Abstract Friedrichs operators and the graph space

Sandeep Kumar Soni

Department of Mathematics, Faculty of Science, University of Zagreb

PMF-MO

Seminar for differential equations and numerical analysis

$$
\text { Zagreb, } 24^{\text {th }} \text { February } 2022
$$

Joint work with Marko Erceg

IP-2018-01-2449 (MiTPDE)

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right.$ satisfying (a.e. on $\left.\Omega\right)$:
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}
$$

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right.$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}
$$

Aim: impose boundary conditions such that for any $\mathrm{f} \in \mathrm{L}^{2}(\Omega)^{r}$ we have a unique solution of $\mathcal{L} \mathrm{u}=\mathrm{f}$.
Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

The classical theory in short

R. K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ;
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

The classical theory in short

R K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 ;
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.
\rightsquigarrow development of the abstract theory

Abstract Friedrichs operators

$(\mathcal{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathcal{H}^{\prime} \equiv \mathcal{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathcal{D} \subseteq \mathcal{H}$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \varphi, \psi \in \mathcal{D}) & \langle T \varphi \mid \psi\rangle=\langle\varphi \mid \widetilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \varphi \in \mathcal{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathcal{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} \tag{T3}
\end{align*}
$$

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
F. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.

Classical is abstract

$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ and $\mathbf{C} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfy (F1)-(F2):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Classical is abstract

$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ and $\mathbf{C} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfy (F1)-(F2):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

$(\mathrm{T} 1)\langle T \mathbf{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathbf{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{*} \mathbf{v}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\langle\mathbf{u} \mid \widetilde{T} \mathbf{v}\rangle_{L^{2}}$.

Classical is abstract

$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ and $\mathbf{C} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfy (F1)-(F2):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

$(\mathrm{T} 1)\langle T \mathbf{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathbf{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{*} \mathrm{v}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\langle\mathbf{u} \mid \widetilde{T} \mathbf{v}\rangle_{L^{2}}$.
Since $(T+\widetilde{T}) \mathbf{u}=\left(\mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}$,
(T2) $\|(T+\widetilde{T}) \mathbf{u}\|_{L^{2}} \leqslant\left(2\|\mathbf{B}\|_{L^{\infty}}+\sum_{k=1}^{d}\left\|\mathbf{A}_{k}\right\|_{W^{1, \infty}}\right)\|\mathbf{u}\|_{L^{2}}$,
$(\mathrm{T} 3)\langle(T+\widetilde{T}) \mathbf{u} \mid \mathbf{u}\rangle_{L^{2}} \stackrel{(\mathrm{~F} 2)}{\geqslant} \mu_{0}\|\mathbf{u}\|_{L^{2}}^{2}$.

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $\mathcal{V} \supseteq \mathcal{D}(\widetilde{\mathcal{V}} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $\mathcal{V}(\widetilde{\mathcal{V}})$ is a linear bijection.

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $\mathcal{V} \supseteq \mathcal{D}(\widetilde{\mathcal{V}} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $\mathcal{V}(\widetilde{\mathcal{V}})$ is a linear bijection.
\exists maximal operators: $\quad T_{1}: \mathcal{W} \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad T \subseteq T_{1}$,

$$
\left(\operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: \mathcal{W}\right)
$$

Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle . \quad([u \mid v]=\overline{[v \mid u]})
$$

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $\mathcal{V} \supseteq \mathcal{D}(\widetilde{\mathcal{V}} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $\mathcal{V}(\widetilde{\mathcal{V}})$ is a linear bijection.
\exists maximal operators: $\quad T_{1}: \mathcal{W} \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad T \subseteq T_{1}$,

$$
\widetilde{T}_{1}: \mathcal{W} \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad \widetilde{T} \subseteq \widetilde{T}_{1} .
$$

$$
\left(\operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: \mathcal{W}\right)
$$

Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
([u \mid v]=\overline{[v \mid u]})
$$

For $\mathcal{V}, \tilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0}
\end{array}
$$

$$
\mathcal{V}=\{u \in \mathcal{W}:(\forall v \in \widetilde{\mathcal{V}}) \quad[v \mid u]=0\}
$$

$$
\widetilde{\mathcal{V}}=\{v \in \mathcal{W}:(\forall u \in \mathcal{V}) \quad[u \mid v]=0\}
$$

$$
(\Longrightarrow \mathcal{D} \subseteq \mathcal{V} \cap \widetilde{\mathcal{V}})
$$

Well-posedness result

Goal: For (T, \widetilde{T}) satisfying (T1)-(T3) find $\mathcal{V} \supseteq \mathcal{D}(\widetilde{\mathcal{V}} \supseteq \mathcal{D})$ such that $T(\widetilde{T})$ extended to $\mathcal{V}(\widetilde{\mathcal{V}})$ is a linear bijection.
\exists maximal operators: $\quad T_{1}: \mathcal{W} \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad T \subseteq T_{1}$,

$$
\widetilde{T}_{1}: \mathcal{W} \subseteq \mathcal{H} \rightarrow \mathcal{H}, \quad \widetilde{T} \subseteq \widetilde{T}_{1}
$$

$$
\left(\operatorname{dom} T_{1}=\operatorname{dom} \widetilde{T}_{1}=: \mathcal{W}\right)
$$

