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Standard situation

Assume that we have a bounded bilinear mapping

B : C(X)×C(Y )→ R,

where X and Y are open subsets of Euclidean spaces. The
question is whether we can extend it continuously to a measure
µ : C(X × Y )→ R, i.e. does it exist the continuous functional µ
such that for any f ∈ C(X) and g ∈ C(Y ) it holds

B(f ,g) = 〈µ, f ⊗ g〉



The answer is NO in general situation. Actually, according to the
Schwartz kernel theorem, we can merely find a distribution
µ ∈ D′(X × Y ) such that

B(f ,g) = 〈µ, f ⊗ g〉, f ∈ C(X),g ∈ C(Y ).



Example

Consider the following mapping

B : (BV ∩C)(−1, 1)× (BV ∩C)(−1, 1)→ R

defined by

(f ,g) 7→
∫ 1

−1

(
p.v.

∫ 1

−1

f (x)g(y)
x − y

dx

)
dy . (1)

It is a bounded bilinear functional.



However, if we replace f (x)g(y) by sgnσ(x − y), where sgnσ is a
regularization of the sign function, we see that∫ 1

−1

(
p.v.

∫ 1

−1

sgnσ(x − y)
x − y

dx

)
dy →∞

as σ → 0 implying that

C(X × Y ) ∩ BV (X × Y ) 3 ϕ 7→
∫ 1

0

(
p.v.

∫ 1

0

ϕ(x , y)
x − y

dx

)
dy .

is not bounded.



Main result

Let B be a bilinear form on Lp(Rd)⊗ E, where E is a separable
Banach space and p ∈ 〈1,∞〉. Then, it can be extended as a
continuous functional on Lp(Rd ; E) if and only if there exists a
nonnegative function b ∈ Lp′

(Rd) such that for every ψ ∈ E and
almost every (x), it holds

|B̃ψ(x)| ≤ b(x)‖ψ‖E . (2)

where B̃ is a linear bounded operator E → Lp′
(Rd) defined by

〈B̃ψ, φ〉 = B(φ, ψ).



Proof

Let us assume that (2) holds. In order to prove that B can be
extended as a linear functional on Lp(Rd ; E), it is enough to
obtain an appropriate bound on the following dense subspace
of Lp(Rd ; E): { N∑

j=1

ψjχj(x) : ψj ∈ E,N ∈ N
}
, (3)

where χi are characteristic functions associated to mutually
disjoint, finite measure sets.



For an arbitrary function g =
N∑

i=1
ψiχi from (3), the bound follows

easily once we notice that

∣∣B( N∑
j=1

ψjχj)
∣∣ := ∣∣ N∑

j=1

B(χj , ψj)
∣∣ = ∣∣ ∫

Rd

N∑
j=1

B̃ψ(x)χi(x)dx
∣∣

≤
∫

Rd
b(x)

N∑
j=1

χj(x)‖ψj‖Edx ≤ ‖b‖Lp′ (Rd)‖g‖Lp(Rd ;E).



Converse

In order to prove the converse, take a countable dense set of
functions from the unit ball of E, and denote them by ψj , j ∈ N.
Assume that the functions ψ−j := −ψj are also in E. For each
function B̃ψj ∈ Lp′

(Rd) denote by Dj the corresponding set of
Lebesgue points, and their intersection by D = ∩jDj .



For any x ∈ D and k ∈ N denote

bk(x) = max
|j|≤k

<(B̃ψj)(x) =
k∑

j=1

<(B̃ψj)(x)χk
j (x)

where χk
j0

is the characteristic function of set X k
j0

of all points
x ∈ D for which the above maximum is achieved for j = j0.
Furthermore, we can assume that for each k the sets X k

j are
mutually disjoint.



The sequence (bk) is clearly monotonic sequence of positive
functions, bounded in Lp′

(Rd), whose limit (in the same space)
we denote by b<. Indeed, choose ϕ ∈ Lp(Rd),

g =
k∑

j=1
ϕ(x)χk

j (x)ψj ∈ Lp(Rd ; E), and consider:

∫
Rd

bk(x)ϕ(x)dx = <
( ∫

Rd
B̃

k∑
j=1

ψjχ
k
j (x)ϕ(x)dx

)
= <

( k∑
j=1

B(χk
j ϕ,ψj)

)
= <

(
B(g)

)
≤ C‖g‖Lp(Rd ;E) = C‖ϕ‖Lp(Rd),

where C is the norm of B on (Lp(Rd ; E))′. Since ϕ ∈ Lp(Rd) is
arbitrary, we get that (bk) is bounded in Lp′

(Rd).



As D is a set of full measure, for every ψj we have

|<(B̃ψj)(x)| ≤ b<(x), (a.e. x ∈ Rd).

We are able to obtain a similar bound for the imaginary part of
B̃ψj . In other words, there exists b= ∈ Lp′

(Rd) such that

|=(B̃ψj)(x)| ≤ b=(x), (a.e. x ∈ Rd).

The assertion now follows since (2) holds for b = b< + b= on the
dense set of functions ψj , j ∈ N.



The End

Thank you for listening.
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