Continuity of linear operators on mixed-norm Lebesgue and Sobolev spaces

Ivan Ivec

Faculty of Metallurgy University of Zagreb

12th International ISAAC Congress Aveiro, July 29, 2019.

Joint work with Nenad Antonić and Ivana Vojnović

Mixed-norm Lebesgue spaces

Main theorem

Sketch of the proof

Examples

A compactness result

Mixed-norm Lebesgue spaces

[BENEDEK, PANZONE (1961)] $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1, \infty)^d$ is space of measurable complex functions f on \mathbf{R}^d ,

$$\|f\|_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i = \infty$, analogously. $\|\cdot\|_p$ is a norm and $L^p(\mathbf{R}^d)$ is a Banach space.

$$\mathbf{p}' = (p'_1, \dots, p'_d), \quad \frac{1}{p_i} + \frac{1}{p'_i} = 1$$

Some facts:

(a) $S \hookrightarrow L^{\mathbf{p}}(\mathbf{R}^d)$, (b) S is dense in $L^{\mathbf{p}}(\mathbf{R}^d)$, for $\mathbf{p} \in [1, \infty)^d$, (c) $L^{\mathbf{p}'}(\mathbf{R}^d)$ is topological dual of $L^{\mathbf{p}}(\mathbf{R}^d)$, for $\mathbf{p} \in [1, \infty)^d$, (d) $L^{\mathbf{p}}(\mathbf{R}^d) \hookrightarrow S'$.

Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for $L^{\mathbf{p}}(\mathbf{R}^d)$ spaces, $\mathbf{p} \in [1, \infty)^d$) Let (f_n) be sequence of measurable functions. If $f_n \longrightarrow f$ (ae), and if there exists $G \in L^{\mathbf{p}}(\mathbf{R}^d)$ such that $|f_n| \leq G$ (ae), for $n \in \mathbf{N}$, then $||f_n - f||_{\mathbf{p}} \longrightarrow 0$.

Theorem 2. (Minkowski ineaquality for integrals) For $p \in [1,\infty]^{d_1}$ and $f \in L^{(p,1,\dots,1)}(\mathbf{R}^{d_1+d_2})$ we have

$$\left\|\int_{\mathbf{R}^{d_2}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y}\right\|_{\mathbf{p}} \leqslant \int_{\mathbf{R}^{d_2}} \left\|f(\cdot, \mathbf{y})\right\|_{\mathbf{p}} \, d\mathbf{y}.$$

Basic results (cont.)

Theorem 3. (Hölder ineaquality) For $\mathbf{p} \in [1, \infty]^d$ we have

$$\left|\int_{\mathbf{R}^{d}} f(\mathbf{x})g(\mathbf{x}) \, d\mathbf{x}\right| \leq \|f\|_{\mathbf{p}} \|g\|_{\mathbf{p}'}.$$

[BENEDEK, PANZONE] prove a converse of Theorem 3: Theorem 4. For $\mathbf{p} \in \langle 1, \infty]^d$ it follows

$$\|f\|_{\mathbf{p}} = \sup_{g \in \mathbf{S}_{\mathbf{p}'}} \left| \int f\bar{g} \, d\mathbf{x} \right| = \sup_{g \in \mathbf{S}_{\mathbf{p}'} \cap \mathcal{S}} \left| \int f\bar{g} \, d\mathbf{x} \right|,$$

where $S_{\mathbf{p}'}$ is a unit sphere in $L^{\mathbf{p}'}(\mathbf{R}^d).$

Notation

$$\mathbf{x} = (\bar{\mathbf{x}}, \mathbf{x}'), \ \bar{\mathbf{x}} = (x_1, \dots, x_r), \ \mathbf{x}' = (x_{r+1}, \dots, x_d), \ 0 \leqslant r \leqslant d-1,$$
$$\mathbf{L}^{\bar{\mathbf{p}}, p}(\mathbf{R}^d) = \mathbf{L}^{(\bar{\mathbf{p}}, p, \dots, p)}(\mathbf{R}^d), \ \|f\|_{\bar{\mathbf{p}}, p} = \|f\|_{(\bar{\mathbf{p}}, p, \dots, p)}, \ \bar{\mathbf{p}} = (p_1, \dots, p_r).$$