Boundary map (form): $\quad D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
([u \mid v]=\overline{[v \mid u]})
$$

For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0}
\end{array}
$$

$$
\begin{equation*}
(\Longrightarrow \mathcal{D} \subseteq \mathcal{V} \cap \widetilde{\mathcal{V}}) \tag{V2}
\end{equation*}
$$

$$
\mathcal{V}=\{u \in \mathcal{W}:(\forall v \in \widetilde{\mathcal{V}}) \quad[v \mid u]=0\}
$$

$$
\widetilde{\mathcal{V}}=\{v \in \mathcal{W}:(\forall u \in \mathcal{V}) \quad[u \mid v]=0\}
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-(V 2) \Longrightarrow T_{1}\left|\mathcal{V}, \widetilde{T}_{1}\right|_{\tilde{\mathcal{V}}}$ bijective realisations .

Example 1 (Scalar elliptic PDE)

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in \mathrm{~L}^{2}(\Omega)$ given.

$$
\begin{aligned}
-\triangle u+\mu u=f \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f & \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T \mathrm{v}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathrm{v}\right)+\mathbf{C} v=\mathrm{g}
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathbf{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathbf{C}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.
$L=\mathrm{L}^{2}(\Omega)^{d+1}, W=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega)$

- $V=\mathrm{L}_{\mathrm{div}}^{2}(\Omega) \times \mathrm{H}_{0}^{1}(\Omega) \ldots$ Dirichelt boundary condition $(u=0$ on $\Gamma)$
- $V=\mathrm{L}_{\text {div }, 0}^{2}(\Omega) \times \mathrm{H}^{1}(\Omega) \ldots$ Neumann boundary condition
(p $\cdot \nu=\nabla u \cdot \nu=0$ on Γ)

Characterisation of joint pair of abstract Friedrichs operators

Theorem

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$

Characterisation of joint pair of abstract Friedrichs operators

Theorem

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .
\end{array}\right.
$$

Condition (T3) is used in this theorem only to get that $\overline{T+\widetilde{T}}$ has strictly positive bottom. More precisely, a pair (T, \widetilde{T}) satisfies conditions (T1)-(T2) if and only if $T \subseteq \widetilde{T}^{*}, \widetilde{T} \subseteq T^{*}$, and $T+\widetilde{T}$ is an everywhere defined, bounded, self-adjoint operator on \mathcal{H}. Since many statements hold even in this case, we shall explicitly emphasise in which particular situations condition (T3) is necessary.

Characterisation of joint pair of abstract Friedrichs operators

Theorem

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$
Condition (T3) is used in this theorem only to get that $\overline{T+\widetilde{T}}$ has strictly positive bottom. More precisely, a pair (T, \widetilde{T}) satisfies conditions (T1)-(T2) if and only if $T \subseteq \widetilde{T}^{*}, \widetilde{T} \subseteq T^{*}$, and $\overline{T+\widetilde{T}}$ is an everywhere defined, bounded, self-adjoint operator on \mathcal{H}. Since many statements hold even in this case, we shall explicitly emphasise in which particular situations condition (T3) is necessary.
Dual pairs: Operators A, B on \mathcal{H} with the property that $A \subseteq B^{*}$ and $B \subseteq A^{*}$ are often referred to as dual pairs.
Thus, operators forming a joint pair of abstract Friedrichs operators are dual pairs (this follows merely from condition (T1)).

Characterisation of joint pair of abstract Friedrichs operators

Let $(\underset{\sim}{T}, \widetilde{T})$ be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T+\widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

$$
\begin{align*}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=: \mathcal{W}_{0} \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathcal{W} \tag{1}
\end{align*}
$$

Characterisation of joint pair of abstract Friedrichs operators

Let $(\underset{\sim}{T}, \widetilde{T})$ be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T+\widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

$$
\begin{align*}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=: \mathcal{W}_{0} \tag{1}\\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathcal{W}
\end{align*}
$$

and $(\overline{T+\widetilde{T}}) \mid \mathcal{w}=\widetilde{T}^{*}+T^{*}$. This implies that $(\bar{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators. Now we simplify our notation by introducing

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} \tag{2}
\end{equation*}
$$

Characterisation of joint pair of abstract Friedrichs operators

Let $(\underset{\sim}{T}, \widetilde{T})$ be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T+\widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

$$
\begin{align*}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=: \mathcal{W}_{0} \tag{1}\\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathcal{W}
\end{align*}
$$

and $\left.(\overline{T+\widetilde{T}})\right|_{\mathcal{W}}=\widetilde{T}^{*}+T^{*}$. This implies that $(\bar{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators. Now we simplify our notation by introducing

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} \tag{2}
\end{equation*}
$$

When equipped with the graph norm (one of two equivalent norms $\|\cdot\|_{T_{1}}$ and $\|\cdot\|_{\widetilde{T}_{1}}$), the space \mathcal{W} becomes a Banach space, thus we shall call it the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}, while it is dense in \mathcal{H} (since it contains \mathcal{D}).

