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General system

Consider a general 2x2 system of conservation laws{
∂tu + ∂x f (u, v) = 0
∂tv + ∂xg(u, v) = 0

(1)

with the Riemann initial data

u|t=0 = U0(x) =

{
UL, x < 0
UR , x > 0

, v |t=0 = V0(x) =

{
VL, x < 0
VR , x > 0.

(2)

If the system is genuinely nonlinear and strictly hyperbolic, then
the latter Riemann problem has a unique solution consisting of
rarefaction waves and compressive shock waves (Lax
admissible waves) if the states (UL,VL) and (UR ,VR) are close to
each other.



Wave front tracking blows up

A. Bressan et al. Lack of BV bounds for approximate solutions to
the p-system with large data, J.of Differential Equation, (2014)

Glimm scheme blows up

C. Tsikkou, Hyperbolic conservation laws with large initial data.
Is the Cauchy problem well-posed?, Quart. Appl. Math. (2010)

No solution for certain Riemann problems
B. Hayes and P. LeFloch, Measure solutions to a strictly
hyperbolic system of conservation laws, Nonlinearity (1996).



Existence of solutions to Riemann problems is resolved by
expanding the space of possible solutions by δ-distributions.

C. Korchinski, Solution of a Riemann problem for a 2× 2 system
of conservation laws possessing no classical weak solution PhD
Thesis Adelphi University, 1977

B. L. Keyfitz, H. C. Krantzer, Spaces of weighted measures for
conservation laws with singular shock solutions, J. Differential
Equations 118 (1995) 420-451.
Hugoniot locus is compact =⇒ no weak solutions



What does it mean to have δ-distribution as a part of the
solution?

Define various viscous and other approximations
These approximations converge to singular functions



A relaxation of the vanishing viscosity

Definition

Leg fε ∈ D′(R). We say that fε = oD′(1) if for any φ ∈ D(R), we
have

〈fε, φ〉 = o(1) as ε→ 0.

Definition

The families (uε) and (vε) are weak asymptotic solutions of (1) if

uε ⇀ u, vε ⇀ v in D′(R+ × R)

and {
∂tuε + ∂x f (uε, vε) = oD′(1)
∂tvε + ∂xg(uε, vε) = oD′(1).

(3)

for every t ∈ R+.



The work that has been the motivation for our research is

B. Hayes and P. LeFloch, Measure solutions to a strictly
hyperbolic system of conservation laws, Nonlinearity 9 (1996),
1547–1563.

where the following system was considered (the Brio system)

∂tu + ∂x
(u2+v2

2

)
= 0,

∂tv + ∂x(v(u − 1)) = 0.
(4)

The system is strictly hyperbolic; it is genuinely nonlinear at
{(u, v) : u ∈ R, v > 0} and {(u, v) : u ∈ R, v < 0}, but not on
the whole of R2.

No weak solution for certain Riemann data.



For the Riemann initial data (2) such that v1 < 0 < v2, the system
does not admit Lax admissible solutions. Moreover, for certain
combination of the Riemann initial data, no weak solutions
exist.

We want to construct a weak asymptotic solution to the Brio
system for any combination of the Riemann initial data. The
weak asymptotic solution converges toward the δ-shock
solution.



Let ρ ∈ C∞c (R) be an even non-negative, smooth, compactly
supported function such that

suppρ ⊂ (−1, 1),
∫
R
ρ(z)dz = 1, ρ ≥ 0.

We take:

Rε(x , t) = i
ερ((x − ct − 2ε)/ε)− i

ερ((x − ct + 2ε)/ε),

δε(x , t) = 1
ερ((x − ct − 4ε)/ε) + 1

ερ((x − ct + 4ε)/ε).
(5)



Next, define smooth functions Uε and Vε such that

Uε(x , t) =


u1, x < ct − 20ε,
c + 1, ct − 10ε < x < ct + 10ε,
u2, x > ct + 20ε,

Vε(x , t) =


v1, x < ct − 20ε,
0, ct − 10ε < x < ct + 10ε,
v2, x > ct + 20ε.

Notice that

Rε ⇀ 0, UεRε ⇀ 0, and Uεδε ⇀ 2(c + 1)δ(x − ct). (6)

Moreover, we have

VεRε ≡ 0, Vεδε ≡ 0, and δεRε ≡ 0. (7)



Now, the ansatz

uε(x , t) = Uε(x , t),
vε(x , t) = Vε(x , t) + α(t)(δε(x , t) + Rε(x , t)).

