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Motivation - H-measures, H-distributions

un ⇀ 0 in L2(Rd ), n→∞

Existence of H-measure (Tartar)

There exists a subsequence (un′) and a complex Radon measure µ on
Rd × Sd−1 s. t. for all ϕ1(x), ϕ2(x) ∈ C0(Rd ), ψ(ξ) ∈ C(Sd−1) we have that

lim
n′→∞

∫
Rd
F(ϕ1un′)(ξ)F(ϕ2un′)(ξ)ψ

( ξ
|ξ|

)
dξ

=

∫
Rd×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ)dµ(x , ξ) = 〈µ, ϕ1ϕ2ψ〉

Sd−1 - unit sphere in Rd
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If un → 0 in L2(Rd ), then µ = 0.
If µ = 0, then un → 0 in L2

loc(Rd ).

un ⇀ 0 in L2(Rd )
d∑

i=1

∂xi (Ai (x)un(x)) = fn(x)→ 0 in W−1,2
loc (Rd ), Ai ∈ C0(Rd )

Localisation principle for H-measures

P(x , ξ)µ(x , ξ) =
d∑

j=1

Aj (x)ξj µ(x , ξ) = 0, i.e. supp µ ⊂ chP
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H-distributions

Theorem (H-measures, equivalent formulation)

Let sequences un, vn ⇀ 0 in L2(Rd ). There exist (un′), (vn′) and a complex
Radon measure µ on Rd × Sd−1 such that for all ϕ1, ϕ2 ∈ C0(Rd ), ψ ∈ C(Sd−1)

〈µ, ϕ1ϕ2ψ〉 := lim
n′→∞

〈ϕ1un′ ,Aψ(ϕ2vn′)〉.

H-distributions (Antonić, Mitrović, 2011.) - Lp − Lq spaces, p =
q

q − 1
,

1 < p <∞
un ⇀ 0 in Lp(Rd ), vn ⇀ 0 in Lq(Rd )

Ivana Vojnović (University of Novi Sad) Defect distributions The Sixth Najman Conference 4 / 1



H-distributions

Theorem (H-measures, equivalent formulation)

Let sequences un, vn ⇀ 0 in L2(Rd ). There exist (un′), (vn′) and a complex
Radon measure µ on Rd × Sd−1 such that for all ϕ1, ϕ2 ∈ C0(Rd ), ψ ∈ C(Sd−1)

〈µ, ϕ1ϕ2ψ〉 := lim
n′→∞

〈ϕ1un′ ,Aψ(ϕ2vn′)〉.
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H-distributions - W−k,p −W k,q , Hp
−s − Hq

−s spaces, s ∈ R,1 < p <∞
(Aleksić, Pilipović, V. )

Theorem

If a sequence un ⇀ 0 weakly in W−k,p(Rd ) and vn ⇀ 0 weakly in W k,q(Rd ),
then there exist subsequences (un′), (vn′) and a distribution µ such that for
every ϕ1, ϕ2 ∈ S(Rd ), ψ ∈ Cκ(Sd−1), κ = [d/2] + 1 ,

lim
n′→∞

〈ϕ1un′ , Aψ(ϕ2vn′)〉 = 〈µ, ϕ1ϕ̄2ψ〉.

µ ∈ SE ′(Rd × Sd−1)

S(Rd )⊗̂E(Sd−1) = SE(Rd × Sd−1).
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Theorem

Let un ⇀ 0 in W−k,p(Rd ). If for every sequence vn ⇀ 0 in W k,q(Rd ) the
corresponding H-distribution is zero, then for every θ ∈ S(Rd ), θun → 0
strongly in W−k,p(Rd ), n→∞.

Localization property

1 < q < d , un ⇀ 0 in W−k,p, vn ⇀ 0 in W k,q

d∑
i=1

∂xi (Ai (x)un(x)) = fn(x), Ai ∈ S(Rd ), θfn → 0 in W−k−1,p, n→∞ for

every θ ∈ S(Rd )
d∑

j=1

Aj (x)ξj µ(x , ξ) = 0 in SE ′(Rd × Sd−1)

supp µ ⊂ char P
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Weight functions

Defect distributions - H−s,p
Λ − Hs,q

Λ spaces, weights Λ = Λ(x , ξ) (Pilipović,
V.)

Definition

Positive function Λ ∈ C∞(RN) is a weight function if the following conditions
are satisfied:

1 There exist positive constants 1 ≤ µ0 ≤ µ1 and c0 < c1 such that

c0〈z〉µ0 ≤ Λ(z) ≤ c1〈z〉µ1 , z ∈ RN ;

2 There exists ω ≥ µ1 such that for any α ∈ NN
0 and γ ∈ KN ≡ {0,1}N

|zγ∂α+γΛ(z)| ≤ Cα,γΛ(z)1− 1
ω |α|, z ∈ RN .
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1 Λ(x , ξ) = (1 + |x |2 + |ξ|2)
1
2 , x , ξ ∈ Rd

2 Multi-quasi-elliptic polynomial:

ΛP(z) =
( ∑
α∈V (P)

z2α
) 1

2
, z ∈ RN .