Characterisation of joint pair of abstract Friedrichs operators

Let $(\underset{\sim}{T}, \widetilde{T})$ be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T+\widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

$$
\begin{align*}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=: \mathcal{W}_{0} \tag{1}\\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathcal{W}
\end{align*}
$$

and $\left.(\overline{T+\widetilde{T}})\right|_{\mathcal{W}}=\widetilde{T}^{*}+T^{*}$. This implies that $(\bar{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators. Now we simplify our notation by introducing

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} \tag{2}
\end{equation*}
$$

When equipped with the graph norm (one of two equivalent norms $\|\cdot\|_{T_{1}}$ and $\|\cdot\|_{\widetilde{T}_{1}}$), the space \mathcal{W} becomes a Banach space, thus we shall call it the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}, while it is dense in \mathcal{H} (since it contains \mathcal{D}). As an illustration, for $\mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Characterisation of joint pair of abstract Friedrichs operators

Remark: Since T_{1} and \widetilde{T}_{1} are closed, their kernels $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ are closed both in \mathcal{H} and \mathcal{W}. Indeed, for any convergent sequence $\left(u_{n}\right)$ in, say, $\operatorname{ker} T_{1}$ with the limit $u \in \mathcal{H}$, we have $u_{n} \xrightarrow{\mathcal{H}} u$ and $T_{1} u_{n}=0$. This implies $u \in \operatorname{dom} T_{1}=\mathcal{W}$ and $T_{1} u=0$, i.e. $u \in \operatorname{ker} T_{1}$. Thus, we also have $u_{n} \xrightarrow{\mathcal{W}} u$.

Characterisation of joint pair of abstract Friedrichs operators

Remark: Since T_{1} and \widetilde{T}_{1} are closed, their kernels $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ are closed both in \mathcal{H} and \mathcal{W}. Indeed, for any convergent sequence $\left(u_{n}\right)$ in, say, $\operatorname{ker} T_{1}$ with the limit $u \in \mathcal{H}$, we have $u_{n} \xrightarrow{\mathcal{H}} u$ and $T_{1} u_{n}=0$. This implies $u \in \operatorname{dom} T_{1}=\mathcal{W}$ and $T_{1} u=0$, i.e. $u \in \operatorname{ker} T_{1}$. Thus, we also have $u_{n} \xrightarrow{\mathcal{W}} u$.

Lemma

Let a pair of operators (T, \widetilde{T}) on \mathcal{H} satisfies (T1)-(T2). Then the boundary operator D is continuous and satisfies
i) $(\forall u, v \in \mathcal{W}) \quad \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\overline{\mathcal{W}^{\prime}\langle D v, u\rangle_{\mathcal{W}}}$,
ii) $\operatorname{ker} D=\mathcal{W}_{0}$,
iii) $\operatorname{ran} D=\mathcal{W}_{0}^{0}$,
where ${ }^{0}$ stands for the annihilator.

Characterisation of joint pair of abstract Friedrichs operators

Remark: Since T_{1} and \widetilde{T}_{1} are closed, their kernels $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ are closed both in \mathcal{H} and \mathcal{W}. Indeed, for any convergent sequence $\left(u_{n}\right)$ in, say, $\operatorname{ker} T_{1}$ with the limit $u \in \mathcal{H}$, we have $u_{n} \xrightarrow{\mathcal{H}} u$ and $T_{1} u_{n}=0$. This implies $u \in \operatorname{dom} T_{1}=\mathcal{W}$ and $T_{1} u=0$, i.e. $u \in \operatorname{ker} T_{1}$. Thus, we also have $u_{n} \xrightarrow{\mathcal{W}} u$.

Lemma

Let a pair of operators (T, \widetilde{T}) on \mathcal{H} satisfies (T1)-(T2). Then the boundary operator D is continuous and satisfies
i) $(\forall u, v \in \mathcal{W}) \quad \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\overline{\mathcal{W}^{\prime}\langle D v, u\rangle_{\mathcal{W}}}$,
ii) $\operatorname{ker} D=\mathcal{W}_{0}$,
iii) $\operatorname{ran} D=\mathcal{W}_{0}^{0}$,
where ${ }^{0}$ stands for the annihilator.

Theorem

If (T, \widetilde{T}) satisfies (T1)-(T2), then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{D} \subseteq \mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W} \\
\left(\widetilde{T}^{*} \mid \mathcal{V}\right)^{*}=\left.T^{*}\right|_{\mathcal{V}} \\
\left(\left.T^{*}\right|_{\tilde{\mathcal{V}}}\right)^{*}=\widetilde{T}^{*} \mid \mathcal{V}
\end{array}\right.
$$

Bijective realisations with signed boundary map

We seek for bijective closed operators $S \equiv \widetilde{T}^{*} \mid \mathcal{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. If ($\operatorname{dom} S$, $\operatorname{dom} S^{*}$) satisfies ($V 1$) we call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).

Bijective realisations with signed boundary map

We seek for bijective closed operators $S \equiv \widetilde{T}^{*} \mid \mathcal{v}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. If (dom S, $\operatorname{dom} S^{*}$) satisfies ($V 1$) we call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).

