ

In orange region:

θ∗(r) =
1

β − α

(
β −

√
ψ(r)

c

)
2

0
r

θ∗

1

pc1 qc1 qc2 qc3
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Optimal θ∗ for case B
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