Abstract Friedrichs operators and the graph space

Sandeep Kumar Soni

Department of Mathematics, Faculty of Science, University of Zagreb

PMF-MO

Seminar for differential equations and numerical analysis Zagreb, $24^{\rm th}$ February 2022

Joint work with Marko Erceg

IP-2018-01-2449 (MiTPDE)

Assumptions:

 $d, r \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary; $\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$, $k \in \{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}(\Omega; \mathrm{M}_r(\mathbb{C})$ satisfying (a.e. on Ω):

$$\mathbf{(F1)} \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^* \, ;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^{a} \partial_k \mathbf{A}_k \ge 2\mu_0 \mathbf{I}.$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L}\mathbf{u} := \sum_{k=1}^{d} \partial_k(\mathbf{A}_k \mathbf{u}) + \mathbf{B}\mathbf{u} \ , \qquad \widetilde{\mathcal{L}}\mathbf{u} := -\sum_{k=1}^{d} \partial_k(\mathbf{A}_k \mathbf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k\right)\mathbf{u} \ .$$

Assumptions:

 $d, r \in \mathbb{N}, \ \Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary; $\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C})), \ k \in \{1, \ldots, d\}, \ \text{and} \ \mathbf{B} \in L^{\infty}(\Omega; \mathrm{M}_r(\mathbb{C}) \text{ satisfying (a.e. on } \Omega):$

$$(\mathsf{F1}) \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^*\,;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \ge 2\mu_0 \mathbf{I}.$$

Define
$$\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$$
 by
$$\mathcal{L}\mathbf{u} := \sum_{k=1}^d \partial_k(\mathbf{A}_k \mathbf{u}) + \mathbf{B}\mathbf{u} , \qquad \widetilde{\mathcal{L}}\mathbf{u} := -\sum_{k=1}^d \partial_k(\mathbf{A}_k \mathbf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k\right)\mathbf{u} .$$

Aim: impose boundary conditions such that for any $f\in L^2(\Omega)^r$ we have a unique solution of $\mathcal{L}u=f.$

Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

K. O. Friedrichs: *Symmetric positive linear differential equations*, Commun. Pure Appl. Math. **11** (1958) 333–418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...
- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

K. O. Friedrichs: *Symmetric positive linear differential equations*, Commun. Pure Appl. Math. **11** (1958) 333–418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, ...

- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;

- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,

- no intrinsic (unique) way to pose boundary conditions.

→ development of the abstract theory

 $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ complex Hilbert space $(\mathcal{H}' \equiv \mathcal{H})$, $\| \cdot \| := \sqrt{\langle \cdot | \cdot \rangle}$ $\mathcal{D} \subseteq \mathcal{H}$ dense subspace

Definition

Let $T, \tilde{T} : \mathcal{D} \to \mathcal{H}$. The pair (T, \tilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

(T1) $(\forall \varphi, \psi \in \mathcal{D}) \quad \langle T\varphi | \psi \rangle = \langle \varphi | \widetilde{T}\psi \rangle;$

(T2) $(\exists c > 0) (\forall \varphi \in \mathcal{D}) \qquad ||(T + \widetilde{T})\varphi|| \leq c ||\varphi||;$

(T3) $(\exists \mu_0 > 0) (\forall \varphi \in \mathcal{D}) \qquad \langle (T + \widetilde{T})\varphi \mid \varphi \rangle \ge \mu_0 \|\varphi\|^2.$

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317–341.

N. Antonić, K. Burazin: *Intrinsic boundary conditions for Friedrichs systems*, Comm. Partial Diff. Eq. **35** (2010) 1690–1715. $\begin{aligned} \mathbf{A}_{k} \in W^{1,\infty}(\Omega; \mathbf{M}_{r}(\mathbb{C})) \text{ and } \mathbf{C} \in L^{\infty}(\Omega; \mathbf{M}_{r}(\mathbb{C})) \text{ satisfy (F1)-(F2):} \\ (F1) & \mathbf{A}_{k} = \mathbf{A}_{k}^{*}; \\ (F2) & (\exists \, \mu_{0} > 0) \quad \mathbf{B} + \mathbf{B}^{*} + \sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I}. \end{aligned}$

 $\mathcal{D}:=C^\infty_c(\Omega)^r$, $\mathcal{H}:=L^2(\Omega)^r$, and

$$T\mathbf{u} := \sum_{k=1}^{d} \partial_k(\mathbf{A}_k \mathbf{u}) + \mathbf{B}\mathbf{u} \ , \qquad \widetilde{T}\mathbf{u} := -\sum_{k=1}^{d} \partial_k(\mathbf{A}_k \mathbf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k\right)\mathbf{u} \ .$$

 $\mathbf{A}_{k} \in W^{1,\infty}(\Omega; \mathbf{M}_{r}(\mathbb{C})) \text{ and } \mathbf{C} \in L^{\infty}(\Omega; \mathbf{M}_{r}(\mathbb{C})) \text{ satisfy (F1)-(F2):}$ (F1) $\mathbf{A}_{k} = \mathbf{A}_{k}^{*};$ (F2) $(\exists \, \mu_{0} > 0) \quad \mathbf{B} + \mathbf{B}^{*} + \sum^{d} \partial_{k} \mathbf{A}_{k} \ge \mu_{0} \mathbf{I}.$

$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B} + \sum_{k=1}^{N} \partial_k \mathbf{A}_k \ge \mu_0$$

 $\mathcal{D}:=C^\infty_c(\Omega)^r$, $\mathcal{H}:=L^2(\Omega)^r$, and

$$T\mathbf{u} := \sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathbf{u}) + \mathbf{B}\mathbf{u} , \qquad \widetilde{T}\mathbf{u} := -\sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathbf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k\right) \mathbf{u} .$$

(T1) $\langle T\mathbf{u} | \mathbf{v} \rangle_{L^2} = \langle \mathbf{u} | -\sum_{k=1}^d \partial_k (\mathbf{A}_k^* \mathbf{v}) + (\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k) \mathbf{v} \rangle_{L^2} \stackrel{\text{(F1)}}{=} \langle \mathbf{u} | \widetilde{T} \mathbf{v} \rangle_{L^2}.$