Theorem (Antonić, Michelangeli, Erceg, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification

For (T, \widetilde{T}) satisfying (T1)-(T3) we have

$$
\bar{T} \subseteq \widetilde{T}^{*} \quad \text { and } \quad \overline{\widetilde{T}} \subseteq T^{*}
$$

while by the previous theorem there exists closed T_{r} such that

- $\bar{T} \subseteq T_{\mathrm{r}} \subseteq \widetilde{T}^{*}\left(\Longleftrightarrow \widetilde{\widetilde{T}} \subseteq T_{\mathrm{r}}^{*} \subseteq T^{*}\right)$,
- $T_{\mathrm{r}}: \operatorname{dom} T_{\mathrm{r}} \rightarrow \mathcal{H}$ bijection,
- $\left(T_{\mathrm{r}}\right)^{-1}: \mathcal{H} \rightarrow \operatorname{dom} T_{\mathrm{r}}$ bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).
We used Grubb's universal classification

氞G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.
To do: apply this result to general classical Friedrichs operators from the beginning (nice class of non-self-adjoint differential operators of interest)

Example 2 (First order ode on an interval)

$L:=\mathrm{L}^{2}(0,1), \mathcal{D}:=\mathrm{C}_{c}^{\infty}(0,1)$
$T, \widetilde{T}: \mathcal{D} \rightarrow L$,

$$
T \varphi:=\frac{\mathrm{d}}{\mathrm{~d} x} \varphi+\varphi \quad \text { and } \quad \widetilde{T} \varphi:=-\frac{\mathrm{d}}{\mathrm{~d} x} \varphi+\varphi
$$

We have

$$
\begin{aligned}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=\mathrm{H}_{0}^{1}(0,1)=: W_{0} \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=\mathrm{H}^{1}(0,1)=: W
\end{aligned}
$$

As $D[u, v]=u(1) \overline{v(1)}-u(0) \overline{v(0)}$, for

$$
V:=\widetilde{V}:=\left\{u \in \mathrm{H}^{1}(0,1): u(0)=u(1)\right\}
$$

we have that $T_{\mathrm{r}}:=\left.\widetilde{T}^{*}\right|_{V}, T_{\mathrm{r}}^{*}=\left.T^{*}\right|_{V}$ form an adjoint pair of bijective realisations with signed boundary map.
Classification: all adjoint pairs of bijective realisations with signed boundary map

$$
\left\{\left(T_{\alpha, \beta}, T_{\alpha, \beta}^{*}\right): \alpha \leqslant-e^{-1}, \beta \in \mathbb{R}\right\} \cup\left\{\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)\right\}
$$

$$
\begin{array}{r}
\operatorname{dom} T_{\alpha, \beta}^{(*)}=\left\{u \in \mathrm{H}^{1}(0,1):\left(2 e^{-1}-(+) \alpha(1+e)-\mathrm{i} \beta(1+e)\right) u(1)\right. \\
=(2+\alpha(1+e)-(+) \mathrm{i} \beta(1+e)) u(0)\}
\end{array}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
& \operatorname{dom} T_{1}=\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
& \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
& \operatorname{dom} T_{1}=\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1}, \\
& \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
\end{aligned}
$$

(P2) ($\mathcal{W},[\cdot \cdot \cdot])$ is indefinite inner product space and

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
\operatorname{dom} T_{1} & =\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
\operatorname{dom} \widetilde{T}_{1} & =\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

$(\mathrm{P} 2)(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space and

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & \left|\left\langle T_{1} u \mid u\right\rangle\right| \geq \mu_{0}\|u\|^{2} \\
(\forall v \in \widetilde{\mathcal{V}}) & \left|\left\langle\widetilde{T}_{1} v \mid v\right\rangle\right| \geq \mu_{0}\|v\|^{2}
\end{array}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
& \operatorname{dom} T_{1}=\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
& \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

$(\mathrm{P} 2)(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space and

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & \left|\left\langle T_{1} u \mid u\right\rangle\right| \geq \mu_{0}\|u\|^{2} \\
(\forall v \in \widetilde{\mathcal{V}}) & \left|\left\langle\widetilde{T}_{1} v \mid v\right\rangle\right| \geq \mu_{0}\|v\|^{2}
\end{array}
$$

(P4)

$$
\mathcal{H}=\operatorname{ran} T_{0} \oplus \operatorname{ker} \widetilde{T}_{1}=\operatorname{ran} \widetilde{T}_{0} \oplus \operatorname{ker} T_{1}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
\operatorname{dom} T_{1} & =\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
\operatorname{dom} \widetilde{T}_{1} & =\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

$(\mathrm{P} 2)(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space and

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & \left|\left\langle T_{1} u \mid u\right\rangle\right| \geq \mu_{0}\|u\|^{2} \\
(\forall v \in \widetilde{\mathcal{V}}) & \left|\left\langle\widetilde{T}_{1} v \mid v\right\rangle\right| \geq \mu_{0}\|v\|^{2}
\end{array}
$$

(P4)

$$
\mathcal{H}=\operatorname{ran} T_{0} \oplus \operatorname{ker} \widetilde{T}_{1}=\operatorname{ran} \widetilde{T}_{0} \oplus \operatorname{ker} T_{1}
$$

(P5) $\left(\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}, \mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1}\right)$ satisfies (V1) condition.

