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Classical Friedrichs operators

Assumptions:
d, r ∈ N, Ω ⊆ Rd open and bounded with Lipschitz boundary;
Ak ∈W 1,∞(Ω;Mr(C)), k ∈ {1, . . . , d}, and B ∈ L∞(Ω;Mr(C) satisfying (a.e. on Ω):

Ak = A∗
k ;(F1)

(∃µ0 > 0) B+B∗ +

d∑
k=1

∂kAk ⩾ 2µ0I .(F2)

Define L, L̃ : L2(Ω)r → D′(Ω)r by

Lu :=
d∑

k=1

∂k(Aku) +Bu , L̃u := −
d∑

k=1

∂k(Aku) +
(
B∗ +

d∑
k=1

∂kAk

)
u .

Aim: impose boundary conditions such that for any f ∈ L2(Ω)r we have a unique
solution of Lu = f.
Gain: many important (semi)linear equations of mathematical physics can be written in
the form of classical Friedrichs operators.
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The classical theory in short

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure
Appl. Math. 11 (1958) 333–418.

Unified treatment of linear hyperbolic systems like Maxwell’s, Dirac’s, or higher order
equations (e.g. the wave equation).

– Contributions: C. Morawetz, P. Lax, L. Sarason, R. S. Phillips, J. Rauch, . . .
– treating the equations of mixed type, such as the Tricomi equation:

y
∂2u

∂x2
+
∂2u

∂y2
= 0 ;

– unified treatment of equations and systems of different type;
– more recently: better numerical properties.

Shortcommings:
– no satisfactory well-posedness result,
– no intrinsic (unique) way to pose boundary conditions.

⇝ development of the abstract theory
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Abstract Friedrichs operators

(H, ⟨ · | · ⟩) complex Hilbert space (H′ ≡ H), ∥ · ∥ :=
√

⟨ · | · ⟩
D ⊆ H dense subspace

Definition

Let T, T̃ : D → H. The pair (T, T̃ ) is called a joint pair of abstract Friedrichs operators
if the following holds:

(∀φ,ψ ∈ D) ⟨Tφ | ψ ⟩ = ⟨φ | T̃ψ ⟩ ;(T1)

(∃ c > 0)(∀φ ∈ D) ∥(T + T̃ )φ∥ ⩽ c∥φ∥ ;(T2)

(∃µ0 > 0)(∀φ ∈ D) ⟨ (T + T̃ )φ | φ ⟩ ⩾ µ0∥φ∥2 .(T3)

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of
Hilbert operators related to Friedrichs’ systems, Comm. Partial Diff. Eq. 32 (2007)
317–341.

N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems,
Comm. Partial Diff. Eq. 35 (2010) 1690–1715.
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Classical is abstract

Ak ∈W 1,∞(Ω;Mr(C)) and C ∈ L∞(Ω;Mr(C)) satisfy (F1)–(F2):

Ak = A∗
k ;(F1)

(∃µ0 > 0) B+B∗ +

d∑
k=1

∂kAk ⩾ µ0I .(F2)

D := C∞
c (Ω)r, H := L2(Ω)r, and

Tu :=
d∑

k=1

∂k(Aku) +Bu , T̃u := −
d∑

k=1

∂k(Aku) +
(
B∗ +

d∑
k=1

∂kAk

)
u .

(T1) ⟨Tu | v ⟩L2 = ⟨ u | −
∑d

k=1 ∂k(A
∗
kv) +

(
B∗ +

∑d
k=1 ∂kAk

)
v ⟩L2

(F1)
= ⟨ u | T̃ v ⟩L2 .

Since (T + T̃ )u =
(
B+B∗ +

∑d
k=1 ∂kAk

)
u,

(T2) ∥(T + T̃ )u∥L2 ⩽
(
2∥B∥L∞ +

∑d
k=1 ∥Ak∥W1,∞

)
∥u∥L2 ,

(T3) ⟨ (T + T̃ )u | u ⟩L2

(F2)

⩾ µ0∥u∥2L2 .
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Well-posedness result

Goal: For (T, T̃ ) satisfying (T1)–(T3) find V ⊇ D (Ṽ ⊇ D) such that T (T̃ ) extended to

V (Ṽ) is a linear bijection.