 $\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathbf{M}_r(\mathbb{C}))$ and $\mathbf{C} \in L^{\infty}(\Omega; \mathbf{M}_r(\mathbb{C}))$ satisfy (F1)–(F2): (F1) $\mathbf{A}_k = \mathbf{A}_k^*;$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1} \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$

$$\mathcal{D}:=C^\infty_c(\Omega)^r$$
, $\mathcal{H}:=L^2(\Omega)^r$, and

$$T\mathbf{u} := \sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathbf{u}) + \mathbf{B}\mathbf{u} , \qquad \widetilde{T}\mathbf{u} := -\sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathbf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k\right) \mathbf{u} .$$

$$\begin{aligned} (\mathsf{T1}) \ \langle T\mathbf{u} \mid \mathbf{v} \rangle_{L^{2}} &= \langle \mathbf{u} \mid -\sum_{k=1}^{d} \partial_{k} (\mathbf{A}_{k}^{*} \mathbf{v}) + \left(\mathbf{B}^{*} + \sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \right) \mathbf{v} \rangle_{L^{2}} \stackrel{(\mathrm{F1})}{=} \langle \mathbf{u} \mid \widetilde{T} \mathbf{v} \rangle_{L^{2}} \,. \\ &\text{Since } (T + \widetilde{T})\mathbf{u} = \left(\mathbf{B} + \mathbf{B}^{*} + \sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \right) \mathbf{u}, \\ (\mathrm{T2}) \ \| (T + \widetilde{T})\mathbf{u} \|_{L^{2}} &\leq \left(2 \| \mathbf{B} \|_{L^{\infty}} + \sum_{k=1}^{d} \| \mathbf{A}_{k} \|_{W^{1,\infty}} \right) \| \mathbf{u} \|_{L^{2}} \,, \\ (\mathrm{T3}) \ \langle (T + \widetilde{T})\mathbf{u} \mid \mathbf{u} \rangle_{L^{2}} \stackrel{(\mathrm{F2})}{\geq} \mu_{0} \| \mathbf{u} \|_{L^{2}}^{2} \,. \end{aligned}$$

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $\mathcal{V} \supseteq \mathcal{D}$ ($\tilde{\mathcal{V}} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to \mathcal{V} ($\tilde{\mathcal{V}}$) is a linear bijection.

Well-posedness result

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $\mathcal{V} \supseteq \mathcal{D}$ ($\tilde{\mathcal{V}} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to \mathcal{V} ($\tilde{\mathcal{V}}$) is a linear bijection.

 $\exists \text{ maximal operators}: \quad T_1: \mathcal{W} \subseteq \mathcal{H} \to \mathcal{H} , \quad T \subseteq T_1 , \\ \widetilde{T}_1: \mathcal{W} \subseteq \mathcal{H} \to \mathcal{H} , \quad \widetilde{T} \subseteq \widetilde{T}_1 .$ $(\operatorname{dom} T_1 = \operatorname{dom} \widetilde{T}_1 =: \mathcal{W})$

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$,

$$[u \mid v] := {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle. \qquad ([u \mid v] = [v \mid u])$$

Well-posedness result

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $\mathcal{V} \supseteq \mathcal{D}$ ($\tilde{\mathcal{V}} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to \mathcal{V} ($\tilde{\mathcal{V}}$) is a linear bijection.

 $\exists \text{ maximal operators}: \quad T_1: \mathcal{W} \subseteq \mathcal{H} \to \mathcal{H} , \quad T \subseteq T_1 , \\ \widetilde{T}_1: \mathcal{W} \subseteq \mathcal{H} \to \mathcal{H} , \quad \widetilde{T} \subseteq \widetilde{T}_1 .$ $(\operatorname{dom} T_1 = \operatorname{dom} \widetilde{T}_1 =: \mathcal{W})$

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$, $[u \mid v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1u \mid v \rangle - \langle u \mid \widetilde{T}_1v \rangle$. $([u \mid v] = \overline{[v \mid u]})$

For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:

$$\begin{array}{ccc} (\forall u \in \mathcal{V}) & [u \mid u] \ge 0 \\ & (\forall v \in \widetilde{\mathcal{V}}) & [v \mid v] \le 0 \end{array} \\ (\forall v \in \widetilde{\mathcal{V}}) & [v \mid v] \le 0 \end{array} \\ (\forall 2) & \qquad \mathcal{V} = \{ u \in \mathcal{W} : (\forall v \in \widetilde{\mathcal{V}}) & [v \mid u] = 0 \} \\ & \qquad \widetilde{\mathcal{V}} = \{ v \in \mathcal{W} : (\forall u \in \mathcal{V}) & [u \mid v] = 0 \} \end{array} \qquad (\implies \mathcal{D} \subseteq \mathcal{V} \cap \widetilde{\mathcal{V}})$$

Well-posedness result

Goal: For (T, \tilde{T}) satisfying (T1)–(T3) find $\mathcal{V} \supseteq \mathcal{D}$ ($\tilde{\mathcal{V}} \supseteq \mathcal{D}$) such that T (\tilde{T}) extended to \mathcal{V} ($\tilde{\mathcal{V}}$) is a linear bijection.

 $\exists \text{ maximal operators}: \quad T_1: \mathcal{W} \subseteq \mathcal{H} \to \mathcal{H} , \quad T \subseteq T_1 , \\ \widetilde{T}_1: \mathcal{W} \subseteq \mathcal{H} \to \mathcal{H} , \quad \widetilde{T} \subseteq \widetilde{T}_1 .$ $(\operatorname{dom} T_1 = \operatorname{dom} \widetilde{T}_1 =: \mathcal{W})$

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$, $[u \mid v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle$. $([u \mid v] = \overline{[v \mid u]})$

For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:

$$(\forall 1) \qquad \begin{array}{c} (\forall u \in \mathcal{V}) & [u \mid u] \ge 0\\ (\forall v \in \widetilde{\mathcal{V}}) & [v \mid v] \le 0 \end{array}$$

$$(\forall 2) \qquad \begin{array}{c} \mathcal{V} = \{u \in \mathcal{W} : (\forall v \in \widetilde{\mathcal{V}}) & [v \mid u] = 0\}\\ \widetilde{\mathcal{V}} = \{v \in \mathcal{W} : (\forall u \in \mathcal{V}) & [u \mid v] = 0\} \end{array} \qquad (\implies \mathcal{D} \subseteq \mathcal{V} \cap \widetilde{\mathcal{V}}) \end{array}$$

Theorem (Ern, Guermond, Caplain, 2007)

(T1)–(T3) + (V1)–(V2) $\implies T_1|_{\mathcal{V}}, \widetilde{T}_1|_{\widetilde{\mathcal{V}}}$ bijective realisations .