(8)

represents the weak asymptotic solution to (4), (2).



a) If u1 6= u2, c =
u2

1+v2
1−u2

2−v2
2

2(u1−u2)
and,

α(t) =
1
2
(c(v2 − v1) + (v1(u1 − 1)− v2(u2 − 1))) t ,

then there exist weak asymptotic solutions (uε), (vε) of the Brio
system, such that the families (uε) and (vε) have distributional
limits

u(x , t) = U0(x − ct),
v(x , t) = V0(x − ct) + α(t)δ(x − ct).

b) If v1 6= v2, c = v1(u1−1)−v2(u2−1)
v1−v2

and ,

α(t) =

(
c(u2 − u1) +

u2
1 + v2

1 − u2
2 − v2

2

2

)
t ,

then there exist weak asymptotic solutions (uε), (vε) of the Brio
system, such that the families (uε) and (vε) have distributional
limits

u(x , t) = U0(x − ct) + α(t)δ(x − ct),
v(x , t) = V0(x − ct).



Solution concept

Question:
Can we find the sense in which the limiting distributions satisfy
(4)?



More generally, if we have the equation

∂tu + ∂xF(u) = 0. (9)

what is the sense of the equality sign?

If u ∈ C1(R2) it is clear since all the operations in the
previous expression are well defined;
If u ∈ L1

loc(R
2), it can still be a solution to (9) in a weaker

sense (weak solution concept). It is defined so that the
differentiation of the function u is avoided;
If u contains δ, we need to apply even weaker concept in
which we shall avoid nonlinear operations on δ;



A generalization of the classical weak solution concept on δ-shock
solution concept for system (1) was provided by Danilov and
Shelkovich (2005) but for systems which are linear with respect to one
of the variables. There are no obstacles for extending the definition on
an arbitrary system of form (1) (Kalisch and Mitrovic (2012)).

Suppose that γ is the Lipschitz continuous arc and let x0 be the
initial point of the arc γ. Let (u, v) be a pair of distributions
represented in the form

u(x , t) = U(x , t) + α(t)δ(γ)
v(x , t) = V (x , t) + β(t)δ(γ),

(10)

and where U,V ∈ L∞(R× R+). Finally, the expression ∂ϕ(x,t)
∂l

denotes the tangential derivative of a function ϕ on the graph
γ, and

∫
γ

connotes the line integral over the arc γ.



Definition
The pair of distributions (10) is called a generalized δ-shock
solution of (1) with the initial data U0(x) + αk(x0, 0)δ

(
x − x0

)
and

V0(x) + β(x0, 0)δ
(
x − x0

)
if it satisfies∫

R+

∫
R
(U∂tϕ+ f (U,V )∂xϕ) dxdt (11)

+

∫
γ

α(t)∂ϕ(x,t)∂l +

∫
R

U0(x)ϕ(x , 0) dx + α(x0, 0)ϕ(x0, 0)= 0,∫
R+

∫
R
(V∂tϕ+ g(U,V )∂xϕ) dxdt (12)

+

∫
γ

β(t)∂ϕ(x,t)∂l +

∫
R

V0(x)ϕ(x , 0) dx+β(x0, 0)ϕ(x0, 0)= 0,

for all test functions ϕ ∈ D(R× R+).



Remark that in the case when γ = {x = ct}, the term involving
tangential derivatives reduces to∫

γ

α(t)∂ϕ(x,t)∂l = −
∫
R+

α′(t)ϕ(ct , t)dt = −〈δ(x − ct), α′(t)ϕ(x , t)〉

This operator, we shall call the tangential derivative of the
measure δ(x − ct).



General system

a) If UL 6= UR then the pair of distributions

u(x , t) = U0(x − ct),
v(x , t) = V0(x − ct) + α(t)δ(x − ct),

where

c =
[f (U,V )]

[U]
=

f (UR ,VR)− f (UL,VL)

UR − UL
, and

α(t) = (c[V ]− [g(U,V )])t = (c(UL −UR)− (g(UR ,VR)−g(UL,VL)))t ,
represents the δ-shock wave solution of (1), (2).

b) If VL 6= VR then the pair of distributions

u(x , t) = U0(x − ct) + α(t)δ(x − ct),
v(x , t) = V0(x − ct),

where

c =
[g(U,V )]

[V ]
=

g(UR ,VR)− g(UL,VL)

VR − VL
, and α(t) = (c[U]−[f (U,V )])t

represents the δ-shock solution of (1), (2).



Uniqueness issues

As usual when passing to weaker solution concept, problem of
uniqueness arises and additional demands must be imposed
on the solution.

Non-uniqueness due to:
shock speed;
multiple δ;



Usual additional demand for δ-shock solution is the
overcompressivity condition:

λi(u2, v2) ≤ c ≤ λi(u1, v1), i = 1, 2,

where λi are characteristic speeds corresponding to the
system, and c is speed of the δ-shock connecting a left state
L = (u1, v1) and a right state R = (u2, v2).

In the case of the Brio system, we are able to obtain only
compressivity conditions, i.e.



Definition
A δ-shock solution of (4), connecting a left state L = (u1, v1) and
a right state R = (u2, v2) is i-admissible if

λi(u2, v2) ≤ c ≤ λi(u1, v1), (13)

for i = 1 or i = 2.