∃ maximal operators : T1 : W ⊆ H → H , T ⊆ T1 ,

T̃1 : W ⊆ H → H , T̃ ⊆ T̃1 .
(domT1 = dom T̃1 =: W)

Boundary map (form): D : W → W ′ ,

[u | v] := W′⟨Du, v⟩W := ⟨T1u | v ⟩ − ⟨u | T̃1v ⟩ .
([u | v] = [v |u])

For V, Ṽ ⊆ W we introduce two conditions:

(V1)
(∀u ∈ V) [u |u] ⩾ 0

(∀ v ∈ Ṽ) [v | v] ⩽ 0

(V2)
V = {u ∈ W : (∀ v ∈ Ṽ) [v |u] = 0}

Ṽ = {v ∈ W : (∀u ∈ V) [u | v] = 0}
( =⇒ D ⊆ V ∩ Ṽ)

Theorem (Ern, Guermond, Caplain, 2007)

(T1)–(T3) + (V1)–(V2) =⇒ T1|V , T̃1|Ṽ bijective realisations .

S.K. Soni (UNIZG) Abstract Friedrichs operators and the graph space 6/ 25



Well-posedness result

Goal: For (T, T̃ ) satisfying (T1)–(T3) find V ⊇ D (Ṽ ⊇ D) such that T (T̃ ) extended to
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Example 1 (Scalar elliptic PDE)

Ω ⊆ Rd, µ > 0 and f ∈ L2(Ω) given.

−△u+ µu = f ⇐⇒ −div∇u+ µu = f ⇐⇒

{
∇u+ p =0

div p+ µu =f

⇐⇒ T v :=
d∑

k=1

∂k(Akv) +Cv = g ,

where v := [p u]⊤, g := [0 f ]⊤, (Ak)ij := δi,kδj,d+1 + δi,d+1δj,k, C := diag{1, . . . , 1, µ}.
Assumtions (F1) and (F2) are satisfied.

L = L2(Ω)d+1, W = L2
div(Ω)×H1(Ω)

• V = L2
div(Ω)×H1

0(Ω) . . . Dirichelt boundary condition (u = 0 on Γ)

• V = L2
div,0(Ω)×H1(Ω) . . . Neumann boundary condition

(p · ν = ∇u · ν = 0 on Γ)
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Characterisation of joint pair of abstract Friedrichs operators

Theorem

(T1)− (T3) ⇐⇒


T ⊆ T̃ ∗ & T̃ ⊆ T ∗;

T + T̃ bounded self-adjoint in H with strictly positive bottom;

domT = dom T̃ & domT ∗ = dom T̃ ∗ .

Condition (T3) is used in this theorem only to get that T + T̃ has strictly positive

bottom. More precisely, a pair (T, T̃ ) satisfies conditions (T1)–(T2) if and only if

T ⊆ T̃ ∗, T̃ ⊆ T ∗, and T + T̃ is an everywhere defined, bounded, self-adjoint operator on
H. Since many statements hold even in this case, we shall explicitly emphasise in which
particular situations condition (T3) is necessary.
Dual pairs : Operators A,B on H with the property that A ⊆ B∗ and B ⊆ A∗ are often
referred to as dual pairs.
Thus, operators forming a joint pair of abstract Friedrichs operators are dual pairs (this
follows merely from condition (T1)).
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Characterisation of joint pair of abstract Friedrichs operators

Let (T, T̃ ) be a joint pair of abstract Friedrichs operators. By (T1) it is evident that T

and T̃ are closable. Since T + T̃ is a bounded operator, graph norms ∥ · ∥T and ∥ · ∥T̃ are
equivalent.

(1)
domT = dom T̃ =: W0 ,

domT ∗ = dom T̃ ∗ =: W ,

and
(
T + T̃

)
|W = T̃ ∗ + T ∗. This implies that (T , T̃ ) is also a pair of abstract Friedrichs

operators. Now we simplify our notation by introducing

T0 := T , T̃0 := T̃ , T1 := T̃ ∗ , T̃1 := T ∗ .