S.K. Soni (UNIZG)

 $\Omega\subseteq \mathbb{R}^d,\, \mu>0$ and $f\in \mathrm{L}^2(\Omega)$ given.

$$-\Delta u + \mu u = f \iff -\operatorname{div} \nabla u + \mu u = f \iff \begin{cases} \nabla u + \mathbf{p} = \mathbf{0} \\ \operatorname{div} \mathbf{p} + \mu u = f \end{cases}$$
$$\iff T\mathbf{v} := \sum_{k=1}^{d} \partial_{k} (\mathbf{A}_{k} \mathbf{v}) + \mathbf{C} \mathbf{v} = \mathbf{g} ,$$

where $\mathbf{v} := [\mathbf{p} \ u]^{\top}$, $\mathbf{g} := [\mathbf{0} \ f]^{\top}$, $(\mathbf{A}_k)_{ij} := \delta_{i,k} \delta_{j,d+1} + \delta_{i,d+1} \delta_{j,k}$, $\mathbf{C} := \operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.

$$L = L^2(\Omega)^{d+1}$$
, $W = L^2_{div}(\Omega) \times H^1(\Omega)$

- $V = L^2_{div}(\Omega) \times H^1_0(\Omega) \dots$ Dirichelt boundary condition (u = 0 on Γ)
- $V = L^2_{div,0}(\Omega) \times H^1(\Omega) \dots$ Neumann boundary condition ($p \cdot \nu = \nabla u \cdot \nu = 0$ on Γ)

$$(T1) - (T3) \iff \begin{cases} T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } \mathcal{H} \text{ with strictly positive bottom}; \\ \operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^*. \end{cases}$$

$$(T1) - (T3) \iff \begin{cases} T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } \mathcal{H} \text{ with strictly positive bottom}; \\ \mathrm{dom} \, \overline{T} = \mathrm{dom} \, \overline{\widetilde{T}} & \& \quad \mathrm{dom} \, T^* = \mathrm{dom} \, \widetilde{T}^* \, . \end{cases}$$

Condition (T3) is used in this theorem only to get that $T + \tilde{T}$ has strictly positive bottom. More precisely, a pair (T, \tilde{T}) satisfies conditions (T1)–(T2) if and only if $T \subseteq \tilde{T}^*$, $\tilde{T} \subseteq T^*$, and $\overline{T + \tilde{T}}$ is an everywhere defined, bounded, self-adjoint operator on \mathcal{H} . Since many statements hold even in this case, we shall explicitly emphasise in which particular situations condition (T3) is necessary.

$$(T1) - (T3) \iff \begin{cases} T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } \mathcal{H} \text{ with strictly positive bottom}; \\ \mathrm{dom} \, \overline{T} = \mathrm{dom} \, \overline{\widetilde{T}} & \& \quad \mathrm{dom} \, T^* = \mathrm{dom} \, \widetilde{T}^* \, . \end{cases}$$

Condition (T3) is used in this theorem only to get that $T + \tilde{T}$ has strictly positive bottom. More precisely, a pair (T, \tilde{T}) satisfies conditions (T1)–(T2) if and only if $T \subseteq \tilde{T}^*$, $\tilde{T} \subseteq T^*$, and $\overline{T + \tilde{T}}$ is an everywhere defined, bounded, self-adjoint operator on \mathcal{H} . Since many statements hold even in this case, we shall explicitly emphasise in which particular situations condition (T3) is necessary.

Dual pairs : Operators A, B on \mathcal{H} with the property that $A \subseteq B^*$ and $B \subseteq A^*$ are often referred to as *dual pairs*.

Thus, operators forming a joint pair of abstract Friedrichs operators are dual pairs (this follows merely from condition (T1)).

Let (T, \widetilde{T}) be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T + \widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

(1)
$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0, \\ \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W},$$

Let (T, \widetilde{T}) be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T + \widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

(1)
$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0 , \\ \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W} ,$$

and $(\overline{T+\widetilde{T}})|_{\mathcal{W}} = \widetilde{T}^* + T^*$. This implies that $(\overline{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators. Now we simplify our notation by introducing

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*$$

Therefore, we have

(2)
$$T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1$$
.

Let (T, \widetilde{T}) be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T + \widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

(1)
$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0 , \\ \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W} ,$$

and $(\overline{T+\widetilde{T}})|_{\mathcal{W}} = \widetilde{T}^* + T^*$. This implies that $(\overline{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators. Now we simplify our notation by introducing

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*$$

Therefore, we have

(2)
$$T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1$$
.

When equipped with the graph norm (one of two equivalent norms $\|\cdot\|_{T_1}$ and $\|\cdot\|_{\tilde{T}_1}$), the space \mathcal{W} becomes a Banach space, thus we shall call it the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} , while it is dense in \mathcal{H} (since it contains \mathcal{D}).

Let (T, \widetilde{T}) be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T and \widetilde{T} are closable. Since $T + \widetilde{T}$ is a bounded operator, graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

(1)
$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0 , \\ \operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W} ,$$

and $(\overline{T+\widetilde{T}})|_{\mathcal{W}} = \widetilde{T}^* + T^*$. This implies that $(\overline{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators. Now we simplify our notation by introducing

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*$$

Therefore, we have

(2)
$$T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1$$
.

When equipped with the graph norm (one of two equivalent norms $\|\cdot\|_{T_1}$ and $\|\cdot\|_{\tilde{T}_1}$), the space \mathcal{W} becomes a Banach space, thus we shall call it the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} , while it is dense in \mathcal{H} (since it contains \mathcal{D}). As an illustration, for $\mathcal{H} = L^2(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_0 are Sobolev spaces $H^1(\Omega)$ and $H^1_0(\Omega)$, respectively.

Remark: Since T_1 and \widetilde{T}_1 are closed, their kernels ker T_1 and ker \widetilde{T}_1 are closed both in \mathcal{H} and \mathcal{W} . Indeed, for any convergent sequence (u_n) in, say, ker T_1 with the limit $u \in \mathcal{H}$, we have $u_n \xrightarrow{\mathcal{H}} u$ and $T_1u_n = 0$. This implies $u \in \text{dom } T_1 = \mathcal{W}$ and $T_1u = 0$, i.e. $u \in \text{ker } T_1$. Thus, we also have $u_n \xrightarrow{\mathcal{W}} u$.

