Application of defect distributions to equations with polynomial coefficients

Ivana Vojnović

Department of Mathematics and Informatics University of Novi Sad

The Sixth Najman Conference on Spectral Theory and Differential Equations, September 2019

Ivana Vojnović (University of Novi Sad)

Defect distributions

Image: Image:

Motivation - H-measures, H-distributions

• $u_n \rightharpoonup 0$ in $L^2(\mathbb{R}^d), n \rightarrow \infty$

Motivation - H-measures, H-distributions

•
$$u_n \rightharpoonup 0$$
 in $L^2(\mathbb{R}^d), n \to \infty$

Existence of H-measure (Tartar)

There exists a subsequence $(u_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ s. t. for all $\varphi_1(x), \varphi_2(x) \in C_0(\mathbb{R}^d), \psi(\xi) \in C(\mathbb{S}^{d-1})$ we have that

$$\lim_{n'\to\infty}\int_{\mathbb{R}^d}\mathcal{F}(\varphi_1 u_{n'})(\xi)\overline{\mathcal{F}(\varphi_2 u_{n'})}(\xi)\psi\left(\frac{\xi}{|\xi|}\right)d\xi$$
$$=\int_{\mathbb{R}^d\times\mathbb{S}^{d-1}}\varphi_1(x)\overline{\varphi_2}(x)\psi(\xi)d\mu(x,\xi)=\langle\mu,\varphi_1\overline{\varphi}_2\psi\rangle$$

• \mathbb{S}^{d-1} - unit sphere in \mathbb{R}^d

- If $u_n \to 0$ in $L^2(\mathbb{R}^d)$, then $\mu = 0$.
- If $\mu = 0$, then $u_n \to 0$ in $L^2_{loc}(\mathbb{R}^d)$.

イロト イヨト イヨト イヨト

- If $u_n \to 0$ in $L^2(\mathbb{R}^d)$, then $\mu = 0$.
- If $\mu = 0$, then $u_n \to 0$ in $L^2_{loc}(\mathbb{R}^d)$.
- $u_n
 ightarrow 0$ in $L^2(\mathbb{R}^d)$

d

•
$$\sum_{i=1}^{\infty} \partial_{x_i}(A_i(x)u_n(x)) = f_n(x) \to 0 \text{ in } W^{-1,2}_{loc}(\mathbb{R}^d), A_i \in C_0(\mathbb{R}^d)$$

・ロト ・回ト ・ヨト ・ヨト

- If $u_n \to 0$ in $L^2(\mathbb{R}^d)$, then $\mu = 0$.
- If $\mu = 0$, then $u_n \to 0$ in $L^2_{loc}(\mathbb{R}^d)$.

•
$$u_n \rightarrow 0$$
 in $L^2(\mathbb{R}^d)$

d

•
$$\sum_{i=1}^{\infty} \partial_{x_i}(A_i(x)u_n(x)) = f_n(x) \to 0 \text{ in } W^{-1,2}_{loc}(\mathbb{R}^d), A_i \in C_0(\mathbb{R}^d)$$

Localisation principle for H-measures

$$\mathcal{P}(x,\xi)\mu(x,\xi)=\sum_{j=1}^d \mathcal{A}_j(x)\xi_j\ \mu(x,\xi)=\mathsf{0}, ext{i.e. supp }\mu\subset ch\mathcal{P}$$

Theorem (H-measures, equivalent formulation)

Let sequences $u_n, v_n \rightarrow 0$ in $L^2(\mathbb{R}^d)$. There exist $(u_{n'}), (v_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbb{R}^d), \psi \in C(\mathbb{S}^{d-1})$

$$\langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle := \lim_{n' \to \infty} \langle \varphi_1 U_{n'}, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 V_{n'})} \rangle.$$

Theorem (H-measures, equivalent formulation)

Let sequences $u_n, v_n \rightarrow 0$ in $L^2(\mathbb{R}^d)$. There exist $(u_{n'}), (v_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbb{R}^d), \psi \in C(\mathbb{S}^{d-1})$

$$\langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle := \lim_{n' \to \infty} \langle \varphi_1 U_{n'}, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 V_{n'})} \rangle.$$

• H-distributions (Antonić, Mitrović, 2011.) - $L^p - L^q$ spaces, $p = \frac{q}{q-1}$, 1 \infty

Theorem (H-measures, equivalent formulation)

