Continuity of linear operators on mixed-norm Lebesgue and Sobolev spaces

Ivan Ivec
Faculty of Metallurgy
University of Zagreb
12th International ISAAC Congress
Aveiro, July 29, 2019.

Joint work with Nenad Antonić and Ivana Vojnović

Mixed-norm Lebesgue spaces

Main theorem

Sketch of the proof

Examples

A compactness result

Mixed-norm Lebesgue spaces

[Benedek, Panzone (1961)]
$\mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in[1, \infty\rangle^{d}$ is space of measurable complex functions f on \mathbf{R}^{d},

$$
\|f\|_{\mathbf{p}}=\left(\int \cdots\left(\int\left(\int\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{\frac{p_{2}}{p_{1}}} d x_{2}\right)^{\frac{p_{3}}{p_{2}}} \cdots d x_{d}\right)^{\frac{1}{p_{d}}}<\infty .
$$

If $p_{i}=\infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $\mathrm{L}^{\mathbf{P}}\left(\mathbf{R}^{d}\right)$ is a Banach space.

$$
\mathbf{p}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{d}^{\prime}\right), \quad \frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1
$$

Some facts:
(a) $\mathcal{S} \hookrightarrow \mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right)$,
(b) \mathcal{S} is dense in $\mathrm{L}^{\mathrm{p}}\left(\mathbf{R}^{d}\right)$, for $\mathbf{p} \in[1, \infty)^{d}$,
(c) $\mathrm{L}^{\mathrm{p}^{\prime}}\left(\mathbf{R}^{d}\right)$ is topological dual of $\mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right)$, for $\mathbf{p} \in[1, \infty\rangle^{d}$,
(d) $\mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right) \hookrightarrow \mathcal{S}^{\prime}$.

Basic results

We use some generalizations of classical results:
Theorem 1. (dominated convergence for $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ spaces, $\mathbf{p} \in[1, \infty\rangle^{d}$) Let $\left(f_{n}\right)$ be sequence of measurable functions. If $f_{n} \longrightarrow f(\mathrm{ae})$, and if there exists $G \in \mathrm{~L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ such that $\left|f_{n}\right| \leqslant G(\mathrm{ae})$, for $n \in \mathbf{N}$, then $\left\|f_{n}-f\right\|_{\mathbf{p}} \longrightarrow 0$.

Theorem 2. (Minkowski ineaquality for integrals) For $\mathbf{p} \in[1, \infty]^{d_{1}}$ and $f \in \mathrm{~L}^{(\mathbf{p}, 1, \ldots, 1)}\left(\mathbf{R}^{d_{1}+d_{2}}\right)$ we have

$$
\left\|\int_{\mathbf{R}^{d_{2}}} f(\mathbf{x}, \mathbf{y}) d \mathbf{y}\right\|_{\mathbf{p}} \leqslant \int_{\mathbf{R}^{d_{2}}}\|f(\cdot, \mathbf{y})\|_{\mathbf{p}} d \mathbf{y}
$$

Basic results (cont.)

Theorem 3. (Hölder ineaquality) For $\mathbf{p} \in[1, \infty]^{d}$ we have

$$
\left|\int_{\mathbf{R}^{d}} f(\mathbf{x}) g(\mathbf{x}) d \mathbf{x}\right| \leqslant\|f\|_{\mathbf{p}}\|g\|_{\mathbf{p}^{\prime}} .
$$

[Benedek, Panzone] prove a converse of Theorem 3:
Theorem 4. For $\mathbf{p} \in\langle 1, \infty]^{d}$ it follows

$$
\|f\|_{\mathbf{p}}=\sup _{g \in \mathrm{~S}_{\mathbf{p}^{\prime}}}\left|\int f \bar{g} d \mathbf{x}\right|=\sup _{g \in \mathrm{~S}_{\mathbf{p}^{\prime} \cap \mathcal{S}}}\left|\int f \bar{g} d \mathbf{x}\right|,
$$

where $\mathrm{S}_{\mathrm{p}^{\prime}}$ is a unit sphere in $\mathrm{L}^{\mathrm{p}^{\prime}}\left(\mathbf{R}^{d}\right)$.