Decomposition of the graph space

Theorem

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}
$$

Decomposition of the graph space

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

Decomposition of the graph space

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

Proof: From (P5) it is sufficient to prove only

$$
\mathcal{W}_{0}+\operatorname{ker} T_{1}=\left(\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]} \quad \text { and } \quad \mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}=\left(\mathcal{W}_{0}+\operatorname{ker} T_{1}\right)^{[\perp]} .
$$

Let $u_{0}, v_{0} \in \mathcal{W}_{0}, \nu \in \operatorname{ker} T_{1}$ and $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$ be arbitrary. Then

$$
\left[v_{0}+\tilde{\nu} \mid u_{0}+\nu\right]=\overline{[\nu \mid \tilde{\nu}]}=\overline{\left\langle T_{1} \nu \mid \tilde{\nu}\right\rangle}-\overline{\left\langle\nu \mid \widetilde{T}_{1} \tilde{\nu}\right\rangle}=0 .
$$

Thus, $\mathcal{W}_{0}+\operatorname{ker} T_{1} \subseteq\left(\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]}$.

Decomposition of the graph space

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

Proof: From (P5) it is sufficient to prove only

$$
\mathcal{W}_{0}+\operatorname{ker} T_{1}=\left(\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]} \quad \text { and } \quad \mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}=\left(\mathcal{W}_{0}+\operatorname{ker} T_{1}\right)^{[\perp]}
$$

Let $u_{0}, v_{0} \in \mathcal{W}_{0}, \nu \in \operatorname{ker} T_{1}$ and $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$ be arbitrary. Then

$$
\left[v_{0}+\tilde{\nu} \mid u_{0}+\nu\right]=\overline{[\nu \mid \tilde{\nu}]}=\overline{\left\langle T_{1} \nu \mid \tilde{\nu}\right\rangle}-\overline{\left\langle\nu \mid \widetilde{T}_{1} \tilde{\nu}\right\rangle}=0
$$

Thus, $\mathcal{W}_{0}+\operatorname{ker} T_{1} \subseteq\left(\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]}$.
Let $u \in\left(\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]}$. By the above theorem there exist $u_{0} \in \mathcal{W}_{0}, \nu \in \operatorname{ker} T_{1}$ and $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$ such that $u=u_{0}+\nu+\tilde{\nu}$. For any $v_{0} \in \mathcal{W}_{0}$ and $\tilde{\nu}_{1} \in \operatorname{ker} \widetilde{T}_{1}$ we have

$$
0=\left[v_{0}+\tilde{\nu}_{1} \mid u\right]=\left[v_{0}+\tilde{\nu}_{1} \mid u_{0}+\nu+\tilde{\nu}\right]=\left[\tilde{\nu}_{1} \mid \nu\right]+\left[\tilde{\nu}_{1} \mid \tilde{\nu}\right]=\left[\tilde{\nu}_{1} \mid \tilde{\nu}\right],
$$

Decomposition of the graph space

where we have used $\operatorname{ker} T_{1} \subseteq\left(\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]}$.
Putting $\tilde{\nu}_{1}=\tilde{\nu}$ we get

$$
0=[\tilde{\nu} \mid \tilde{\nu}]=\left\langle T_{1} \tilde{\nu} \mid \tilde{\nu}\right\rangle=\left\langle\left(T_{1}+\widetilde{T}_{1}\right) \tilde{\nu} \mid \tilde{\nu}\right\rangle \geq 2 \mu_{0}\|\tilde{\nu}\|^{2},
$$

where the last inequality is due to condition (T3). Hence, necessarily $\tilde{\nu}=0$, which implies $u=u_{0}+\nu \subseteq \mathcal{W}_{0}+\operatorname{ker} T_{1}$.
The second equation is analogous to the first. Hence the proof is complete.

Decomposition of the graph space

Lemma

$\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W}. In particular , $\mathcal{W}_{0}+\operatorname{ker} T_{1}$ and $\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}$ are direct and closed in \mathcal{W}.

Decomposition of the graph space

Lemma

$\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W}. In particular , $\mathcal{W}_{0}+\operatorname{ker} T_{1}$ and $\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}$ are direct and closed in \mathcal{W}.

Proof: The second part is just a simple consequence, so let us focus only on the first part. Using (P5) and (P3) we have that the operators $\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}}$ and $\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\text { ker } T_{1}}$ are \mathcal{H}-coercive, hence injective.