Let sequences $u_n, v_n \rightarrow 0$ in $L^2(\mathbb{R}^d)$. There exist $(u_{n'}), (v_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbb{R}^d), \psi \in C(\mathbb{S}^{d-1})$

$$\langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle := \lim_{n' \to \infty} \langle \varphi_1 U_{n'}, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 V_{n'})} \rangle.$$

• H-distributions (Antonić, Mitrović, 2011.) - $L^p - L^q$ spaces, $p = \frac{q}{q-1}$, 1 $<math>u_n \rightarrow 0$ in $L^p(\mathbb{R}^d)$, $v_n \rightarrow 0$ in $L^q(\mathbb{R}^d)$ • H-distributions - $W^{-k,p} - W^{k,q}$, $H^p_{-s} - H^q_{-s}$ spaces, $s \in \mathbb{R}$, 1 (Aleksić, Pilipović, V.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

• H-distributions - $W^{-k,p} - W^{k,q}$, $H^p_{-s} - H^q_{-s}$ spaces, $s \in \mathbb{R}$, 1 (Aleksić, Pilipović, V.)

Theorem

If a sequence $u_n
ightarrow 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n
ightarrow 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution μ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d), \psi \in C^{\kappa}(\mathbb{S}^{d-1}), \kappa = [d/2] + 1$,

$$\lim_{n'\to\infty} \langle \varphi_1 \boldsymbol{u}_{n'}, \, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 \boldsymbol{v}_{n'})} \rangle = \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle.$$

• H-distributions - $W^{-k,p} - W^{k,q}$, $H^p_{-s} - H^q_{-s}$ spaces, $s \in \mathbb{R}$, 1 (Aleksić, Pilipović, V.)

Theorem

If a sequence $u_n
ightarrow 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n
ightarrow 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution μ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d), \psi \in C^{\kappa}(\mathbb{S}^{d-1}), \kappa = [d/2] + 1$,

$$\lim_{n'\to\infty} \langle \varphi_1 \boldsymbol{U}_{n'}, \, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 \boldsymbol{V}_{n'})} \rangle = \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle.$$

•
$$\mu \in \mathcal{SE}'(\mathbb{R}^d \times \mathbb{S}^{d-1})$$

• H-distributions - $W^{-k,p} - W^{k,q}$, $H^p_{-s} - H^q_{-s}$ spaces, $s \in \mathbb{R}$, 1 (Aleksić, Pilipović, V.)

Theorem

If a sequence $u_n
ightarrow 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n
ightarrow 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution μ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d), \psi \in C^{\kappa}(\mathbb{S}^{d-1}), \kappa = [d/2] + 1$,

$$\lim_{n'\to\infty} \langle \varphi_1 \boldsymbol{U}_{n'}, \, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 \boldsymbol{V}_{n'})} \rangle = \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle.$$

•
$$\mu \in S\mathcal{E}'(\mathbb{R}^d \times \mathbb{S}^{d-1})$$

• $S(\mathbb{R}^d) \hat{\otimes} \mathcal{E}(\mathbb{S}^{d-1}) = S\mathcal{E}(\mathbb{R}^d \times \mathbb{S}^{d-1}).$

Let $u_n \rightarrow 0$ in $W^{-k,p}(\mathbb{R}^d)$. If for every sequence $v_n \rightarrow 0$ in $W^{k,q}(\mathbb{R}^d)$ the corresponding H-distribution is zero, then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $W^{-k,p}(\mathbb{R}^d)$, $n \rightarrow \infty$.

Let $u_n \rightarrow 0$ in $W^{-k,p}(\mathbb{R}^d)$. If for every sequence $v_n \rightarrow 0$ in $W^{k,q}(\mathbb{R}^d)$ the corresponding H-distribution is zero, then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $W^{-k,p}(\mathbb{R}^d)$, $n \rightarrow \infty$.

Localization property

-1

•
$$1 < q < d$$
, $u_n \rightarrow 0$ in $W^{-k,p}$, $v_n \rightarrow 0$ in $W^{k,q}$

•
$$\sum_{i=1}^{a} \partial_{x_i}(A_i(x)u_n(x)) = f_n(x), A_i \in \mathcal{S}(\mathbb{R}^d), \ \theta f_n \to 0 \text{ in } W^{-k-1,p}, \ n \to \infty \text{ for every } \theta \in \mathcal{S}(\mathbb{R}^d)$$

Let $u_n \rightarrow 0$ in $W^{-k,p}(\mathbb{R}^d)$. If for every sequence $v_n \rightarrow 0$ in $W^{k,q}(\mathbb{R}^d)$ the corresponding H-distribution is zero, then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $W^{-k,p}(\mathbb{R}^d)$, $n \rightarrow \infty$.