Therefore, we have

(2) T0 ⊆ T1 and T̃0 ⊆ T̃1 .

When equipped with the graph norm (one of two equivalent norms ∥ · ∥T1 and ∥ · ∥T̃1
),

the space W becomes a Banach space, thus we shall call it the graph space. W0 is a
closed subspace of the graph space W, while it is dense in H (since it contains D).
As an illustration, for H = L2(Ω) and a certain choice of operators it could be that W
and W0 are Sobolev spaces H1(Ω) and H1

0 (Ω), respectively.
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Characterisation of joint pair of abstract Friedrichs operators

Remark: Since T1 and T̃1 are closed, their kernels kerT1 and ker T̃1 are closed both in H
and W. Indeed, for any convergent sequence (un) in, say, kerT1 with the limit u ∈ H,

we have un
H−→ u and T1un = 0. This implies u ∈ domT1 = W and T1u = 0,

i.e. u ∈ kerT1. Thus, we also have un
W−→ u.

Lemma

Let a pair of operators (T, T̃ ) on H satisfies (T1)–(T2). Then the boundary operator D
is continuous and satisfies

i) (∀u, v ∈ W) W′⟨Du, v ⟩W = W′⟨Dv, u ⟩W ,

ii) kerD = W0 ,

iii) ranD = W0
0 ,

where 0 stands for the annihilator.

Theorem

If (T, T̃ ) satisfies (T1)–(T2), then

(V 2) ⇐⇒


D ⊆ V, Ṽ ⊆ W
(T̃ ∗|V)∗ = T ∗|Ṽ
(T ∗|Ṽ)

∗ = T̃ ∗|V .
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we have un
H−→ u and T1un = 0. This implies u ∈ domT1 = W and T1u = 0,

i.e. u ∈ kerT1. Thus, we also have un
W−→ u.

Lemma

Let a pair of operators (T, T̃ ) on H satisfies (T1)–(T2). Then the boundary operator D
is continuous and satisfies

i) (∀u, v ∈ W) W′⟨Du, v ⟩W = W′⟨Dv, u ⟩W ,

ii) kerD = W0 ,

iii) ranD = W0
0 ,

where 0 stands for the annihilator.

Theorem
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(V 2) ⇐⇒


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Bijective realisations with signed boundary map

We seek for bijective closed operators S ≡ T̃ ∗|V such that

T ⊆ S ⊆ T̃ ∗ ,

and thus also S∗ is bijective and T̃ ⊆ S∗ ⊆ T ∗. If (domS,domS∗) satisfies (V 1) we call
(S, S∗) an adjoint pair of bijective realisations with signed boundary map relative to

(T, T̃ ).

Theorem (Antonić, Michelangeli, Erceg , 2017 )

Let (T, T̃ ) satisfies (T1)–(T3).

(i) There exists an adjoint pair of bijective realisations with signed boundary map

relative to (T, T̃ ).

(ii)

ker T̃ ∗ ̸= {0} & kerT ∗ ̸= {0} =⇒
uncountably many adjoint pairs of bijective

realisations with signed boundary map

ker T̃ ∗ = {0} or kerT ∗ = {0} =⇒
only one adjoint pair of bijective realisations

with signed boundary map
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Classification

For (T, T̃ ) satisfying (T1)–(T3) we have

T ⊆ T̃ ∗ and T̃ ⊆ T ∗ ,

while by the previous theorem there exists closed Tr such that

T ⊆ Tr ⊆ T̃ ∗ ( ⇐⇒ T̃ ⊆ T ∗
r ⊆ T ∗),

Tr : domTr → H bijection,

(Tr)
−1 : H → domTr bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).

We used Grubb’s universal classification

G. Grubb: A characterization of the non-local boundary value problems associated
with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425–513.

Result: complete classification of all adjoint pairs of bijective realisations with signed
boundary map.
To do: apply this result to general classical Friedrichs operators from the beginning
(nice class of non-self-adjoint differential operators of interest)
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Example 2 (First order ode on an interval)

L := L2(0, 1), D := C∞
c (0, 1)

T, T̃ : D → L,

Tφ :=
d

dx
φ+ φ and T̃φ := − d

dx
φ+ φ .