Remark: Since T_1 and \widetilde{T}_1 are closed, their kernels ker T_1 and ker \widetilde{T}_1 are closed both in \mathcal{H} and \mathcal{W} . Indeed, for any convergent sequence (u_n) in, say, ker T_1 with the limit $u \in \mathcal{H}$, we have $u_n \xrightarrow{\mathcal{H}} u$ and $T_1u_n = 0$. This implies $u \in \text{dom } T_1 = \mathcal{W}$ and $T_1u = 0$, i.e. $u \in \text{ker } T_1$. Thus, we also have $u_n \xrightarrow{\mathcal{W}} u$.

Lemma

Let a pair of operators (T,\widetilde{T}) on $\mathcal H$ satisfies (T1)-(T2). Then the boundary operator D is continuous and satisfies

i)
$$(\forall u, v \in \mathcal{W}) \quad {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} = \overline{{}_{\mathcal{W}'} \langle Dv, u \rangle_{\mathcal{W}}},$$

ii) ker
$$D = \mathcal{W}_0$$

iii) ran
$$D = \mathcal{W}_0^0$$

where ⁰ stands for the annihilator.

Remark: Since T_1 and \widetilde{T}_1 are closed, their kernels ker T_1 and ker \widetilde{T}_1 are closed both in \mathcal{H} and \mathcal{W} . Indeed, for any convergent sequence (u_n) in, say, ker T_1 with the limit $u \in \mathcal{H}$, we have $u_n \xrightarrow{\mathcal{H}} u$ and $T_1u_n = 0$. This implies $u \in \text{dom } T_1 = \mathcal{W}$ and $T_1u = 0$, i.e. $u \in \text{ker } T_1$. Thus, we also have $u_n \xrightarrow{\mathcal{W}} u$.

Lemma

Let a pair of operators (T, \tilde{T}) on \mathcal{H} satisfies (T1)-(T2). Then the boundary operator D is continuous and satisfies

i)
$$(\forall u, v \in \mathcal{W}) \quad {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} = \overline{{}_{\mathcal{W}'} \langle Dv, u \rangle_{\mathcal{W}}},$$

ii) ker
$$D = \mathcal{W}_0$$

iii) ran
$$D = \mathcal{W}_0^0$$

where ⁰ stands for the annihilator.

Theorem

If (T, \widetilde{T}) satisfies (T1)–(T2), then

(V2)
$$\iff \begin{cases} \mathcal{D} \subseteq \mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W} \\ (\widetilde{T}^*|_{\mathcal{V}})^* = T^*|_{\widetilde{\mathcal{V}}} \\ (T^*|_{\widetilde{\mathcal{V}}})^* = \widetilde{T}^*|_{\mathcal{V}} \end{cases}$$

S.K. Soni (UNIZG)

Bijective realisations with signed boundary map

We seek for bijective closed operators $S \equiv \widetilde{T}^*|_{\mathcal{V}}$ such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^* \,,$$

and thus also S^* is bijective and $\overline{\widetilde{T}} \subseteq S^* \subseteq T^*$. If $(\operatorname{dom} S, \operatorname{dom} S^*)$ satisfies (V1) we call (S, S^*) an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}) .

Bijective realisations with signed boundary map

We seek for bijective closed operators $S\equiv \widetilde{T}^*|_{\mathcal{V}}$ such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^* \,,$$

and thus also S^* is bijective and $\overline{\widetilde{T}} \subseteq S^* \subseteq T^*$. If $(\operatorname{dom} S, \operatorname{dom} S^*)$ satisfies (V1) we call (S, S^*) an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}) .

Theorem (Antonić, Michelangeli, Erceg , 2017)

Let (T, \widetilde{T}) satisfies (T1)–(T3).

 (i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, T).

(ii)

$$\ker \widetilde{T}^* \neq \{0\} \And \ker T^* \neq \{0\} \Longrightarrow$$

$$\ker \widetilde{T}^* = \{0\} \text{ or } \ker T^* = \{0\} \implies$$

uncountably many adjoint pairs of bijective realisations with signed boundary map only one adjoint pair of bijective realisations with signed boundary map

Classification

For (T,\widetilde{T}) satisfying (T1)–(T3) we have

 $\overline{T} \subseteq \widetilde{T}^*$ and $\overline{\widetilde{T}} \subseteq T^*$,

while by the previous theorem there exists closed $T_{
m r}$ such that

•
$$\overline{T} \subseteq T_{\mathrm{r}} \subseteq \widetilde{T}^*$$
 ($\iff \overline{\widetilde{T}} \subseteq T_{\mathrm{r}}^* \subseteq T^*$),

- $T_r: \operatorname{dom} T_r \to \mathcal{H}$ bijection,
- $(T_r)^{-1} : \mathcal{H} \to \operatorname{dom} T_r$ bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).

We used Grubb's universal classification

G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa **22** (1968) 425–513.

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.

To do: apply this result to general classical Friedrichs operators from the beginning (*nice class of non-self-adjoint differential operators of interest*)

Example 2 (First order ode on an interval)

$$\begin{split} L &:= \mathrm{L}^2(0,1), \ \mathcal{D} := \mathrm{C}^\infty_c(0,1) \\ T, \widetilde{T} : \mathcal{D} \to L, \\ T\varphi &:= \frac{\mathrm{d}}{\mathrm{d}x}\varphi + \varphi \quad \text{ and } \quad \widetilde{T}\varphi := -\frac{\mathrm{d}}{\mathrm{d}x}\varphi + \varphi \,. \end{split}$$

We have
$$\begin{split} \mathrm{dom}\, \overline{T} &= \mathrm{dom}\, \overline{\widetilde{T}} = \mathrm{H}^1_0(0,1) =: W_0 \\ \mathrm{dom}\, T^* &= \mathrm{dom}\, \widetilde{T}^* = \mathrm{H}^1(0,1) =: W \,. \end{split}$$

As $D[u,v] = u(1)\overline{v(1)} - u(0)\overline{v(0)}, \text{ for} \\ V &:= \widetilde{V} := \{u \in \mathrm{H}^1(0,1) : u(0) = u(1)\} \end{split}$

we have that $T_r := \tilde{T}^*|_V$, $T_r^* = T^*|_V$ form an adjoint pair of bijective realisations with signed boundary map.