Notation

$$
\begin{aligned}
& \mathbf{x}=\left(\overline{\mathbf{x}}, \mathbf{x}^{\prime}\right), \overline{\mathbf{x}} \\
&=\left(x_{1}, \ldots, x_{r}\right), \mathbf{x}^{\prime}=\left(x_{r+1}, \ldots, x_{d}\right), 0 \leqslant r \leqslant d-1, \\
& \mathrm{~L}^{\overline{\mathbf{p}}, p}\left(\mathbf{R}^{d}\right)=\mathrm{L}^{(\overline{\mathbf{p}}, p, \ldots, p)}\left(\mathbf{R}^{d}\right),\|f\|_{\overline{\mathbf{p}}, p}=\|f\|_{(\overline{\mathbf{p}}, p, \ldots, p)}, \overline{\mathbf{p}}=\left(p_{1}, \ldots, p_{r}\right) .
\end{aligned}
$$

If $r=0: \quad\left\|f\left(\cdot, \mathbf{x}^{\prime}\right)\right\|_{\overline{\mathbf{p}}}=\left|f\left(\mathbf{x}^{\prime}\right)\right|, \quad\|f\|_{\overline{\mathbf{p}}, p}=\|f\|_{\mathrm{L}^{p}}$.
Distribution function:

$$
\lambda_{f}(\alpha)=\lambda(f ; \alpha)=\operatorname{vol}\left\{\mathbf{x} \in \mathbf{R}^{d}:|f(\mathbf{x})|>\alpha\right\}
$$

(a) λ_{f} is non-increasing and right continuous.
(b) If $|f| \leqslant|g|$, then $\lambda_{f} \leqslant \lambda_{g}$.
(c) If $\left|f_{n}\right| \nearrow|f|$, then $\lambda_{f_{n}} \nearrow \lambda_{f}$.
(d) If $f=g+h$, it follows $\lambda(f ; \alpha) \leqslant \lambda\left(g ; \frac{\alpha}{2}\right)+\lambda\left(h ; \frac{\alpha}{2}\right)$.

Main theorem (hypotheses)

Theorem 5. Let us assume that linear operators $A, A^{*}: \mathrm{L}_{c}^{\infty}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right)$ satisfy

$$
\left(\forall \varphi, \psi \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)\right) \quad \int_{\mathbf{R}^{d}}(A \varphi) \bar{\psi}=\int_{\mathbf{R}^{d}} \varphi \overline{A^{*} \psi} .
$$

Furthermore, assume that (for $T=A$ and $T=A^{*}$) there exist $N>1$ and $c_{1}>0$ such that

$$
(\forall m \in 0 . .(d-1))\left(\forall \mathbf{x}_{0}^{\prime} \in \mathbf{R}^{d-m}\right)(\forall t>0) \quad \int_{\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}^{\prime}\right|_{\infty}>N t}\left\|T f\left(\cdot, \mathbf{x}^{\prime}\right)\right\|_{\overline{\mathbf{p}}} d \mathbf{x}^{\prime} \leqslant c_{1}\|f\|_{\overline{\mathbf{p}}, 1},
$$

for an arbitrary $f \in \mathrm{~L}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ with properties:
(a) $\operatorname{supp} f \subseteq \mathbf{R}^{m} \times\left\{\mathbf{x}^{\prime}:\left|\mathbf{x}^{\prime}-\mathbf{x}_{0}^{\prime}\right|_{\infty} \leqslant t\right\}$,
(b) $\left(\forall \overline{\mathbf{x}} \in \mathbf{R}^{m}\right) \quad \int_{\mathbf{R}^{d-m}} f\left(\overline{\mathbf{x}}, \mathbf{x}^{\prime}\right) d \mathbf{x}^{\prime}=0$.

Main theorem (conclusion)

Theorem 5.

Let A has a continuous extension to $\mathrm{L}^{q}\left(\mathbf{R}^{d}\right)$ with norm c_{q} for some $q \in\langle 1, \infty\rangle$, then A has a continuous extension also to $\mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ for each $\mathbf{p} \in\langle 1, \infty\rangle^{d}$, with norm

$$
\begin{aligned}
\|A\|_{\mathrm{L}^{\mathbf{P}} \rightarrow \mathrm{L}^{\mathbf{P}}} & \leqslant \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(c_{1}+c_{q}\right) \\
& \leqslant c^{\prime} \prod_{j=0}^{d-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(c_{1}+c_{q}\right)
\end{aligned}
$$

where c and c^{\prime} depend only on N and d.

Main step in the proof

The proof is inductive by using the following lemma.
Lemma 1. Assume that linear operators $A, A^{*}: \mathrm{L}_{c}^{\infty}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}_{\text {loc }}^{1}\left(\mathbf{R}^{d}\right)$ satisfy assumptions of Theorem 5 .
If A extends continuously to $\mathrm{L}^{\overline{\mathbf{p}}, q}\left(\mathbf{R}^{d}\right)$ with norm c_{q}, for some $\overline{\mathbf{p}} \in\langle 1, \infty\rangle^{m}$ and $q \in\langle 1, \infty\rangle$, then A also extends continuously to $\mathrm{L}^{\overline{\mathbf{p}}, p}\left(\mathbf{R}^{d}\right)$ for each $p \in\langle 1, \infty\rangle$, with norm

$$
\|A\| \leqslant c \cdot \max \left(p,(p-1)^{-1 / p}\right)\left(c_{1}+c_{q}\right)
$$

where c depends only on N and d.