Localization property

d

•
$$1 < q < d$$
, $u_n \rightarrow 0$ in $W^{-k,p}$, $v_n \rightarrow 0$ in $W^{k,q}$

•
$$\sum_{i=1}^{\infty} \partial_{x_i}(A_i(x)u_n(x)) = f_n(x), A_i \in \mathcal{S}(\mathbb{R}^d), \ \theta f_n \to 0 \text{ in } W^{-k-1,p}, \ n \to \infty \text{ for every } \theta \in \mathcal{S}(\mathbb{R}^d)$$

$$\sum_{j=1}^{d} A_j(x)\xi_j \ \mu(x,\xi) = 0 \text{ in } \mathcal{SE}'(\mathbb{R}^d \times \mathbb{S}^{d-1})$$

 $\operatorname{supp} \mu \subset \operatorname{char} P$

Weight functions

Defect distributions - H^{-s,p}_Λ - H^{s,q}_Λ spaces, weights Λ = Λ(x, ξ) (Pilipović, V.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Weight functions

Defect distributions - H^{-s,p}_Λ - H^{s,q}_Λ spaces, weights Λ = Λ(x, ξ) (Pilipović, V.)

Definition

Positive function $\Lambda \in C^{\infty}(\mathbb{R}^N)$ is a weight function if the following conditions are satisfied:

• There exist positive constants $1 \le \mu_0 \le \mu_1$ and $c_0 < c_1$ such that

$$c_0 \langle z
angle^{\mu_0} \leq \Lambda(z) \leq c_1 \langle z
angle^{\mu_1}, \ \ z \in \mathbb{R}^N;$$

⁽²⁾ There exists $\omega \ge \mu_1$ such that for any $\alpha \in \mathbb{N}_0^N$ and $\gamma \in \mathbb{K}_N \equiv \{0, 1\}^N$

$$|z^{\gamma}\partial^{lpha+\gamma}\Lambda(z)|\leq C_{lpha,\gamma}\Lambda(z)^{1-rac{1}{\omega}|lpha|},\ \ z\in\mathbb{R}^{N}.$$

・ロット (母) ・ ヨ) ・ ヨ)

• $\Lambda(x,\xi) = (1+|x|^2+|\xi|^2)^{\frac{1}{2}}, x,\xi \in \mathbb{R}^d$

Ivana Vojnović (University of Novi Sad)

Defect distributions

The Sixth Najman Conference 8/1

• $\Lambda(x,\xi) = (1+|x|^2+|\xi|^2)^{\frac{1}{2}}, x,\xi \in \mathbb{R}^d$

Multi-quasi-elliptic polynomial:

$$\Lambda_{\mathcal{P}}(z) = \Big(\sum_{\alpha \in V(\mathcal{P})} z^{2\alpha}\Big)^{\frac{1}{2}}, \ z \in \mathbb{R}^{N}.$$

Here \mathcal{P} is a given complete polyhedron with the set of vertices $V(\mathcal{P})$.

Image: A math a math

Definition

Let $m \in \mathbb{R}$, $\rho \in (0, 1/\omega]$. We denote by $M\Gamma^m_{\rho,\Lambda}$ the space of functions $a \in C^{\infty}(\mathbb{R}^{2d})$ such that for all $\alpha, \beta \in \mathbb{N}^d_0, \gamma_1, \gamma_2 \in \{0, 1\}^d$ it holds that

$$|x^{\gamma_1}\xi^{\gamma_2}\partial_{\xi}^{lpha+\gamma_2}\partial_x^{eta+\gamma_1}a(x,\xi)|\leq C\Lambda(x,\xi)^{m-
ho|lpha+eta|}, \ \ (x,\xi)\in\mathbb{R}^{2d}$$