We have

domT = dom T̃ = H1
0(0, 1) =:W0

domT ∗ = dom T̃ ∗ = H1(0, 1) =:W .

As D[u, v] = u(1)v(1)− u(0)v(0), for

V := Ṽ := {u ∈ H1(0, 1) : u(0) = u(1)}

we have that Tr := T̃ ∗|V , T ∗
r = T ∗|V form an adjoint pair of bijective realisations with

signed boundary map.
Classification: all adjoint pairs of bijective realisations with signed boundary map

{(Tα,β , T
∗
α,β) : α ⩽ −e−1 , β ∈ R} ∪ {(Tr, T

∗
r )}

domT
(∗)
α,β =

{
u ∈ H1(0, 1) :

(
2e−1−(+)α(1 + e)− iβ(1 + e)

)
u(1)

=
(
2 + α(1 + e)− (+)iβ(1 + e)

)
u(0)

}
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Some preliminary results

(P1) Grubb’s decomposition :

domT1 = domTr +̇ kerT1 ,

dom T̃1 = domT ∗
r +̇ ker T̃1 .

(P2) (W, [·|·]) is indefinite inner product space and

W0 ⊆ V ⊆ W is closed in W ⇐⇒ V = V [⊥][⊥].

(P3) If V, Ṽ ⊂ W and (V, Ṽ) satisfies the condition (V1) then

(∀u ∈ V) |⟨T1u|u⟩| ≥ µ0∥u∥2 ,

(∀v ∈ Ṽ) |⟨T̃1v|v⟩| ≥ µ0∥v∥2 .

(P4)

H = ranT0 ⊕ ker T̃1 = ran T̃0 ⊕ kerT1 .

(P5) (W0+̇ ker T̃1,W0+̇ kerT1) satisfies (V1) condition.
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Decomposition of the graph space

Theorem

(T0, T̃0) is a joint pair of closed abstract Friedrichs operators then

W = W0+̇ kerT1+̇ ker T̃1.
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Decomposition of the graph space

Corollary(
T1|W0+̇ ker T̃1

, T̃1|W0+̇ kerT1

)
is a pair of mutually adjoint pair of bijective realisations

relative to (T, T̃ ).

Proof: From (P5) it is sufficient to prove only

W0 + kerT1 = (W0 + ker T̃1)
[⊥] and W0 + ker T̃1 = (W0 + kerT1)

[⊥] .

Let u0, v0 ∈ W0, ν ∈ kerT1 and ν̃ ∈ ker T̃1 be arbitrary. Then

[ v0 + ν̃ | u0 + ν ] = [ ν | ν̃ ] = ⟨T1ν | ν̃ ⟩ − ⟨ ν | T̃1ν̃ ⟩ = 0 .

Thus, W0 + kerT1 ⊆ (W0 + ker T̃1)
[⊥].

Let u ∈ (W0 + ker T̃1)
[⊥]. By the above theorem there exist u0 ∈ W0, ν ∈ kerT1 and

ν̃ ∈ ker T̃1 such that u = u0 + ν + ν̃. For any v0 ∈ W0 and ν̃1 ∈ ker T̃1 we have

0 = [ v0 + ν̃1 | u ] = [ v0 + ν̃1 | u0 + ν + ν̃ ] = [ ν̃1 | ν ] + [ ν̃1 | ν̃ ] = [ ν̃1 | ν̃ ] ,
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Decomposition of the graph space

where we have used kerT1 ⊆ (ker T̃1)
[⊥].

Putting ν̃1 = ν̃ we get

0 = [ ν̃ | ν̃ ] = ⟨T1ν̃ | ν̃ ⟩ = ⟨ (T1 + T̃1)ν̃ | ν̃ ⟩ ≥ 2µ0∥ν̃∥2 ,

where the last inequality is due to condition (T3). Hence, necessarily ν̃ = 0, which
implies u = u0 + ν ⊆ W0 + kerT1.
The second equation is analogous to the first.
Hence the proof is complete.
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Decomposition of the graph space

Lemma

W0+̇ kerT1+̇ ker T̃1 is direct and closed in W.
In particular , W0+̇ kerT1 and W0+̇ ker T̃1 are direct and closed in W.

