

Variant of optimality criteria method for multiple state optimal design problems

Ivana Crnjac, J. J. Strossmayer University of Osijek

joint work with Krešimir Burazin and Marko Vrdoljak

Optimal design problem

• Let $\Omega \subseteq \mathbf{R}^d$ be open and bounded and $f \in \mathrm{H}^{-1}(\Omega)$. We consider stationary diffusion equation with homogenous Dirichlet boundary condition:

$$\left\{ \begin{array}{l} -\mathsf{div}\left(\mathbf{A}\nabla u\right) = f \\ u \in \mathrm{H}^1_0(\Omega) \ . \end{array} \right.$$

• We assume that Ω is a mixture of two isotropic materials with conductivities $0 < \alpha < \beta$, i.e.

$$\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi)\beta \mathbf{I}, \text{ where } \chi \in L^{\infty}(\Omega; \{0, 1\})$$

and that the amount of the first material is given by $q_{\alpha} = \int_{\Omega} \chi \, d\mathbf{x}$. Then, the **multiple state optimal** design problem is

$$\begin{cases}
J(\chi) = \int_{\Omega} \chi(\mathbf{x}) g_{\alpha}(\mathbf{x}, \mathbf{u}) + (1 - \chi(\mathbf{x})) g_{\beta}(\mathbf{x}, \mathbf{u}) d\mathbf{x} \longrightarrow \min, \\
\chi \in L^{\infty}(\Omega; \{0, 1\}), \int_{\Omega} \chi d\mathbf{x} = q_{\alpha},
\end{cases} \tag{1}$$

where $\mathbf{u} = (u_1, \dots, u_m)$ is the state function determined by

$$\begin{cases} -\mathsf{div}\left(\mathbf{A}\nabla u_i\right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{cases} \qquad i = 1, \dots, m$$

with $\mathbf{A} = \chi \alpha \mathbf{I} + (1 - \chi)\beta \mathbf{I}$ and $f_i \in \mathrm{H}^{-1}(\Omega)$, while g_{α} , g_{β} are Caratheodory functions which satisfies growth condition

$$g_j(x,u) \le a|u|^s + b(x), \qquad j = \alpha, \beta,$$

for some a > 0, $b \in L^1(\Omega)$ and $1 \le s < \frac{2d}{d-2}$, $d \ge 3$.

Relaxed problem

• Problem (1) does not have classical solution, therefore using relaxation by the homogenization method we get relaxed problem

$$\begin{cases}
J(\theta, \mathbf{A}) = \int_{\Omega} (\theta(\mathbf{x}) g_{\alpha}(\mathbf{x}, \mathbf{u}) + (1 - \theta(\mathbf{x})) g_{\beta}(\mathbf{x}, \mathbf{u})) d\mathbf{x} \longrightarrow \min \\
(\theta, \mathbf{A}) \in \{(\theta, \mathbf{A}) \in L^{\infty}(\Omega; [0, 1] \times M_{d}(\mathbf{R})) : \mathbf{A} \in \mathcal{K}(\theta) \ a.e.\}, \int_{\Omega} \theta d\mathbf{x} = q_{\alpha}, \\
\mathbf{u} = (u_{1}, u_{2}, \dots, u_{m}), \text{ where } u_{i}, i = 1, \dots, m \text{ satisfies}
\end{cases}$$

$$\begin{cases}
-\operatorname{div}(\mathbf{A} \nabla u_{i}) = f_{i} \\
u_{i} \in H_{0}^{1}(\Omega).
\end{cases}$$
(2)

Set $\mathcal{K}(\theta)$ is given in terms of eigenvalues of matrix **A** (Murat & Tartar; Lurie & Cherkaev):

$$\lambda_{\theta}^{-} \leq \lambda_{j} \leq \lambda_{\theta}^{+} \quad j = 1, \dots, d$$

$$\sum_{j=1}^{d} \frac{1}{\lambda_{j} - \alpha} \leq \frac{1}{\lambda_{\theta}^{-} - \alpha} + \frac{d-1}{\lambda_{\theta}^{+} - \alpha}$$