Image: A math a math

We equip $M\Gamma^m_{\rho,\Lambda}$ with the family of norms

$$\|\boldsymbol{a}\|_{\boldsymbol{M}\boldsymbol{\Gamma}_{\boldsymbol{k}}^{m}} = \sup_{|\alpha|+|\beta| \leq \boldsymbol{k}, \gamma \in \mathbb{K}} \sup_{(\boldsymbol{x},\xi) \in \mathbb{R}^{2d}} \frac{|\boldsymbol{x}^{\gamma_{1}} \xi^{\gamma_{2}} \partial_{\xi}^{\alpha+\gamma_{2}} \partial_{\boldsymbol{k}}^{\beta+\gamma_{1}} \boldsymbol{a}(\boldsymbol{x},\xi)|}{\Lambda(\boldsymbol{x},\xi)^{m-\rho|\alpha+\beta|}},$$

where $k \in \mathbb{N}_0$, $\gamma = (\gamma_1, \gamma_2)$, $\gamma_i \in \mathbb{K}_d$, $\alpha, \beta \in \mathbb{N}_0^d$. Pseudo-differential operator T_a with a symbol $a \in M\Gamma_{a,\Lambda}^m$ is defined by

$$T_{a}u(x):=\int_{\mathbb{R}^{d}}e^{ix\cdot\xi}a(x,\xi)\hat{u}(\xi)d\xi, \ u\in\mathcal{S}(\mathbb{R}^{d}).$$

Let $\Lambda(x,\xi)$ be a weight function, $s \in \mathbb{R}$, $1 . We denote by <math>H^{s,\rho}_{\Lambda}(\mathbb{R}^d)$ the space of all $u \in S'(\mathbb{R}^d)$ such that $T_{\Lambda^s}u \in L^p(\mathbb{R}^d)$. Since $\Lambda(x,\xi)^s$ is elliptic of order *s* there exists an operator $T_b \in ML^{-s}_{\rho,\Lambda}$ such that

$$T_b T_{\Lambda^s} = I + R_s,$$

where R_s is a regularizing operator. We define norm on $H^{s,\rho}_{\Lambda}$ in the following manner:

$$\|u\|_{s,p,\Lambda} = \|T_{\Lambda^s}u\|_{L^p} + \|R_su\|_{L^p}.$$

With this norm $H^{s,p}_{\Lambda}(\mathbb{R}^d)$ becomes a Banach space.

If $b \in M\Gamma^m_{1/\omega,\Lambda}$, then $T_b : H^{s+m,p}_{\Lambda}(\mathbb{R}^d) \to H^{s,p}_{\Lambda}(\mathbb{R}^d)$ continuously for $s, m \in \mathbb{R}$ and 1 . We have the following estimate

$$\|T_{b}u\|_{H^{s,p}_{\Lambda}} \leq C \|b\|_{M\Gamma^m_k} \|u\|_{H^{s+m,p}_{\Lambda}},$$

for some $k \in \mathbb{N}, k > 2d$.

(D) (A) (A) (A)

If $b \in M\Gamma^m_{1/\omega,\Lambda}$, then $T_b: H^{s+m,p}_{\Lambda}(\mathbb{R}^d) \to H^{s,p}_{\Lambda}(\mathbb{R}^d)$ continuously for $s, m \in \mathbb{R}$ and 1 . We have the following estimate

$$\|T_b u\|_{H^{s,p}_{\Lambda}} \leq C \|b\|_{M\Gamma^m_k} \|u\|_{H^{s+m,p}_{\Lambda}},$$

for some $k \in \mathbb{N}, k > 2d$.

Theorem (Lizorkin-Marcinkiewicz)

Let $m(\xi)$ be continuous together with derivatives $\partial_{\xi}^{\gamma} m(\xi)$, for any $\gamma \in \{0, 1\}^d$. If there is a constant c > 0 such that

$$\xi^{\gamma}\partial_{\xi}^{\gamma}m(\xi) \leq c, \ \xi \in \mathbb{R}^{d}, \ \gamma \in \{0,1\}^{d},$$

then for 1 there exists a constant <math>B = B(p, d) such that $\|T_m u\|_{L^p} \leq B \|u\|_{L^p}, \ u \in \mathcal{S}(\mathbb{R}^d).$

To obtain L^p -boundedness it is enough to assume that for $a(x,\xi)$ it holds that

$$|\xi^{\gamma}\partial_{x}^{\lambda}\partial_{\xi}^{\nu+\gamma}a(x,\xi)| \leq C\langle\xi\rangle^{-\varepsilon|\nu|}, \ (x,\xi) \in \mathbb{R}^{2d},$$

for some $\varepsilon > 0$, and for all $\lambda, \nu \in \mathbb{N}_0^d$, $\gamma \in \mathbb{K}_d$.