If
$$r = 0$$
: $||f(\cdot, \mathbf{x}')||_{\bar{\mathbf{p}}} = |f(\mathbf{x}')|$, $||f||_{\bar{\mathbf{p}}, p} = ||f||_{L^{p}}$.
Distribution function:
 $\lambda_{f}(\alpha) = \lambda(f; \alpha) = \operatorname{vol}\{\mathbf{x} \in \mathbf{R}^{d} : |f(\mathbf{x})| > \alpha\}.$

Ť

Main theorem (hypotheses)

Theorem 5. Let us assume that linear operators $A, A^* : L^{\infty}_{c}(\mathbf{R}^d) \to L^{1}_{loc}(\mathbf{R}^d)$ satisfy

$$(\forall \varphi, \psi \in \mathcal{C}^{\infty}_{c}(\mathbf{R}^{d})) \quad \int_{\mathbf{R}^{d}} (A\varphi)\overline{\psi} = \int_{\mathbf{R}^{d}} \varphi \overline{A^{*}\psi}.$$

Furthermore, assume that (for T = A and $T = A^*$) there exist N > 1 and $c_1 > 0$ such that

$$(\forall m \in 0..(d-1))(\forall \mathbf{x}'_0 \in \mathbf{R}^{d-m})(\forall t > 0) \quad \int_{|\mathbf{x}' - \mathbf{x}'_0|_{\infty} > Nt} \|Tf(\cdot, \mathbf{x}')\|_{\bar{\mathbf{p}}} d\mathbf{x}' \leqslant c_1 \|f\|_{\bar{\mathbf{p}}, 1},$$

for an arbitrary $f \in L_c^{\infty}(\mathbf{R}^d)$ with properties: (a) $\operatorname{supp} f \subseteq \mathbf{R}^m \times \{\mathbf{x}' : |\mathbf{x}' - \mathbf{x}'_0|_{\infty} \leq t\}$, (b) $(\forall \bar{\mathbf{x}} \in \mathbf{R}^m) \int_{\mathbf{R}^{d-m}} f(\bar{\mathbf{x}}, \mathbf{x}') d\mathbf{x}' = 0$.

Main theorem (conclusion)

Theorem 5.

Let A has a continuous extension to $L^q(\mathbf{R}^d)$ with norm c_q for some $q \in \langle 1, \infty \rangle$, then A has a continuous extension also to $L^{\mathbf{p}}(\mathbf{R}^d)$ for each $\mathbf{p} \in \langle 1, \infty \rangle^d$, with norm

$$\|A\|_{\mathbf{L}^{\mathbf{P}}\to\mathbf{L}^{\mathbf{P}}} \leqslant \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max(p_{d-j}, (p_{d-j}-1)^{-1/p_{d-j}})(c_{1}+c_{q})$$
$$\leqslant c' \prod_{j=0}^{d-1} \max(p_{d-j}, (p_{d-j}-1)^{-1/p_{d-j}})(c_{1}+c_{q}),$$

where c and c' depend only on N and d.

The proof is inductive by using the following lemma.

Lemma 1. Assume that linear operators $A, A^* : L^{\infty}_{c}(\mathbf{R}^d) \to L^{1}_{loc}(\mathbf{R}^d)$ satisfy assumptions of Theorem 5. If A extends continuously to $L^{\bar{\mathbf{p}}, q}(\mathbf{R}^d)$ with norm c_q , for some $\bar{\mathbf{p}} \in \langle 1, \infty \rangle^m$ and $q \in \langle 1, \infty \rangle$, then A also extends continuously to $L^{\bar{\mathbf{p}}, p}(\mathbf{R}^d)$ for each $p \in \langle 1, \infty \rangle$, with norm

$$||A|| \leq c \cdot \max(p, (p-1)^{-1/p})(c_1 + c_q),$$

where c depends only on N and d.