Classification: all adjoint pairs of bijective realisations with signed boundary map

$$\{(T_{\alpha,\beta},T_{\alpha,\beta}^*):\alpha\leqslant -e^{-1},\ \beta\in\mathbb{R}\}\cup\{(T_{\mathrm{r}},T_{\mathrm{r}}^*)\}$$

$$\begin{split} \operatorname{dom} T_{\alpha,\beta}^{(*)} &= \Big\{ u \in \mathrm{H}^1(0,1) : \Big(2e^{-1} - (+)\alpha(1+e) - \mathrm{i}\beta(1+e) \Big) u(1) \\ &= \Big(2 + \alpha(1+e) - (+)\mathrm{i}\beta(1+e) \Big) u(0) \Big\} \end{split}$$

 $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \operatorname{ker} T_1 ,$ $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \operatorname{ker} \widetilde{T}_1 .$

 $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \operatorname{ker} T_1 ,$ $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \operatorname{ker} \widetilde{T}_1 .$

(P2) $(\mathcal{W}, [\cdot|\cdot])$ is indefinite inner product space and

 $\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W} \text{ is closed in } \mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}.$

 $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \operatorname{ker} T_1 ,$ $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \operatorname{ker} \widetilde{T}_1 .$

(P2) $(\mathcal{W}, [\cdot|\cdot])$ is indefinite inner product space and

 $\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W} \text{ is closed in } \mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}.$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$\begin{aligned} (\forall u \in \mathcal{V}) \quad |\langle T_1 u | u \rangle| \geq \mu_0 ||u||^2 \,, \\ (\forall v \in \widetilde{\mathcal{V}}) \quad |\langle \widetilde{T}_1 v | v \rangle| \geq \mu_0 ||v||^2 \,. \end{aligned}$$

 $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \operatorname{ker} T_1 ,$ $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \operatorname{ker} \widetilde{T}_1 .$

(P2) $(\mathcal{W}, [\cdot|\cdot])$ is indefinite inner product space and

 $\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W} \text{ is closed in } \mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}.$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$\begin{aligned} (\forall u \in \mathcal{V}) \quad |\langle T_1 u | u \rangle| \geq \mu_0 ||u||^2 \\ (\forall v \in \widetilde{\mathcal{V}}) \quad |\langle \widetilde{T}_1 v | v \rangle| \geq \mu_0 ||v||^2 . \end{aligned}$$

(P4)

$$\mathcal{H} = \operatorname{ran} T_0 \oplus \ker \widetilde{T}_1 = \operatorname{ran} \widetilde{T}_0 \oplus \ker T_1 .$$

 $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \operatorname{ker} T_1 ,$ $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \operatorname{ker} \widetilde{T}_1 .$

(P2) $(\mathcal{W}, [\cdot|\cdot])$ is indefinite inner product space and

 $\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W} \text{ is closed in } \mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}.$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$\begin{split} (\forall u \in \mathcal{V}) & |\langle T_1 u | u \rangle| \geq \mu_0 \|u\|^2 \\ (\forall v \in \widetilde{\mathcal{V}}) & |\langle \widetilde{T}_1 v | v \rangle| \geq \mu_0 \|v\|^2 . \end{split}$$

(P4)

$$\mathcal{H} = \operatorname{ran} T_0 \oplus \ker \widetilde{T}_1 = \operatorname{ran} \widetilde{T}_0 \oplus \ker T_1 \;.$$

(P5) $(\mathcal{W}_0 \dotplus \ker \widetilde{T}_1, \mathcal{W}_0 \dotplus \ker T_1)$ satisfies (V1) condition.

 (T_0, \widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

 $\mathcal{W} = \mathcal{W}_0 + \ker T_1 + \ker \widetilde{T}_1.$

Corollary

 $\left(T_1|_{\mathcal{W}_0 \dotplus \ker \tilde{T}_1}, \widetilde{T}_1|_{\mathcal{W}_0 \dotplus \ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) .

Corollary

 $\left(T_1|_{\mathcal{W}_0 \dotplus \ker \tilde{T}_1}, \tilde{T}_1|_{\mathcal{W}_0 \dotplus \ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) .

Proof: From (P5) it is sufficient to prove only

$$\mathcal{W}_0 + \ker T_1 = (\mathcal{W}_0 + \ker \widetilde{T}_1)^{[\perp]}$$
 and $\mathcal{W}_0 + \ker \widetilde{T}_1 = (\mathcal{W}_0 + \ker T_1)^{[\perp]}$

Let $u_0, v_0 \in \mathcal{W}_0$, $\nu \in \ker T_1$ and $\tilde{\nu} \in \ker \widetilde{T}_1$ be arbitrary. Then

$$[v_0 + \tilde{\nu} \mid u_0 + \nu] = \overline{[\nu \mid \tilde{\nu}]} = \overline{\langle T_1 \nu \mid \tilde{\nu} \rangle} - \overline{\langle \nu \mid \tilde{T}_1 \tilde{\nu} \rangle} = 0$$

Thus, $\mathcal{W}_0 + \ker T_1 \subseteq (\mathcal{W}_0 + \ker \widetilde{T}_1)^{[\perp]}$.

Corollary

 $\left(T_1|_{\mathcal{W}_0 \dotplus \ker \tilde{T}_1}, \tilde{T}_1|_{\mathcal{W}_0 \dotplus \ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) .

Proof: From (P5) it is sufficient to prove only

$$\mathcal{W}_0 + \ker T_1 = (\mathcal{W}_0 + \ker \widetilde{T}_1)^{[\perp]}$$
 and $\mathcal{W}_0 + \ker \widetilde{T}_1 = (\mathcal{W}_0 + \ker T_1)^{[\perp]}$

Let $u_0, v_0 \in \mathcal{W}_0$, $\nu \in \ker T_1$ and $\tilde{\nu} \in \ker \widetilde{T}_1$ be arbitrary. Then

$$[v_0 + \tilde{\nu} \mid u_0 + \nu] = \overline{[\nu \mid \tilde{\nu}]} = \overline{\langle T_1 \nu \mid \tilde{\nu} \rangle} - \overline{\langle \nu \mid \tilde{T}_1 \tilde{\nu} \rangle} = 0.$$

Thus, $\mathcal{W}_0 + \ker T_1 \subseteq (\mathcal{W}_0 + \ker \widetilde{T}_1)^{[\perp]}$.