Proof: The second part is just a simple consequence, so let us focus only on the first
part. Using (P5) and (P3) we have that the operators T1|W0+ker T̃1

and T̃1|W0+kerT1 are
H-coercive, hence injective.
let u0 ∈ W0, ν ∈ kerT1 and ν̃ ∈ ker T̃1 be such that u0 + ν + ν̃ = 0. Then

0 = |T1(u0 + ν + ν̃)| = |T1(u0 + ν̃)| ≥ µ0∥u0 + ν̃∥ ,

implying u0 + ν̃ = 0. Acting by T̃1 we get

0 = |T̃1(u0 + ν̃)| = |T̃1(u0)| ≥ µ0∥u0∥ .

Thus, u0 = 0, which implies ν̃ = 0, and then finally ν = 0. Which proves that the sum is
direct.
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Decomposition of the graph space

Let un = u0
n + νn + ν̃n ∈ W0 ∔ kerT1 ∔ ker T̃1 (u0

n ∈ W0, νn ∈ kerT1, ν̃n ∈ ker T̃1)
converges to u ∈ W in graph norm.
T1(u

0
n + νn + ν̃n) = T1(u

0
n + ν̃n) is a Cauchy sequence in H and T1|W0+ker T̃1

is

H-coercive, (u0
n + ν̃n) is a Cauchy sequence in H as well, hence converges to some

w ∈ H and ν := u− w ∈ H.

∥νn − ν∥ = ∥(u0
n + νn + ν̃n)− u− (u0

n + ν̃n − w)∥

≤ ∥u0
n + νn + ν̃n − u∥+ ∥u0

n + ν̃n − w∥ ,

gives limn νn = ν. T1 is closed implies kerT1 is closed in both H and W, we get

ν ∈ kerT1 and νn
W−→ ν.

So far u0
n + ν̃n

W−→ u− ν, implying that T̃1(u
0
n + ν̃n) = T̃0(u

0
n) is a Cauchy sequence in

H. Since T̃0 is also H-coercive , (u0
n) is also a Cauchy and hence convergent sequence in

H. T̃0 is closed implies that (u0
n) converges to some u0 ∈ W0 (in the graph norm).

ν̃ := u− u0 − ν. Analogously as for (νn), we get that ν̃n
W−→ ν̃ ∈ ker T̃1. Thus,

u0
n + νn + ν̃n

W−→ u0 + ν + ν̃. Uniqueness of the limit finally implies
u = u0 + ν + ν̃ ∈ W0 ∔ kerT1 ∔ ker T̃1.
Which completes the proof.
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n + ν̃n) is a Cauchy sequence in H and T1|W0+ker T̃1

is

H-coercive, (u0
n + ν̃n) is a Cauchy sequence in H as well, hence converges to some

w ∈ H and ν := u− w ∈ H.

∥νn − ν∥ = ∥(u0
n + νn + ν̃n)− u− (u0

n + ν̃n − w)∥

≤ ∥u0
n + νn + ν̃n − u∥+ ∥u0

n + ν̃n − w∥ ,

gives limn νn = ν. T1 is closed implies kerT1 is closed in both H and W, we get

ν ∈ kerT1 and νn
W−→ ν.

So far u0
n + ν̃n

W−→ u− ν, implying that T̃1(u
0
n + ν̃n) = T̃0(u

0
n) is a Cauchy sequence in

H. Since T̃0 is also H-coercive , (u0
n) is also a Cauchy and hence convergent sequence in

H. T̃0 is closed implies that (u0
n) converges to some u0 ∈ W0 (in the graph norm).

ν̃ := u− u0 − ν. Analogously as for (νn), we get that ν̃n
W−→ ν̃ ∈ ker T̃1. Thus,

u0
n + νn + ν̃n

W−→ u0 + ν + ν̃. Uniqueness of the limit finally implies
u = u0 + ν + ν̃ ∈ W0 ∔ kerT1 ∔ ker T̃1.
Which completes the proof.
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Decomposition involving a reference operator

Lemma

For any bijective realisation Tr,

W = W0 +̇ T−1
r (ker T̃1) +̇ kerT1 = W0 +̇ (T ∗

r )
−1(ker T̃1) +̇ kerT1 .