Generalization of Marcinkiewicz interpolation theorem

Lemma 2. Assume that for linear operator $T : L_c^{\infty}(\mathbf{R}^d) \to L_{loc}^1(\mathbf{R}^d)$, and some $\bar{\mathbf{p}} \in \langle 1, \infty \rangle^m$ and $q \in \langle 1, \infty \rangle$ there exist $c_1, c_q > 0$ such that for arbitrary $\alpha > 0$ and $f \in L_c^{\infty}(\mathbf{R}^d)$ we have:

$$\lambda(\|Tf\|_{\bar{\mathbf{p}}};\alpha) \leq c_1 \alpha^{-1} \|f\|_{\bar{\mathbf{p}},1} ,$$
$$\|Tf\|_{\bar{\mathbf{p}},q} \leq c_q \|f\|_{\bar{\mathbf{p}},q} .$$

Then for arbitrary $p \in \langle 1, q \rangle$ and $f \in C_c^{\infty}(\mathbf{R}^d)$ it follows

$$||Tf||_{\mathbf{\bar{p}}, p} \leq 8(p-1)^{-\frac{1}{p}}(c_1+c_q)||f||_{\mathbf{\bar{p}}, p}$$

Example 1 - Fourier multipliers

Theorem 6. Let $m \in L^{\infty}(\mathbb{R}^d \setminus \{0\})$ be such that for some A > 0, and each $|\alpha| \leq \lfloor \frac{d}{2} \rfloor + 1$ we have either (a) Mihlin condition

$$\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi}) | \leqslant A |\boldsymbol{\xi}|^{-|\boldsymbol{\alpha}|} , \text{ or }$$

(b) Hörmander condition

$$\sup_{R>0} R^{-d+2|\boldsymbol{\alpha}|} \int_{R<|\boldsymbol{\xi}|<2R} |\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \leq A^2 < \infty .$$

Then m belongs to $\mathcal{M}_{\mathbf{p}}\text{, for each }\mathbf{p}\in\langle1,\infty\rangle^d\text{, and we have }$

$$\|m\|_{\mathcal{M}_{\mathbf{P}}} \leq \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max(p_{d-j}, (p_{d-j}-1)^{-1/p_{d-j}}) (A + \|m\|_{\mathbf{L}^{\infty}})$$
$$\leq c' \prod_{j=0}^{d-1} \max(p_{d-j}, (p_{d-j}-1)^{-1/p_{d-j}}) (A + \|m\|_{\mathbf{L}^{\infty}}),$$

where c and c' depends only on d.

Example 2 - pseudodifferential operators

 $a(\mathbf{x}, \boldsymbol{\xi}) \in \mathrm{C}^{\infty}(\mathbf{R}^d \times \mathbf{R}^d)$ is Hörmander symbol of order $m \ (a \in S_{1,\delta}^m)$ if:

$$(\forall \mathbf{x} \in \mathbf{R}^d) \ (\forall \boldsymbol{\xi} \in \mathbf{R}^d) \quad |\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi})| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} (1 + 4\pi^2 |\boldsymbol{\xi}|^2)^{\frac{m - |\boldsymbol{\beta}| + \delta|\boldsymbol{\alpha}|}{2}},$$

 $\partial_{\boldsymbol{\alpha}}\partial^{\boldsymbol{\beta}}a(\mathbf{x},\boldsymbol{\xi}):=\partial_{\mathbf{x}}^{\boldsymbol{\alpha}}\partial_{\boldsymbol{\xi}}^{\boldsymbol{\beta}}a(\mathbf{x},\boldsymbol{\xi}),\,C_{\boldsymbol{\alpha},\boldsymbol{\beta}}\text{ is constant depending only on }\boldsymbol{\alpha}\text{ and }\boldsymbol{\beta}.$

We definy $a(\cdot, D): \mathcal{S} \longrightarrow \mathcal{S}$ by

$$(a(\mathbf{x}, D)\varphi)(\mathbf{x}) = \int_{\mathbf{R}^d} e^{2\pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) \, d\boldsymbol{\xi}$$

Adjoint operator $a^*(\cdot, D)$, with symbol

$$a^*(\mathbf{x},\boldsymbol{\xi}) = \int_{\mathbf{R}^d} \int_{\mathbf{R}^d} e^{-2\pi i \mathbf{y} \cdot \boldsymbol{\eta}} \, \bar{a}(\mathbf{x} - \mathbf{y}, \boldsymbol{\xi} - \boldsymbol{\eta}) \, d\mathbf{y} \, d\boldsymbol{\eta}$$

defines an extension $a(\cdot, D): S' \longrightarrow S'$, a pseudodifferential operator of order m, by formula

$$\langle a(\cdot, D)u, \varphi \rangle = \langle u, a^*(\cdot, D)\varphi \rangle.$$

Example 2 - cont.