Let $u \in (\mathcal{W}_0 + \ker \widetilde{T}_1)^{[\perp]}$. By the above theorem there exist $u_0 \in \mathcal{W}_0$, $\nu \in \ker T_1$ and $\tilde{\nu} \in \ker \widetilde{T}_1$ such that $u = u_0 + \nu + \tilde{\nu}$. For any $v_0 \in \mathcal{W}_0$ and $\tilde{\nu}_1 \in \ker \widetilde{T}_1$ we have

$$0 = [v_0 + \tilde{\nu}_1 \mid u] = [v_0 + \tilde{\nu}_1 \mid u_0 + \nu + \tilde{\nu}] = [\tilde{\nu}_1 \mid \nu] + [\tilde{\nu}_1 \mid \tilde{\nu}] = [\tilde{\nu}_1 \mid \tilde{\nu}],$$

where we have used $\ker T_1 \subseteq (\ker \tilde{T}_1)^{[\perp]}$. Putting $\tilde{\nu}_1 = \tilde{\nu}$ we get

$$0 = [\tilde{\nu} \mid \tilde{\nu}] = \langle T_1 \tilde{\nu} \mid \tilde{\nu} \rangle = \langle (T_1 + \tilde{T}_1) \tilde{\nu} \mid \tilde{\nu} \rangle \ge 2\mu_0 \|\tilde{\nu}\|^2,$$

where the last inequality is due to condition (T3). Hence, necessarily $\tilde{\nu} = 0$, which implies $u = u_0 + \nu \subseteq W_0 + \ker T_1$.

The second equation is analogous to the first.

Hence the proof is complete.

 $\mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1$ is direct and closed in \mathcal{W} . In particular, $\mathcal{W}_0 \dot{+} \ker T_1$ and $\mathcal{W}_0 \dot{+} \ker \widetilde{T}_1$ are direct and closed in \mathcal{W} .

 $\mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1$ is direct and closed in \mathcal{W} . In particular, $\mathcal{W}_0 \dot{+} \ker T_1$ and $\mathcal{W}_0 \dot{+} \ker \widetilde{T}_1$ are direct and closed in \mathcal{W} .

Proof: The second part is just a simple consequence, so let us focus only on the first part. Using (P5) and (P3) we have that the operators $T_1|_{\mathcal{W}_0 + \ker \widetilde{T}_1}$ and $\widetilde{T}_1|_{\mathcal{W}_0 + \ker T_1}$ are \mathcal{H} -coercive, hence injective.

 $W_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1$ is direct and closed in W. In particular , $W_0 \dot{+} \ker T_1$ and $W_0 \dot{+} \ker \widetilde{T}_1$ are direct and closed in W.

Proof: The second part is just a simple consequence, so let us focus only on the first part. Using (P5) and (P3) we have that the operators $T_1|_{W_0 + \ker \tilde{T}_1}$ and $\tilde{T}_1|_{W_0 + \ker T_1}$ are \mathcal{H} -coercive, hence injective.

let $u_0 \in \mathcal{W}_0$, $\nu \in \ker T_1$ and $\tilde{\nu} \in \ker \widetilde{T}_1$ be such that $u_0 + \nu + \tilde{\nu} = 0$. Then

$$0 = |T_1(u_0 + \nu + \tilde{\nu})| = |T_1(u_0 + \tilde{\nu})| \ge \mu_0 ||u_0 + \tilde{\nu}||,$$

implying $u_0 + \tilde{\nu} = 0$. Acting by \widetilde{T}_1 we get

$$0 = |\widetilde{T}_1(u_0 + \widetilde{\nu})| = |\widetilde{T}_1(u_0)| \ge \mu_0 ||u_0||.$$

Thus, $u_0 = 0$, which implies $\tilde{\nu} = 0$, and then finally $\nu = 0$. Which proves that the sum is direct.

Let $u_n = u_n^0 + \nu_n + \tilde{\nu}_n \in \mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1 (u_n^0 \in \mathcal{W}_0, \nu_n \in \ker T_1, \tilde{\nu}_n \in \ker \widetilde{T}_1)$ converges to $u \in \mathcal{W}$ in graph norm. $T_1(u_n^0 + \nu_n + \tilde{\nu}_n) = T_1(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} and $T_1|_{\mathcal{W}_0 + \ker \widetilde{T}_1}$ is \mathcal{H} -coercive, $(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some

 $w \in \mathcal{H}$ and $\nu := u - w \in \mathcal{H}$.

Let $u_n = u_n^0 + \nu_n + \tilde{\nu}_n \in \mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \tilde{T}_1 (u_n^0 \in \mathcal{W}_0, \nu_n \in \ker T_1, \tilde{\nu}_n \in \ker \tilde{T}_1)$ converges to $u \in \mathcal{W}$ in graph norm. $T_1(u_n^0 + \nu_n + \tilde{\nu}_n) = T_1(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} and $T_1|_{\mathcal{W}_0 + \ker \tilde{T}_1}$ is \mathcal{H} -coercive, $(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu := u - w \in \mathcal{H}$.

$$\|\nu_n - \nu\| = \|(u_n^0 + \nu_n + \tilde{\nu}_n) - u - (u_n^0 + \tilde{\nu}_n - w)\|$$

$$\leq \|u_n^0 + \nu_n + \tilde{\nu}_n - u\| + \|u_n^0 + \tilde{\nu}_n - w\|,$$

gives $\lim_n \nu_n = \nu$. T_1 is closed implies $\ker T_1$ is closed in both \mathcal{H} and \mathcal{W} , we get $\nu \in \ker T_1$ and $\nu_n \xrightarrow{\mathcal{W}} \nu$.