Generalization of Marcinkiewicz interpolation theorem

Lemma 2. Assume that for linear operator $T: \mathrm{L}_{c}^{\infty}\left(\mathbf{R}^{d}\right) \rightarrow \mathrm{L}_{\mathrm{loc}}^{1}\left(\mathbf{R}^{d}\right)$, and some $\overline{\mathbf{p}} \in\langle 1, \infty\rangle^{m}$ and $q \in\langle 1, \infty\rangle$ there exist $c_{1}, c_{q}>0$ such that for arbitrary $\alpha>0$ and $f \in \mathrm{~L}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ we have:

$$
\begin{gathered}
\lambda\left(\|T f\|_{\overline{\mathbf{p}}} ; \alpha\right) \leqslant c_{1} \alpha^{-1}\|f\|_{\overline{\mathbf{p}}, 1}, \\
\|T f\|_{\overline{\mathbf{p}}, q} \leqslant c_{q}\|f\|_{\overline{\mathbf{p}}, q}
\end{gathered}
$$

Then for arbitrary $p \in\langle 1, q\rangle$ and $f \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ it follows

$$
\|T f\|_{\overline{\mathbf{p}}, p} \leqslant 8(p-1)^{-\frac{1}{p}}\left(c_{1}+c_{q}\right)\|f\|_{\overline{\mathbf{p}}, p}
$$

Example 1 - Fourier multipliers

Theorem 6. Let $m \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d} \backslash\{0\}\right)$ be such that for some $A>0$, and each $|\boldsymbol{\alpha}| \leqslant\left[\frac{d}{2}\right]+1$ we have either
(a) Mihlin condition

$$
\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right| \leqslant A|\boldsymbol{\xi}|^{-|\boldsymbol{\alpha}|} \quad \text {, or }
$$

(b) Hörmander condition

$$
\sup _{R>0} R^{-d+2|\boldsymbol{\alpha}|} \int_{R<|\boldsymbol{\xi}|<2 R}\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant A^{2}<\infty
$$

Then m belongs to $\mathcal{M}_{\mathbf{p}}$, for each $\mathbf{p} \in\langle 1, \infty\rangle^{d}$, and we have

$$
\begin{aligned}
\|m\|_{\mathcal{M}_{\mathbf{p}}} & \leqslant \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(A+\|m\|_{\mathrm{L}^{\infty}}\right) \\
& \leqslant c^{\prime} \prod_{j=0}^{d-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(A+\|m\|_{\mathrm{L}^{\infty}}\right)
\end{aligned}
$$

where c and c^{\prime} depends only on d.

Example 2 - pseudodifferential operators

$a(\mathbf{x}, \boldsymbol{\xi}) \in \mathrm{C}^{\infty}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ is Hörmander symbol of order $m\left(a \in S_{1, \delta}^{m}\right)$ if:

$$
\left(\forall \mathbf{x} \in \mathbf{R}^{d}\right)\left(\forall \boldsymbol{\xi} \in \mathbf{R}^{d}\right) \quad\left|\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi})\right| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}\left(1+4 \pi^{2}|\boldsymbol{\xi}|^{2}\right)^{\frac{m-|\boldsymbol{\beta}|+\delta|\boldsymbol{\alpha}|}{2}},
$$

$\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi}):=\partial_{\mathbf{x}}^{\boldsymbol{\alpha}} \partial_{\boldsymbol{\xi}}^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi}), C_{\boldsymbol{\alpha}, \boldsymbol{\beta}}$ is constant depending only on $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$.
We definy $a(\cdot, D): \mathcal{S} \longrightarrow \mathcal{S}$ by

$$
(a(\mathbf{x}, D) \varphi)(\mathbf{x})=\int_{\mathbf{R}^{d}} e^{2 \pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d \boldsymbol{\xi}
$$

Adjoint operator $a^{*}(\cdot, D)$, with symbol

$$
a^{*}(\mathbf{x}, \boldsymbol{\xi})=\int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{-2 \pi i \mathbf{y} \cdot \boldsymbol{\eta}} \bar{a}(\mathbf{x}-\mathbf{y}, \boldsymbol{\xi}-\boldsymbol{\eta}) d \mathbf{y} d \boldsymbol{\eta}
$$

defines an extension $a(\cdot, D): \mathcal{S}^{\prime} \longrightarrow \mathcal{S}^{\prime}$, a pseudodifferential operator of order m, by formula

$$
\langle a(\cdot, D) u, \varphi\rangle=\left\langle u, a^{*}(\cdot, D) \varphi\right\rangle
$$

Example 2 - cont.

