L^p version of the First commutation lemma

Marin Mišur

email: mmisur@math.hr PMF-Matematički odsjek Joint work with Nenad Antonić and Darko Mitrović.

 21^{st} of June 2016.

What is the First commutation lemma?

$$\circ \ \mathcal{A}_{\psi}u := (\psi \hat{u})^{\vee}$$

$$\circ M_b u := bu$$

$$[\mathcal{A}_{\psi}, M_b] := \mathcal{A}_{\psi} M_b - M_b \mathcal{A}_{\psi}$$

Compactness on L^2 - Cordes' result¹

Theorem

If bounded continuous functions b and ψ satisfy

$$\lim_{|\mathbf{\xi}| \to \infty} \sup_{|\mathbf{h}| \le 1} \{ |\psi(\mathbf{\xi} + \mathbf{h}) - \psi(\mathbf{\xi})| \} = 0 \quad \text{ and } \quad \lim_{|\mathbf{x}| \to \infty} \sup_{|\mathbf{h}| \le 1} \{ |b(\mathbf{x} + \mathbf{h}) - b(\mathbf{x})| \} = 0 \;,$$

then the commutator $[A_{\psi}, M_b]$ is a compact operator on $L^2(\mathbf{R}^d)$.

¹H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. **18** (1975) 115–131.

Compactness on L^2 - Tartar's version

For given $M, \varrho \in \mathbf{R}^+$ we denote the set

$$Y(M,\varrho) = \{(\boldsymbol{\xi},\boldsymbol{\eta}) \in \mathbf{R}^{2d} : |\boldsymbol{\xi}|, |\boldsymbol{\eta}| \ge M \& |\boldsymbol{\xi} - \boldsymbol{\eta}| \le \varrho\} .$$

Compactness on L^2 - Tartar's version²

Lemma (general form of the First commutation lemma)

If $b \in C_0(\mathbf{R}^d)$, while $\psi \in L^{\infty}(\mathbf{R}^d)$ satisfies the condition

$$(\forall \varrho, \varepsilon \in \mathbf{R}^+)(\exists M \in \mathbf{R}^+) \quad |\psi(\xi) - \psi(\eta)| \leqslant \varepsilon \text{ (s.s. } (\xi, \eta) \in Y(M, \varrho)), (1)$$

then $[A_{\psi}, M_b]$ is a compact operator on $L^2(\mathbf{R}^d)$.

Lemma

Let $\pi: \mathbf{R}^d_* \to \Sigma$ be a smooth projection to a smooth compact hypersurface Σ , such that $\|\nabla \pi(\boldsymbol{\xi})\| \to 0$ for $|\boldsymbol{\xi}| \to \infty$, and let $\psi \in \mathrm{C}(\Sigma)$. Then $\psi \circ \pi$ (ψ extended by homogeneity of order 0) satisfies (1).

²L. Tartar, The general theory of homogenization: A personalized introduction, Springer, 2009.

Where is it used?

- L. Tartar, H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh 115A (1990) 193–230.³
- E. Ju. Panov, Ultra-parabolic H-measures and compensated compactness, Ann. Inst. H. Poincaré Anal. Non Linéaire C 28 (2011) 47–62.
- N. Antonić, M. Lazar, Parabolic H-measures, J. Funct. Anal. 265 (2013) 1190–1239.
- Z. Lin, Instability of nonlinear dispersive solitary waves, J. Funct. Anal. 255
 (2008) 1191–1224.
- Z. Lin, On Linear Instability of 2D Solitary Water Waves, International Mathematics Research Notices 2009 (2009) 1247–1303.
- S. Richard, R. T. de Aldecoa, New Formulae for the Wave Operators for a Rank One Interaction, Integr. Equ. Oper. Theory 66 (2010) 283–292.

³P. Gérard, Microlocal defect measures, Comm. Partial Diff. Eq. 16 (1991) 1761–1794.

Boundedness on \mathbb{L}^p - the Hörmander-Mihlin theorem

Theorem

Let $\psi \in L^{\infty}(\mathbf{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [d/2] + 1$. If for some k > 0

$$(\forall r>0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \quad |\boldsymbol{\alpha}| \leq \kappa \Longrightarrow \int_{r/2 < |\boldsymbol{\xi}| < r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \leq k^2 r^{d-2|\boldsymbol{\alpha}|},$$

then for any $p\in\langle 1,\infty\rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a constant C_d such that

$$\|\mathcal{A}_{\psi}\|_{L^p \to L^p} \le C_d \max\{p, 1/(p-1)\}(k + \|\psi\|_{L^{\infty}(\mathbf{R}^d)}).$$

1 A / I	. I T 20	and the second	0.1	F-1	1000	
What about	the L^p	varıant	of the	First	commutation	lemma !

- one variant in the article by Cordes complicated proof and higher regularity assumptions
- o N. Antonić, D. Mitrović, *H-distributions: an extension of H-measures to an* $L^p L^q$ *setting*, Abs. Appl. Analysis **2011** Article ID 901084 (2011) 12 pp.

A variant of Krasnoselskij's type of result⁴

Lemma

Assume that linear operator A is compact on $L^2(\mathbf{R}^d)$ and bounded on $L^r(\mathbf{R}^d)$, for some $r \in \langle 1, \infty \rangle \setminus \{2\}$. Then A is also compact on $L^p(\mathbf{R}^d)$, for any p between 2 and r (i.e. such that $1/p = \theta/2 + (1-\theta)/r$, for some $\theta \in \langle 0, 1 \rangle$).

Corollary

If $b \in C_0(\mathbf{R}^d)$, while $\psi \in C^{\kappa}(\mathbf{R}^d)$ satisfies the conditions of the Hörmander-Mihlin theorem, then the commutator $[A_{\psi}, M_b]$ is a compact operator on $L^p(\mathbf{R}^d)$, for any $p \in \langle 1, \infty \rangle$.

⁴M. A. Krasnoselskij, *On a theorem of M. Riesz*, Dokl. Akad. Nauk SSSR **131** (1960) 246–248 (in russian); translated as Soviet Math. Dokl. **1** (1960) 229–231.

Theorem

Let $\psi \in C^{\kappa}(\mathbf{R}^d \setminus \{0\})$ be bounded and satisfy Hörmander's condition, while $b \in C_c(\mathbf{R}^d)$. Then for any $u_n \overset{*}{\longrightarrow} 0$ in $L^{\infty}(\mathbf{R}^d)$ and $p \in \langle 1, \infty \rangle$ one has:

$$(\forall \varphi, \phi \in C_c^{\infty}(\mathbf{R}^d)) \qquad \phi C(\varphi u_n) \longrightarrow 0 \quad \text{ in } \quad L^p(\mathbf{R}^d) .$$

Corollary

Let (u_n) be a bounded, uniformly compactly supported sequence in $L^{\infty}(\mathbf{R}^d)$, converging to 0 in the sense of distributions. Assume that $\psi \in C^{\kappa}(\mathbf{R}^d \setminus \{0\})$ satisfies Hörmander's condition and condition from the general form of the First commutation lemma.

Then for any $b \in L^s(\mathbf{R}^d)$, s > 1 arbitrary, it holds

$$\lim_{n\to\infty} \|b\mathcal{A}_{\psi}(u_n) - \mathcal{A}_{\psi}(bu_n)\|_{\mathrm{L}^r(\mathbf{R}^d)} = 0, \quad r \in \langle 1, s \rangle.$$

Further comments...

- $\circ\ b \in {\rm VMO};$ variant of H-measures
- o results of I.-L. Hwang and A. Stefanov