Let $u_n = u_n^0 + \nu_n + \tilde{\nu}_n \in \mathcal{W}_0 + \ker T_1 + \ker \tilde{T}_1 (u_n^0 \in \mathcal{W}_0, \nu_n \in \ker T_1, \tilde{\nu}_n \in \ker \tilde{T}_1)$ converges to $u \in \mathcal{W}$ in graph norm. $T_1(u_n^0 + \nu_n + \tilde{\nu}_n) = T_1(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} and $T_1|_{\mathcal{W}_0 + \ker \tilde{T}_1}$ is

 $\mathcal{H}(u_n^n + \nu_n^n + \nu_n) = \mathcal{H}(u_n^n + \nu_n)$ is a Cauchy sequence in \mathcal{H} and $\mathcal{H}_{\mathcal{W}_0 + \ker T_1}$ is \mathcal{H} -coercive, $(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu := u - w \in \mathcal{H}$.

$$\|\nu_n - \nu\| = \|(u_n^0 + \nu_n + \tilde{\nu}_n) - u - (u_n^0 + \tilde{\nu}_n - w)\|$$

$$\leq \|u_n^0 + \nu_n + \tilde{\nu}_n - u\| + \|u_n^0 + \tilde{\nu}_n - w\|,$$

gives $\lim_n \nu_n = \nu$. T_1 is closed implies $\ker T_1$ is closed in both \mathcal{H} and \mathcal{W} , we get $\nu \in \ker T_1$ and $\nu_n \xrightarrow{\mathcal{W}} \nu$. So far $u_n^0 + \tilde{\nu}_n \xrightarrow{\mathcal{W}} u - \nu$, implying that $\tilde{T}_1(u_n^0 + \tilde{\nu}_n) = \tilde{T}_0(u_n^0)$ is a Cauchy sequence in \mathcal{H} . Since \tilde{T}_0 is also \mathcal{H} -coercive, (u_n^0) is also a Cauchy and hence convergent sequence in \mathcal{H} . \tilde{T}_0 is closed implies that (u_n^0) converges to some $u_0 \in \mathcal{W}_0$ (in the graph norm). Let $u_n = u_n^0 + \nu_n + \tilde{\nu}_n \in \mathcal{W}_0 + \ker T_1 + \ker \widetilde{T}_1 (u_n^0 \in \mathcal{W}_0, \nu_n \in \ker T_1, \tilde{\nu}_n \in \ker \widetilde{T}_1)$ converges to $u \in \mathcal{W}$ in graph norm. $T_1(u_n^0 + \nu_n + \tilde{\nu}_n) = T_1(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} and $T_1|_{\mathcal{W}_0 + \ker \widetilde{T}_1}$ is

 \mathcal{H} -coercive, $(u_n^0 + \tilde{\nu}_n)$ is a Cauchy sequence in \mathcal{H} as well, hence converges to some $w \in \mathcal{H}$ and $\nu := u - w \in \mathcal{H}$.

$$\begin{aligned} \|\nu_n - \nu\| &= \|(u_n^0 + \nu_n + \tilde{\nu}_n) - u - (u_n^0 + \tilde{\nu}_n - w)\| \\ &\leq \|u_n^0 + \nu_n + \tilde{\nu}_n - u\| + \|u_n^0 + \tilde{\nu}_n - w\|, \end{aligned}$$

gives $\lim_n \nu_n = \nu$. T_1 is closed implies $\ker T_1$ is closed in both \mathcal{H} and \mathcal{W} , we get $\nu \in \ker T_1$ and $\nu_n \xrightarrow{\mathcal{W}} \nu$. So far $u_n^0 + \tilde{\nu}_n \xrightarrow{\mathcal{W}} u - \nu$, implying that $\tilde{T}_1(u_n^0 + \tilde{\nu}_n) = \tilde{T}_0(u_n^0)$ is a Cauchy sequence in \mathcal{H} . Since \tilde{T}_0 is also \mathcal{H} -coercive, (u_n^0) is also a Cauchy and hence convergent sequence in \mathcal{H} . \tilde{T}_0 is closed implies that (u_n^0) converges to some $u_0 \in \mathcal{W}_0$ (in the graph norm). $\tilde{\nu} := u - u_0 - \nu$. Analogously as for (ν_n) , we get that $\tilde{\nu}_n \xrightarrow{\mathcal{W}} \tilde{\nu} \in \ker \tilde{T}_1$. Thus, $u_n^0 + \nu_n + \tilde{\nu}_n \xrightarrow{\mathcal{W}} u_0 + \nu + \tilde{\nu}$. Uniqueness of the limit finally implies $u = u_0 + \nu + \tilde{\nu} \in \mathcal{W}_0$ $\dotplus \ker T_1 \dotplus \ker \tilde{T}_1$. Which completes the proof.

For any bijective realisation $T_{\rm r}$,

$$\mathcal{W} = \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}_0 \dotplus (T_r^*)^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 .$$

For any bijective realisation $T_{\rm r}$,

$$\mathcal{W} = \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}_0 \dotplus (T_r^*)^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 .$$

Proof: From (P1) we have

$$\mathcal{W} = \operatorname{dom} T_{\mathrm{r}} + \operatorname{ker} T_{1} .$$

Sufficient to prove

dom
$$T_{\rm r} = \mathcal{W}_0 \dotplus T_{\rm r}^{-1}(\ker \widetilde{T}_1)$$
.

Here $T_0 \subset T_r$ and $T_r^{-1}(\ker \widetilde{T}_1) \subset \operatorname{dom} T_r$. So, $\mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \subset \operatorname{dom} T_r$.

For any bijective realisation $T_{\rm r}$,

$$\mathcal{W} = \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}_0 \dotplus (T_r^*)^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 .$$

Proof: From (P1) we have

$$\mathcal{W} = \operatorname{dom} T_{\mathrm{r}} + \operatorname{ker} T_{1}$$
.

Sufficient to prove

dom
$$T_{\rm r} = \mathcal{W}_0 \dotplus T_{\rm r}^{-1}(\ker \widetilde{T}_1)$$
.