Theorem

Let
$$v \in H^{m,q}_{\Lambda}(\mathbb{R}^d)$$
, $m \in \mathbb{R}$, $1 < q < \infty$ and $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Then $\varphi v \in H^{m,q}_{\Lambda}(\mathbb{R}^d)$.

・ロト ・回ト ・ヨト ・ヨト

Let $u_n \rightarrow 0$ in $L^p(\mathbb{R}^d)$ and $v_n \rightarrow 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Assume that $\psi \in M\Gamma^m_{1/\omega,\Lambda}$. Then, up to subsequences, there exists a distribution $\mu_{\psi} \in S'(\mathbb{R}^d)$ such that for all $\varphi \in S(\mathbb{R}^d)$,

$$\lim_{n\to\infty} \langle u_n, \overline{T_{\bar{\psi}}(\varphi v_n)} \rangle = \langle \mu_{\psi}, \bar{\varphi} \rangle.$$

Let $u_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$. Assume that

$$\lim_{n\to\infty} \langle u_n, T_{\Lambda(x,\xi)^m}(\varphi v_n) \rangle = 0,$$

for every sequence $v_n \rightarrow 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $L^p(\mathbb{R}^d)$.

< <p>O > < <p>O >

Let $u_n \rightarrow 0$ in $L^p(\mathbb{R}^d)$. Assume that

$$\lim_{n\to\infty}\langle u_n, T_{\Lambda(x,\xi)^m}(\varphi v_n)\rangle = 0,$$

for every sequence $v_n \rightarrow 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $L^p(\mathbb{R}^d)$.

Corollary

Let $u_n
ightarrow 0$ in $L^p(\mathbb{R}^d)$ and $a \in EM\Gamma^m_{\rho,\Lambda}$. Assume that

$$\lim_{n\to\infty}\langle u_n, T_a(\varphi v_n)\rangle = 0,$$

for every sequence $v_n \rightarrow 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $L^p(\mathbb{R}^d)$.

Image: A marked and A mar A marked and A Let

$$P(x,D)u_n = \sum_{(\alpha,\beta)\in V(\mathcal{P})} x^{\beta} D_x^{\alpha} u_n = f_n,$$
(1)

for some complete polyhedron \mathcal{P} , where $u_n \rightarrow 0$ in $H^{1,p}_{\mathcal{P}}$ and $\varphi f_n \rightarrow 0$ in $L^p(\mathbb{R}^d)$ for every $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Here $V(\mathcal{P})$ denotes the set of vertices of \mathcal{P} and $p(x,\xi) = \sum_{(\alpha,\beta)\in V(\mathcal{P})} x^{\beta}\xi^{\alpha} \in M\Gamma^1_{1/\omega,\mathcal{P}}$.

Theorem

Let $u_n \rightharpoonup 0$ in $H^{1,p}_{\mathcal{P}}(\mathbb{R}^d)$ satisfies (??). Then for any $v_n \rightharpoonup 0$ in $L^q(\mathbb{R}^d)$ it holds that

$$\mu_{p} = 0$$
 in $\mathcal{S}'(\mathbb{R}^{d})$.

If *p* is elliptic, then $\theta u_n \to 0$ in $H^{1,p}_{\mathcal{P}}$, for every $\theta \in \mathcal{S}(\mathbb{R}^d)$.

Bibliography

- Aleksić, J., Pilipović, S., Vojnović, I., *H-distributions with unbounded multipliers*, J. Pseudo-Differ. Oper. Appl. (2018)
- Pilipović, S., Vojnović, I., *Defect distributions applied to differential equations with power function type coefficients*, submitted (2019)
- Antonić, N., Mitrović, D., H-distributions: an extension of H-measures to an L^p – L^q setting, Abstr. Appl. Anal. (2011)
- Morando, A., L^p -regularity for a class of pseudodifferential operators in \mathbb{R}^n , J. Partial Differential Equations (2005)
- Nicola F., Rodino L., *Global Pseudo-Differential Calculus on Euclidean Spaces*, Pseudo-Differential Operators. Theory and Applications, 4. Birkhäuser Verlag, Basel, (2010)
- Tartar, L. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115 (1990)

イロト イポト イヨト イヨト