Decomposition of the graph space

Lemma

$\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W}.
In particular , $\mathcal{W}_{0}+\operatorname{ker} T_{1}$ and $\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}$ are direct and closed in \mathcal{W}.
Proof: The second part is just a simple consequence, so let us focus only on the first part. Using (P5) and (P3) we have that the operators $\left.T_{1}\right|_{\mathcal{W}_{0}+\text { ker }} \widetilde{T}_{1}$ and $\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\text { ker } T_{1}}$ are \mathcal{H}-coercive, hence injective. let $u_{0} \in \mathcal{W}_{0}, \nu \in \operatorname{ker} T_{1}$ and $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$ be such that $u_{0}+\nu+\tilde{\nu}=0$. Then

$$
0=\left|T_{1}\left(u_{0}+\nu+\tilde{\nu}\right)\right|=\left|T_{1}\left(u_{0}+\tilde{\nu}\right)\right| \geq \mu_{0}\left\|u_{0}+\tilde{\nu}\right\|,
$$

implying $u_{0}+\tilde{\nu}=0$. Acting by \widetilde{T}_{1} we get

$$
0=\left|\widetilde{T}_{1}\left(u_{0}+\tilde{\nu}\right)\right|=\left|\widetilde{T}_{1}\left(u_{0}\right)\right| \geq \mu_{0}\left\|u_{0}\right\|
$$

Thus, $u_{0}=0$, which implies $\tilde{\nu}=0$, and then finally $\nu=0$. Which proves that the sum is direct.

Decomposition of the graph space

Let $u_{n}=u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n} \in \mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\left(u_{n}^{0} \in \mathcal{W}_{0}, \nu_{n} \in \operatorname{ker} T_{1}, \tilde{\nu}_{n} \in \operatorname{ker} \widetilde{T}_{1}\right)$ converges to $u \in \mathcal{W}$ in graph norm.
$T_{1}\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)=T_{1}\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} and $\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker}} \widetilde{T}_{1}$ is \mathcal{H}-coercive, $\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu:=u-w \in \mathcal{H}$.

Decomposition of the graph space

Let $u_{n}=u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n} \in \mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\left(u_{n}^{0} \in \mathcal{W}_{0}, \nu_{n} \in \operatorname{ker} T_{1}, \tilde{\nu}_{n} \in \operatorname{ker} \widetilde{T}_{1}\right)$ converges to $u \in \mathcal{W}$ in graph norm.
$T_{1}\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)=T_{1}\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} and $\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker}} \widetilde{T}_{1}$ is \mathcal{H}-coercive, $\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu:=u-w \in \mathcal{H}$.

$$
\begin{aligned}
\left\|\nu_{n}-\nu\right\| & =\left\|\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)-u-\left(u_{n}^{0}+\tilde{\nu}_{n}-w\right)\right\| \\
& \leq\left\|u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}-u\right\|+\left\|u_{n}^{0}+\tilde{\nu}_{n}-w\right\|
\end{aligned}
$$

gives $\lim _{n} \nu_{n}=\nu . T_{1}$ is closed implies $\operatorname{ker} T_{1}$ is closed in both \mathcal{H} and \mathcal{W}, we get $\nu \in \operatorname{ker} T_{1}$ and $\nu_{n} \xrightarrow{\mathcal{W}} \nu$.

Decomposition of the graph space

Let $u_{n}=u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n} \in \mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\left(u_{n}^{0} \in \mathcal{W}_{0}, \nu_{n} \in \operatorname{ker} T_{1}, \tilde{\nu}_{n} \in \operatorname{ker} \widetilde{T}_{1}\right)$ converges to $u \in \mathcal{W}$ in graph norm.
$T_{1}\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)=T_{1}\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} and $\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}}$ is \mathcal{H}-coercive, $\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu:=u-w \in \mathcal{H}$.

$$
\begin{aligned}
\left\|\nu_{n}-\nu\right\| & =\left\|\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)-u-\left(u_{n}^{0}+\tilde{\nu}_{n}-w\right)\right\| \\
& \leq\left\|u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}-u\right\|+\left\|u_{n}^{0}+\tilde{\nu}_{n}-w\right\|
\end{aligned}
$$

gives $\lim _{n} \nu_{n}=\nu . T_{1}$ is closed implies $\operatorname{ker} T_{1}$ is closed in both \mathcal{H} and \mathcal{W}, we get $\nu \in \operatorname{ker} T_{1}$ and $\nu_{n} \xrightarrow{\mathcal{W}} \nu$.
So far $u_{n}^{0}+\tilde{\nu}_{n} \xrightarrow{\mathcal{W}} u-\nu$, implying that $\widetilde{T}_{1}\left(u_{n}^{0}+\tilde{\nu}_{n}\right)=\widetilde{T}_{0}\left(u_{n}^{0}\right)$ is a Cauchy sequence in \mathcal{H}. Since \widetilde{T}_{0} is also \mathcal{H}-coercive, $\left(u_{n}^{0}\right)$ is also a Cauchy and hence convergent sequence in $\mathcal{H} . \widetilde{T}_{0}$ is closed implies that $\left(u_{n}^{0}\right)$ converges to some $u_{0} \in \mathcal{W}_{0}$ (in the graph norm).