Here P is a given complete polyhedron with the set of vertices V (P).
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Definition

Let m ∈ R, ρ ∈ (0,1/ω]. We denote by MΓm
ρ,Λ the space of functions

a ∈ C∞(R2d ) such that for all α, β ∈ Nd
0 , γ1, γ2 ∈ {0,1}d it holds that

|xγ1ξγ2∂α+γ2
ξ ∂β+γ1

x a(x , ξ)| ≤ CΛ(x , ξ)m−ρ|α+β|, (x , ξ) ∈ R2d .
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We equip MΓm
ρ,Λ with the family of norms

‖a‖MΓm
k

= sup
|α|+|β|≤k,γ∈K

sup
(x,ξ)∈R2d

|xγ1ξγ2∂α+γ2
ξ ∂β+γ1

x a(x , ξ)|
Λ(x , ξ)m−ρ|α+β| ,

where k ∈ N0, γ = (γ1, γ2), γi ∈ Kd , α, β ∈ Nd
0 .

Pseudo-differential operator Ta with a symbol a ∈ MΓm
ρ,Λ is defined by

Tau(x) :=

∫
Rd

eix·ξa(x , ξ)û(ξ)d̄ξ, u ∈ S(Rd ).
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Let Λ(x , ξ) be a weight function, s ∈ R, 1 < p <∞. We denote by Hs,p
Λ (Rd )

the space of all u ∈ S ′(Rd ) such that TΛs u ∈ Lp(Rd ).
Since Λ(x , ξ)s is elliptic of order s there exists an operator Tb ∈ ML−s

ρ,Λ such
that

TbTΛs = I + Rs,

where Rs is a regularizing operator. We define norm on Hs,p
Λ in the following

manner:
‖u‖s,p,Λ = ‖TΛs u‖Lp + ‖Rsu‖Lp .

With this norm Hs,p
Λ (Rd ) becomes a Banach space.
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Theorem

If b ∈ MΓm
1/ω,Λ, then Tb : Hs+m,p

Λ (Rd )→ Hs,p
Λ (Rd ) continuously for s,m ∈ R

and 1 < p <∞. We have the following estimate

‖Tbu‖Hs,p
Λ
≤ C‖b‖MΓm

k
‖u‖Hs+m,p

Λ
,

for some k ∈ N, k > 2d.

Theorem (Lizorkin-Marcinkiewicz)

Let m(ξ) be continuous together with derivatives ∂γξ m(ξ), for any γ ∈ {0,1}d .
If there is a constant c > 0 such that

ξγ∂γξ m(ξ) ≤ c, ξ ∈ Rd , γ ∈ {0,1}d ,

then for 1 < p <∞ there exists a constant B = B(p,d) such that
‖Tmu‖Lp ≤ B‖u‖Lp , u ∈ S(Rd ).
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To obtain Lp-boundedness it is enough to assume that for a(x , ξ) it holds that

|ξγ∂λx ∂
ν+γ
ξ a(x , ξ)| ≤ C〈ξ〉−ε|ν|, (x , ξ) ∈ R2d ,

for some ε > 0, and for all λ, ν ∈ Nd
0 , γ ∈ Kd .

Theorem

Let v ∈ Hm,q
Λ (Rd ), m ∈ R,1 < q <∞ and ϕ ∈ S(Rd ). Then ϕv ∈ Hm,q

Λ (Rd ).
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Theorem

Let un ⇀ 0 in Lp(Rd ) and vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R. Assume that

ψ ∈ MΓm
1/ω,Λ. Then, up to subsequences, there exists a distribution

µψ ∈ S ′(Rd ) such that for all ϕ ∈ S(Rd ),

lim
n→∞
〈un,Tψ̄(ϕvn)〉 = 〈µψ, ϕ̄〉.
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Theorem

Let un ⇀ 0 in Lp(Rd ). Assume that

lim
n→∞
〈un,TΛ(x,ξ)m (ϕvn)〉 = 0,

for every sequence vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R. Then for every θ ∈ S(Rd ),

θun → 0 strongly in Lp(Rd ).

Corollary

Let un ⇀ 0 in Lp(Rd ) and a ∈ EMΓm
ρ,Λ. Assume that

lim
n→∞
〈un,Ta(ϕvn)〉 = 0,

for every sequence vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R. Then for every θ ∈ S(Rd ),

θun → 0 strongly in Lp(Rd ).
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Let
P(x ,D)un =

∑
(α,β)∈V (P)

xβDα
x un = fn, (1)

for some complete polyhedron P, where un ⇀ 0 in H1,p
P and

ϕfn → 0 in Lp(Rd ) for every ϕ ∈ S(Rd ). Here V (P) denotes the set of
vertices of P and p(x , ξ) =

∑
(α,β)∈V (P)

xβξα ∈ MΓ1
1/ω,P .

Theorem

Let un ⇀ 0 in H1,p
P (Rd ) satisfies (??). Then for any vn ⇀ 0 in Lq(Rd ) it holds

that
µp = 0 in S ′(Rd ).

If p is elliptic, then θun → 0 in H1,p
P , for every θ ∈ S(Rd ).
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