Theorem
Given any Rieman initial data (2) such that v2 < 0 < v1, there
exists a δ-shock solution of (4) which consists of a combination
of the classical Lax admissible simple waves (shock or
rarefaction) and compressive 1-admissible δ waves.
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Cauchy problem with BV-initial data

Definition

We denote by Ge the space of all linear combinations over the
field of affine functions R+ 3 t 7→ at + b, a,b ∈ R, of the Radon
measuresM(R× R+) of the form δ(x − x0 − c(t − t0))κ(t0,T0)(t) for
some constants c ∈ R and T0 > t0 ≥ 0, and the characteristic
function κ(t0,T0) of the interval (t0, T0).
By G we denote the closure of Ge with respect to the weak
topology inM(R× R+).



Let us now define the tangential derivative of an element from
G.

Definition

Let m ∈ G such that for the family

mε =
∑
i∈Iε

αiε(t)δ(x − xiε − ciε(t − tiε)κ(tiε,Tiε)(t) (14)

it holds for every ϕ ∈ Cc(R× Rd)

lim
ε→0

∫
R+

∑
i∈Iε

αiε(t)ϕ(xiε+ciε(t−tiε), t)κ(tiε,Tiε)(t)dt =

∫
R+

〈m, ϕ(·, t)〉dt .

(15)
We say that the functional ml = ∂lm is the generalized
tangential derivative of m ∈ G if along some subsequence it
holds

lim
ε→0

∫
R+

∑
i∈Iε

α′iε(t)ϕ(xiε+ciε(t−tiε), t)κ(tiε,Tiε)(t)dt =

∫
R+

〈ml , ϕ(·, t)〉dt .

(16)



Definition

We say that the pair of distributions

u(x , t) = U(x , t) + mu(x , t),
v(x , t) = V (x , t) + mv(x , t),

for a bounded functions U and V , and measures mu,mv ∈ G is a
measure-type solution to (1) with the initial data u|t=0 = u0,
v |t=0 = v0 if the following relations hold for any ϕ ∈ C1

c(R× R+)∫
R+

∫
(U∂tϕ+ f (U,V )∂xϕ)dxdt +

∫ ∞
−∞

U0(x)ϕ(x , 0) dx , (17)

−
∫
R+

〈∂lmu, ϕ(·, t)〉dt = 0,∫
R+

∫
(V∂tϕ+ g(U,V )∂xϕ) dxdt +

∫ ∞
−∞

v0(x)ϕ(x , 0) dx (18)

−
∫
R+

〈∂lmv , ϕ(·, t)〉dt = 0

for some generalized tangential derivatives ∂lmu and ∂lmv of
the functionals mu and mv , respectively.



Theorem

Assume that u0, v0 ∈ L∞(R) ∩ BV (R). Then, system (1)
augmented with the initial data u|t=0 = u0, v |t=0 = v0 admits a
solution in the sense of Definition 5.



Shallow water system

The system has the form:

∂th + ∂x (uh) = 0
∂tu + ∂x

(
h + u2

2

)
= 0

}
(19)

where h is the height of the water and u is its velocity.



Figure: Hydraulic jump and flow through sluice gate



The case a) – no energy conservation

The phenomenon occurring in the case a) is called a hydraulic
jump. When liquid at high velocity discharges into a zone of
lower velocity, a rather abrupt rise occurs in the liquid surface.
The rapidly flowing liquid is abruptly slowed and increases in
height, converting some of the flow’s initial kinetic energy into
an increase in potential energy, with some energy irreversibly
lost through turbulence to heat.



The case b) – no momentum conservation

On the other hand, considering the flow over a weir as in case
b), mass and energy are to be conserved. Momentum is lost
because the sluice gate exerts a force F on the fluid (where the
two touch). However energy is conserved since when the fluid
touches the gate, its velocity is zero. Therefore no work is done (
dW/dt = Fu where W is the energy, and u = 0 ).



If the solutions of the system are smooth, they also satisfy
corresponding conservation equation for horizontal momentum
given by

∂t(uh) + ∂x

(
hu2 + 1

2 h2
)

= 0, (20)

and an energy equation which takes the form

∂t

(
1
2 hu2 + 1

2 h2
)
+ ∂x

(
1
2 hu3 + uh2

)
= 0. (21)



However, in both cases a) and b), we do not have smooth
solutions and we need to solve systems consisting of

Case a) {
∂th + ∂x (uh) = 0

∂t(uh) + ∂x

(
hu2 + 1

2 h2
)

= 0
(22)

Case b) {
∂th + ∂x (uh) = 0

∂t

(
1
2 hu2 + 1

2 h2
)
+ ∂x

(
1
2 hu3 + uh2

)
= 0

(23)



Conclusion

The above means that the physically proper solution to (19) is
δ-type solution with the Rankine-Hugoniot deficit which corrects
the mistake that is made by not using the physically proper
models (22) or (23), but model (19).



Possible reasons for appearance of the δ-distributions:

They are experimentally confirmed
Too simplified model
Wrong constitutive relations
Mathematically ineligible operations during the model
derivation