Theorem 7. Pseudodifferential operators of class $\Psi_{1,\delta}^0$, for an arbitrary $\delta \in [0,1)$, are bounded on $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in \langle 1, \infty \rangle^d$.

We also get the following corollary and generalisation for operators between mixed-norm Sobolev spaces, defined for $k \in \mathbf{N}_0$ and $\mathbf{p} \in \langle 1, \infty \rangle^d$ by

$$\mathbf{W}^{k,\mathbf{p}}(\mathbf{R}^d) = \Big\{ f \in \mathcal{S}' : (\forall \, \boldsymbol{\alpha} \in \mathbf{N}_0^d) \mid |\boldsymbol{\alpha}| \leqslant k \implies \partial^{\boldsymbol{\alpha}} f \in \mathbf{L}^{\mathbf{p}}(\mathbf{R}^d) \Big\},\$$

with the norm

$$\left\|f\right\|_{\mathbf{W}^{k,\mathbf{p}}(\mathbf{R}^{d})} = \sum_{|\boldsymbol{\alpha}| \leq k} \left\|\partial^{\boldsymbol{\alpha}}f\right\|_{\mathbf{p}}.$$

Corollary. Let $\delta \in [0,1)$ and let $a(\cdot,D)$ be a pseudodifferential operator from $\Psi_{1,\delta}^m$. Then for any $\mathbf{p} \in \langle 1, \infty \rangle^d$ and any integer $k \ge m \in \mathbf{N}_0$ the operator $a(\cdot,D) : \mathbf{W}^{k,\mathbf{p}}(\mathbf{R}^d) \longrightarrow \mathbf{W}^{k-m,\mathbf{p}}(\mathbf{R}^d)$ is bounded.

Example 3 - integral operators

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \, d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$ (Schur):

$$(\exists C > 0) \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| \, d\mathbf{x} < C \text{ (ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| \, d\mathbf{y} < C \text{ (ae } \mathbf{x}).$$

Sufficient condition for continuity on $L^{\mathbf{p}}(\mathbf{R}^d)$:

$$\int_{\mathbf{R}^d} \|K(\cdot,\cdot-\mathbf{z})\|_{\mathbf{L}^\infty} \, d\mathbf{z} < \infty.$$

Connection between those conditions=?

A compactness result – in two steps

By using Theorem 6 (Hörmander - Mihlin) we get

Theorem 8. Let $s_0, s_1 \in \mathbf{R}$, $0 < \theta < 1$ and $s = (1 - \theta)s_0 + \theta s_1$. Then

$$\left(\mathrm{H}^{s_0,\mathbf{p}_0}(\mathbf{R}^d),\mathrm{H}^{s_1,\mathbf{p}_1}(\mathbf{R}^d)\right)_{[\theta]} = \mathrm{H}^{s,\mathbf{p}}(\mathbf{R}^d) ,$$

for any $\mathbf{p}_0, \mathbf{p}_1 \in \langle 1, \infty \rangle^d$, where $1/\mathbf{p} = (1-\theta)/\mathbf{p}_0 + \theta/\mathbf{p}_1$.

$$\mathbf{H}^{s,\mathbf{p}}(\mathbf{R}^d) = \left\{ u \in \mathcal{S}' : \mathcal{F}^{-1}(\lambda^s \hat{u}) \in \mathbf{L}^{\mathbf{p}}(\mathbf{R}^d) \right\}$$

Then we can prove the Rellich-Kondrašov theorem for mixed-norm Sobolev spaces:

Theorem 9. Let $\mathbf{p} \in \langle 1, \infty \rangle^d$, t < s and $\varphi \in C_c^{\infty}(\mathbf{R}^d)$. Assume that (u_n) is a bounded sequence in $\mathrm{H}^{s,\mathbf{p}}(\mathbf{R}^d)$. Then there exists a subsequence of the given sequence (which we do not relabel) such that (φu_n) converges strongly in $\mathrm{H}^{t,\mathbf{p}}(\mathbf{R}^d)$.