Decomposition of the graph space

Let $u_{n}=u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n} \in \mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\left(u_{n}^{0} \in \mathcal{W}_{0}, \nu_{n} \in \operatorname{ker} T_{1}, \tilde{\nu}_{n} \in \operatorname{ker} \widetilde{T}_{1}\right)$ converges to $u \in \mathcal{W}$ in graph norm.
$T_{1}\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)=T_{1}\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} and $\left.T_{1}\right|_{\mathcal{W}_{0}+\text { ker }} \widetilde{T}_{1}$ is \mathcal{H}-coercive, $\left(u_{n}^{0}+\tilde{\nu}_{n}\right)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu:=u-w \in \mathcal{H}$.

$$
\begin{aligned}
\left\|\nu_{n}-\nu\right\| & =\left\|\left(u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}\right)-u-\left(u_{n}^{0}+\tilde{\nu}_{n}-w\right)\right\| \\
& \leq\left\|u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n}-u\right\|+\left\|u_{n}^{0}+\tilde{\nu}_{n}-w\right\|
\end{aligned}
$$

gives $\lim _{n} \nu_{n}=\nu . T_{1}$ is closed implies $\operatorname{ker} T_{1}$ is closed in both \mathcal{H} and \mathcal{W}, we get $\nu \in \operatorname{ker} T_{1}$ and $\nu_{n} \xrightarrow{\mathcal{W}} \nu$.
So far $u_{n}^{0}+\tilde{\nu}_{n} \xrightarrow{\mathcal{W}} u-\nu$, implying that $\widetilde{T}_{1}\left(u_{n}^{0}+\tilde{\nu}_{n}\right)=\widetilde{T}_{0}\left(u_{n}^{0}\right)$ is a Cauchy sequence in \mathcal{H}. Since \widetilde{T}_{0} is also \mathcal{H}-coercive , $\left(u_{n}^{0}\right)$ is also a Cauchy and hence convergent sequence in $\mathcal{H} . \widetilde{T}_{0}$ is closed implies that $\left(u_{n}^{0}\right)$ converges to some $u_{0} \in \mathcal{W}_{0}$ (in the graph norm). $\tilde{\nu}:=u-u_{0}-\nu$. Analogously as for $\left(\nu_{n}\right)$, we get that $\tilde{\nu}_{n} \xrightarrow{\mathcal{W}} \tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$. Thus, $u_{n}^{0}+\nu_{n}+\tilde{\nu}_{n} \xrightarrow{\mathcal{W}} u_{0}+\nu+\tilde{\nu}$. Uniqueness of the limit finally implies $u=u_{0}+\nu+\tilde{\nu} \in \mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$.
Which completes the proof.

Decomposition involving a reference operator

Lemma

For any bijective realisation T_{r},

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathcal{W}_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1} .
$$

Decomposition involving a reference operator

Lemma

For any bijective realisation T_{r},

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathcal{W}_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}
$$

Proof: From (P1) we have

$$
\mathcal{W}=\operatorname{dom} T_{\mathrm{r}} \dot{+} \operatorname{ker} T_{1}
$$

Sufficient to prove

$$
\operatorname{dom} T_{\mathrm{r}}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right)
$$

Here $T_{0} \subset T_{\mathrm{r}}$ and $T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \subset \operatorname{dom} T_{\mathrm{r}}$. So, $\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \subset \operatorname{dom} T_{\mathrm{r}}$.

Decomposition involving a reference operator

Lemma

For any bijective realisation T_{r},

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathcal{W}_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}
$$

Proof: From (P1) we have

$$
\mathcal{W}=\operatorname{dom} T_{\mathrm{r}} \dot{+} \operatorname{ker} T_{1}
$$

Sufficient to prove

$$
\operatorname{dom} T_{\mathrm{r}}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right)
$$

Here $T_{0} \subset T_{\mathrm{r}}$ and $T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \subset \operatorname{dom} T_{\mathrm{r}}$. So, $\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \subset \operatorname{dom} T_{\mathrm{r}}$. Let $u \in \operatorname{dom} T_{\mathrm{r}}$. Since $T_{\mathrm{r}} u \in \mathcal{H}$ by (P4), for some $u_{0} \in \mathcal{W}_{0}, \tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$.

$$
u=T_{0} u_{0}+\tilde{\nu}=T_{\mathrm{r}} u_{0}+\tilde{\nu}
$$

$\left.T 1\right|_{\operatorname{dom} T_{\mathrm{r}}}=T_{\mathrm{r}}$ is a bijection, we have

$$
u=T_{\mathrm{r}}^{-1} T_{\mathrm{r}} u=T_{r}^{-1}\left(T_{\mathrm{r}} u_{0}+\tilde{\nu}\right)=u_{0}+T_{\mathrm{r}}^{-1}(\tilde{\nu}) \Longrightarrow u \in \mathcal{W}_{0}+T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right)
$$

Decomposition involving a reference operator

Let $u_{0} \in \mathcal{W}_{0}$ and $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$ such that $u_{0}+T_{\mathrm{r}}^{-1}(\tilde{\nu})=0$. Then

$$
T_{\mathrm{r}}\left(u_{0}+\tilde{\nu}\right)=0 \Longrightarrow \tilde{\nu}=-T_{\mathrm{r}}\left(u_{0}\right)=-T_{0}\left(u_{0}\right)
$$

Which means $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1} \cap \operatorname{ran} T_{0}=\{0\}$. So, $\tilde{\nu}=0$ and by injectivity of $T_{0} u_{0}=0$ as well. Hence the decomposition is direct.