Proof: From (P1) we have

W = domTr +̇ kerT1 .

Sufficient to prove

domTr = W0 ∔ T
−1
r (ker T̃1) .

Here T0 ⊂ Tr and T−1
r (ker T̃1) ⊂ domTr . So, W0 ∔ T−1

r (ker T̃1) ⊂ domTr .

Let u ∈ domTr. Since Tru ∈ H by (P4) , for some u0 ∈ W0 , ν̃ ∈ ker T̃1.

u = T0u0 + ν̃ = Tru0 + ν̃ .

T1|domTr = Tr is a bijection, we have

u = T−1
r Tru = T−1

r (Tru0 + ν̃) = u0 + T−1
r (ν̃) =⇒ u ∈ W0 + T−1

r (ker T̃1) .
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Decomposition involving a reference operator

Let u0 ∈ W0 and ν̃ ∈ ker T̃1 such that u0 + T−1
r (ν̃) = 0. Then

Tr(u0 + ν̃) = 0 =⇒ ν̃ = −Tr(u0) = −T0(u0)

Which means ν̃ ∈ ker T̃1 ∩ ranT0 = {0}. So, ν̃ = 0 and by injectivity of T0 u0 = 0 as
well. Hence the decomposition is direct.

We get the second equality by replacing the role of T0 by T̃0, because of symmetry
condition (T1).
Which completes the proof.
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Decomposition of the graph space

Lemma

W =
(
W0+̇ kerT1+̇ ker T̃1

)[⊥][⊥]

.

Proof: Since W [⊥]
0 = W, it is sufficient to prove(

W0 ∔ kerT1 ∔ ker T̃1

)[⊥]

= W0 .

kerD = W0 =⇒ W0 ⊆
(
W0 ∔ kerT1 ∔ ker T̃1

)[⊥]

.

Let u ∈
(
W0 ∔ kerT1 ∔ ker T̃1

)[⊥]

⊆ W, so by previous lemma

∃! u0 + T−1
r (ν̃) + ν = u ∈ W0+̇T

−1
r (ker T̃1)+̇ kerT1 = W .
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Decomposition of the graph space

Let v0 + ν1 + ν̃1 ∈ W0 ∔ kerT1 ∔ ker T̃1 , then

(3)

0 = [u | v0 + ν1 + ν̃1 ] = [u0 + T−1
r (ν̃) + ν | v0 + ν1 + ν̃1 ]

= [T−1
r (ν̃) + ν | ν1 + ν̃1 ]

= [T−1
r (ν̃) | ν1 ] + [T−1

r (ν̃) | ν̃1 ] + [ ν | ν1 ] + [ ν | ν̃1 ]

= [T−1
r (ν̃) | ν1 ] + [T−1

r (ν̃) | ν̃1 ] + [ ν | ν1 ] ,

for ν1 = 0 and ν̃1 = ν̃ we get

0 = [T−1
r (ν̃) | ν̃ ] = ⟨ ν̃ | ν̃ ⟩ = ∥ν̃∥2 =⇒ ν̃ = 0 .

From (3) again, taking ν1 = ν and using T̃1|W0+kerT1 is H-coercive ( (P5) and (P3) )
we get

0 = |[ ν | ν ]| = |⟨ T̃1ν | ν ⟩| ≥ µ0∥ν∥2 =⇒ ν = 0 .

So, u = u0 ∈ W0. Which completes the proof.
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Proof of the decomposition

Proof.

We have W0 ∔ kerT1 ∔ ker T̃1 is direct and closed in W and by (P2) we have

W0 ∔ kerT1 ∔ ker T̃1 =
(
W0 ∔ kerT1 ∔ ker T̃1

)[⊥][⊥]

Which is W by previous lemma.
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And...

...thank you for your attention :)

N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework:
solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.

M.E., A. Michelangeli: On contact interactions realised as Friedrichs systems,
Complex Analysis and Operator Theory (2018)
https://doi.org/10.1007/s11785-018-0787-4

S.K. Soni (UNIZG) Abstract Friedrichs operators and the graph space 25/ 25