Here $T_0 \subset T_r$ and $T_r^{-1}(\ker \tilde{T}_1) \subset \operatorname{dom} T_r$. So, $\mathcal{W}_0 \dotplus T_r^{-1}(\ker \tilde{T}_1) \subset \operatorname{dom} T_r$. Let $u \in \operatorname{dom} T_r$. Since $T_r u \in \mathcal{H}$ by (P4), for some $u_0 \in \mathcal{W}_0$, $\tilde{\nu} \in \ker \tilde{T}_1$.

$$u = T_0 u_0 + \tilde{\nu} = T_r u_0 + \tilde{\nu} \; .$$

 $T1|_{\operatorname{dom} T_{\mathrm{r}}} = T_{\mathrm{r}}$ is a bijection, we have

$$u = T_{\rm r}^{-1} T_{\rm r} u = T_{\rm r}^{-1} (T_{\rm r} u_0 + \tilde{\nu}) = u_0 + T_{\rm r}^{-1} (\tilde{\nu}) \implies u \in \mathcal{W}_0 + T_{\rm r}^{-1} (\ker \widetilde{T}_1) .$$

Let $u_0 \in \mathcal{W}_0$ and $\tilde{\nu} \in \ker \widetilde{T}_1$ such that $u_0 + T_r^{-1}(\tilde{\nu}) = 0$. Then

$$T_{\rm r}(u_0+\tilde{\nu})=0 \implies \tilde{\nu}=-T_{\rm r}(u_0)=-T_0(u_0)$$

Which means $\tilde{\nu} \in \ker \tilde{T}_1 \cap \operatorname{ran} T_0 = \{0\}$. So, $\tilde{\nu} = 0$ and by injectivity of $T_0 \ u_0 = 0$ as well. Hence the decomposition is direct.

Let $u_0 \in \mathcal{W}_0$ and $\tilde{\nu} \in \ker \widetilde{T}_1$ such that $u_0 + T_r^{-1}(\tilde{\nu}) = 0$. Then

$$T_{\rm r}(u_0+\tilde{\nu})=0 \implies \tilde{\nu}=-T_{\rm r}(u_0)=-T_0(u_0)$$

Which means $\tilde{\nu} \in \ker \tilde{T}_1 \cap \operatorname{ran} T_0 = \{0\}$. So, $\tilde{\nu} = 0$ and by injectivity of $T_0 \ u_0 = 0$ as well. Hence the decomposition is direct.

We get the second equality by replacing the role of T_0 by \tilde{T}_0 , because of symmetry condition (T1).

Which completes the proof.

$$\mathcal{W} = \left(\mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1 \right)^{[\perp][\perp]}$$

$$\mathcal{W} = \left(\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1\right)^{[\perp][\perp]}$$

Proof: Since $\mathcal{W}_0^{[\perp]} = \mathcal{W}$, it is sufficient to prove

$$\left(\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1\right)^{[\perp]} = \mathcal{W}_0 \; .$$

$$\begin{split} \ker D &= \mathcal{W}_0 \implies \mathcal{W}_0 \subseteq \left(\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1\right)^{[\perp]}.\\ \mathsf{Let} \ u \in \left(\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1\right)^{[\perp]} \subseteq \mathcal{W}, \text{ so by previous lemma}\\ \exists! \ u_0 + T_r^{-1}(\widetilde{\nu}) + \nu = u \in \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}. \end{split}$$

Let $v_0 + \nu_1 + \tilde{\nu}_1 \in \mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$, then

(3)

$$0 = [u \mid v_0 + \nu_1 + \tilde{\nu}_1] = [u_0 + T_r^{-1}(\tilde{\nu}) + \nu \mid v_0 + \nu_1 + \tilde{\nu}_1]$$

$$= [T_r^{-1}(\tilde{\nu}) + \nu \mid \nu_1 + \tilde{\nu}_1]$$

$$= [T_r^{-1}(\tilde{\nu}) \mid \nu_1] + [T_r^{-1}(\tilde{\nu}) \mid \tilde{\nu}_1] + [\nu \mid \nu_1] + [\nu \mid \tilde{\nu}_1]$$

$$= [T_r^{-1}(\tilde{\nu}) \mid \nu_1] + [T_r^{-1}(\tilde{\nu}) \mid \tilde{\nu}_1] + [\nu \mid \nu_1],$$

for $\nu_1=0$ and $\tilde{\nu}_1=\tilde{\nu}$ we get

$$0 = [T_{\mathbf{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}] = \langle \tilde{\nu} \mid \tilde{\nu} \rangle = \|\tilde{\nu}\|^2 \implies \tilde{\nu} = 0 \; .$$

Let $v_0 + \nu_1 + \tilde{\nu}_1 \in \mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$, then

(3)

$$0 = [u | v_0 + \nu_1 + \tilde{\nu}_1] = [u_0 + T_r^{-1}(\tilde{\nu}) + \nu | v_0 + \nu_1 + \tilde{\nu}_1]$$

$$= [T_r^{-1}(\tilde{\nu}) + \nu | \nu_1 + \tilde{\nu}_1]$$

$$= [T_r^{-1}(\tilde{\nu}) | \nu_1] + [T_r^{-1}(\tilde{\nu}) | \tilde{\nu}_1] + [\nu | \nu_1] + [\nu | \tilde{\nu}_1]$$

$$= [T_r^{-1}(\tilde{\nu}) | \nu_1] + [T_r^{-1}(\tilde{\nu}) | \tilde{\nu}_1] + [\nu | \nu_1],$$

for $\nu_1=0$ and $\tilde{\nu}_1=\tilde{\nu}$ we get

$$0 = [T_{\mathbf{r}}^{-1}(\tilde{\nu}) \mid \tilde{\nu}] = \langle \tilde{\nu} \mid \tilde{\nu} \rangle = \|\tilde{\nu}\|^2 \implies \tilde{\nu} = 0 .$$

From (3) again, taking $\nu_1 = \nu$ and using $\tilde{T}_1|_{W_0 + \ker T_1}$ is \mathcal{H} -coercive ((P5) and (P3)) we get

$$0 = |[\nu | \nu]| = |\langle \widetilde{T}_1 \nu | \nu \rangle| \ge \mu_0 ||\nu||^2 \implies \nu = 0.$$

So, $u = u_0 \in \mathcal{W}_0$. Which completes the proof.

Proof.

We have $\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$ is direct and closed in \mathcal{W} and by (P2) we have

$$\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1 = \left(\mathcal{W}_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1\right)^{[\perp][\perp]}$$

Which is \mathcal{W} by previous lemma.

...thank you for your attention :)

- - N. Antonić, M.E., A. Michelangeli: *Friedrichs systems in a Hilbert space framework: solvability and multiplicity*, J. Differential Equations 263 (2017) 8264-8294.
- M.E., A. Michelangeli: On contact interactions realised as Friedrichs systems, Complex Analysis and Operator Theory (2018) https://doi.org/10.1007/s11785-018-0787-4