Decomposition involving a reference operator

Let $u_{0} \in \mathcal{W}_{0}$ and $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1}$ such that $u_{0}+T_{\mathrm{r}}^{-1}(\tilde{\nu})=0$. Then

$$
T_{\mathrm{r}}\left(u_{0}+\tilde{\nu}\right)=0 \Longrightarrow \tilde{\nu}=-T_{\mathrm{r}}\left(u_{0}\right)=-T_{0}\left(u_{0}\right)
$$

Which means $\tilde{\nu} \in \operatorname{ker} \widetilde{T}_{1} \cap \operatorname{ran} T_{0}=\{0\}$. So, $\tilde{\nu}=0$ and by injectivity of $T_{0} u_{0}=0$ as well. Hence the decomposition is direct.
We get the second equality by replacing the role of T_{0} by \widetilde{T}_{0}, because of symmetry condition (T1).
Which completes the proof.

Decomposition of the graph space

Lemma

$\mathcal{W}=\left(\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}\right)^{[\perp][\perp]}$.

Decomposition of the graph space

Lemma

$$
\mathcal{W}=\left(\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}\right)^{[\perp][\perp]}
$$

Proof: Since $\mathcal{W}_{0}^{[\perp]}=\mathcal{W}$, it is sufficient to prove

$$
\left(\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]}=\mathcal{W}_{0}
$$

$\operatorname{ker} D=\mathcal{W}_{0} \Longrightarrow \mathcal{W}_{0} \subseteq\left(\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]}$.
Let $u \in\left(\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp]} \subseteq \mathcal{W}$, so by previous lemma

$$
\exists!u_{0}+T_{\mathrm{r}}^{-1}(\tilde{\nu})+\nu=u \in \mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathcal{W}
$$

Decomposition of the graph space

Let $v_{0}+\nu_{1}+\tilde{\nu}_{1} \in \mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$, then

$$
\begin{align*}
0=\left[u \mid v_{0}+\nu_{1}+\tilde{\nu}_{1}\right] & =\left[u_{0}+T_{\mathrm{r}}^{-1}(\tilde{\nu})+\nu \mid v_{0}+\nu_{1}+\tilde{\nu}_{1}\right] \\
& =\left[T_{\mathrm{r}}^{-1}(\tilde{\nu})+\nu \mid \nu_{1}+\tilde{\nu}_{1}\right] \tag{3}\\
& =\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \nu_{1}\right]+\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}_{1}\right]+\left[\nu \mid \nu_{1}\right]+\left[\nu \mid \tilde{\nu}_{1}\right] \\
& =\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \nu_{1}\right]+\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}_{1}\right]+\left[\nu \mid \nu_{1}\right]
\end{align*}
$$

for $\nu_{1}=0$ and $\tilde{\nu}_{1}=\tilde{\nu}$ we get

$$
0=\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}\right]=\langle\tilde{\nu} \mid \tilde{\nu}\rangle=\|\tilde{\nu}\|^{2} \Longrightarrow \tilde{\nu}=0
$$

Decomposition of the graph space

Let $v_{0}+\nu_{1}+\tilde{\nu}_{1} \in \mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$, then

$$
\begin{align*}
0=\left[u \mid v_{0}+\nu_{1}+\tilde{\nu}_{1}\right] & =\left[u_{0}+T_{\mathrm{r}}^{-1}(\tilde{\nu})+\nu \mid v_{0}+\nu_{1}+\tilde{\nu}_{1}\right] \\
& =\left[T_{\mathrm{r}}^{-1}(\tilde{\nu})+\nu \mid \nu_{1}+\tilde{\nu}_{1}\right] \\
& =\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \nu_{1}\right]+\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}_{1}\right]+\left[\nu \mid \nu_{1}\right]+\left[\nu \mid \tilde{\nu}_{1}\right] \tag{3}\\
& =\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \nu_{1}\right]+\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}_{1}\right]+\left[\nu \mid \nu_{1}\right]
\end{align*}
$$

for $\nu_{1}=0$ and $\tilde{\nu}_{1}=\tilde{\nu}$ we get

$$
0=\left[T_{\mathrm{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}\right]=\langle\tilde{\nu} \mid \tilde{\nu}\rangle=\|\tilde{\nu}\|^{2} \Longrightarrow \tilde{\nu}=0
$$

From (3) again, taking $\nu_{1}=\nu$ and using $\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}$ is \mathcal{H}-coercive ((P5) and (P3)) we get

$$
0=|[\nu \mid \nu]|=\left|\left\langle\widetilde{T}_{1} \nu \mid \nu\right\rangle\right| \geq \mu_{0}\|\nu\|^{2} \Longrightarrow \nu=0
$$

So, $u=u_{0} \in \mathcal{W}_{0}$. Which completes the proof.

Proof of the decomposition

Proof.

We have $\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W} and by (P2) we have

$$
\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}=\left(\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}\right)^{[\perp][\perp]}
$$

Which is \mathcal{W} by previous lemma.

And...

...thank you for your attention :)

N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.M.E., A. Michelangeli: On contact interactions realised as Friedrichs systems, Complex Analysis and Operator Theory (2018)
https://doi.org/10.1007/s11785-018-0787-4