Theorem 7. Pseudodifferential operators of class $\Psi_{1, \delta}^{0}$, for an arbitrary $\delta \in[0,1\rangle$, are bounded on $\mathrm{L}^{\mathrm{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in\langle 1, \infty\rangle^{d}$.

We also get the following corollary and generalisation for operators between mixed-norm Sobolev spaces, defined for $k \in \mathbf{N}_{0}$ and $\mathbf{p} \in\langle 1, \infty\rangle^{d}$ by

$$
\mathrm{W}^{k, \mathbf{p}}\left(\mathbf{R}^{d}\right)=\left\{f \in \mathcal{S}^{\prime}:\left(\forall \boldsymbol{\alpha} \in \mathbf{N}_{0}^{d}\right) \quad|\boldsymbol{\alpha}| \leqslant k \quad \Longrightarrow \quad \partial^{\boldsymbol{\alpha}} f \in \mathrm{~L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)\right\},
$$

with the norm

$$
\|f\|_{\mathrm{W}^{k, \mathbf{p}}\left(\mathbf{R}^{d}\right)}=\sum_{|\alpha| \leqslant k}\left\|\partial^{\alpha} f\right\|_{\mathbf{p}} .
$$

Corollary. Let $\delta \in[0,1\rangle$ and let $a(\cdot, D)$ be a pseudodifferential operator from $\Psi_{1, \delta}^{m}$. Then for any $\mathbf{p} \in\langle 1, \infty\rangle^{d}$ and any integer $k \geqslant m \in \mathbf{N}_{0}$ the operator $a(\cdot, D): \mathrm{W}^{k, \mathbf{p}}\left(\mathbf{R}^{d}\right) \longrightarrow \mathrm{W}^{k-m, \mathbf{p}}\left(\mathbf{R}^{d}\right)$ is bounded.

Example 3 - integral operators

$$
T f(\mathbf{x})=\int_{\mathbf{R}^{d}} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}
$$

Continuity on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right)$ (Schur):

$$
(\exists C>0) \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{x}<C(\text { ae } \mathbf{y}), \quad \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{y}<C(\text { ae } \mathbf{x}) .
$$

Sufficient condition for continuity on $\mathrm{L}^{\mathrm{P}}\left(\mathbf{R}^{d}\right)$:

$$
\int_{\mathbf{R}^{d}}\|K(\cdot, \cdot-\mathbf{z})\|_{\mathrm{L}^{\infty}} d \mathbf{z}<\infty .
$$

Connection between those conditions=?

A compactness result - in two steps

By using Theorem 6 (Hörmander - Mihlin) we get
Theorem 8. Let $s_{0}, s_{1} \in \mathbf{R}, 0<\theta<1$ and $s=(1-\theta) s_{0}+\theta s_{1}$. Then

$$
\left(\mathrm{H}^{s_{0}, \mathbf{p}_{0}}\left(\mathbf{R}^{d}\right), \mathrm{H}^{s_{1}, \mathbf{p}_{1}}\left(\mathbf{R}^{d}\right)\right)_{[\theta]}=\mathrm{H}^{s, \mathbf{p}}\left(\mathbf{R}^{d}\right)
$$

for any $\mathbf{p}_{0}, \mathbf{p}_{1} \in\langle 1, \infty\rangle^{d}$, where $1 / \mathbf{p}=(1-\theta) / \mathbf{p}_{0}+\theta / \mathbf{p}_{1}$.

$$
\mathrm{H}^{s, \mathbf{p}}\left(\mathbf{R}^{d}\right)=\left\{u \in \mathcal{S}^{\prime}: \mathcal{F}^{-1}\left(\lambda^{s} \hat{u}\right) \in \mathrm{L}^{\mathbf{p}}\left(\mathbf{R}^{d}\right)\right\}
$$

Then we can prove the Rellich-Kondrašov theorem for mixed-norm Sobolev spaces:

Theorem 9. Let $\mathbf{p} \in\langle 1, \infty\rangle^{d}, t<s$ and $\varphi \in C_{c}^{\infty}\left(\mathbf{R}^{d}\right)$. Assume that $\left(u_{n}\right)$ is a bounded sequence in $\mathrm{H}^{s, \mathbf{p}}\left(\mathbf{R}^{d}\right)$. Then there exists a subsequence of the given sequence (which we do not relabel) such that (φu_{n}) converges strongly in $\mathrm{H}^{t, \mathbf{p}}\left(\mathbf{R}^{d}\right)$.