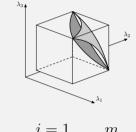
$$\sum_{j=1}^{d} \frac{1}{\beta - \lambda_{j}} \leq \frac{1}{\beta - \lambda_{\theta}^{-}} + \frac{d-1}{\beta - \lambda_{\theta}^{+}},$$

$$\lambda_{\theta}^{+} = \theta\alpha + (1 - \theta)\beta,$$

$$\frac{1}{\lambda_{\theta}^{-}} = \frac{\theta}{\alpha} + \frac{1 - \theta}{\beta}$$
3D:

• Let us introduce adjoint states p_1, \ldots, p_m as solutions of

$$\left\{ \begin{array}{l} -\mathsf{div}\left(\mathbf{A}\nabla p_i\right) = \theta \frac{\partial g_\alpha}{\partial u_i}(\cdot,\mathbf{u}) + (1-\theta) \frac{\partial g_\beta}{\partial u_i}(\cdot,\mathbf{u}) \\ p_i \in \mathrm{H}_0^1(\Omega) \end{array} \right.$$



Result

Theorem 1. Let (θ^*, \mathbf{A}^*) be a local minimizer for relaxation problem (2) with corresponding states u_i^* and adjoint states p_i^* . We introduce symmetric matrix

$$\mathbf{N}^* = \operatorname{Sym} \sum_{i=1}^m \sigma_i^* \otimes \tau_i^*,$$

for $\sigma_i^* = \mathbf{A}^* \nabla u_i^*$, $\tau_i^* = \mathbf{A}^* \nabla p_i^*$ and function $g(\theta, \mathbf{N}) = \min_{\mathbf{A} \in \mathcal{K}(\theta)} (\mathbf{A}^{-1} : \mathbf{N})$. Then

$$(\mathbf{A}^*)^{-1}(\mathbf{x}) : \mathbf{N}^*(\mathbf{x}) = g(\theta^*(\mathbf{x}), \mathbf{N}^*(\mathbf{x})), \quad \text{a.e. } x \in \Omega.$$

Moreover, if we define function

$$R^*(\mathbf{x}) := g_{\alpha}(\mathbf{x}, \mathbf{u}^*(\mathbf{x})) - g_{\beta}(\mathbf{x}, \mathbf{u}^*(\mathbf{x})) + l + \frac{\partial g}{\partial \theta}(\theta^*(\mathbf{x}), \mathbf{N}^*(\mathbf{x})),$$

the optimal θ^* satisfies (a.e. on Ω)

$$\theta^*(\mathbf{x}) = 0 \implies R^*(\mathbf{x}) > 0$$

$$\theta^*(\mathbf{x}) = 1 \implies R^*(\mathbf{x}) < 0$$

$$0 \le \theta^*(\mathbf{x}) \le 1 \implies R^*(\mathbf{x}) = 0$$

• For two and three dimensional case we explicitly calculated partial derivative $\frac{\partial g}{\partial \theta}$, which enabled us update of design variables (θ^k, \mathbf{A}^k) in optimality criteria method.

Algorithm 1. Take some initial θ^0 and \mathbf{A}^0 . For k from 0 to N:

1. Calculate u_i^k , i = 1, ..., m, the solution of

$$\left\{ \begin{array}{l} -\mathrm{div}\left(\mathbf{A}^k\nabla u_i\right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{array} \right. .$$

2. Calculate p_i^k , i = 1, ..., m, the solution of

$$\begin{cases} -\operatorname{div}\left(\mathbf{A}^k\nabla p_i\right) = \theta^k \frac{\partial g_\alpha}{\partial u_i}(\cdot, \mathbf{u}^k) + (1-\theta^k) \frac{\partial g_\beta}{\partial u_i}(\cdot, \mathbf{u}^k) \\ p_i \in \mathrm{H}^1_0(\Omega), \ \mathbf{u}^k = (u_1^k, \dots, u_m^k) \end{cases}$$

and define $\sigma_i^k := \mathbf{A}^k \nabla u_i^k$, $\tau_i^k := \mathbf{A}^k \nabla u_i^k$ and $\mathbf{N}^k := \operatorname{Sym} \sum_{i=1}^m (\sigma_i^k \otimes \tau_i^k)$.

3. For $\mathbf{x} \in \Omega$ let $\theta^{k+1}(\mathbf{x}) \in [0,1]$ be a zero of function

$$\theta \mapsto R^k(\theta, \mathbf{x}) := g_{\alpha}(\mathbf{x}, \mathbf{u}^k(\mathbf{x})) - g_{\beta}(\mathbf{x}, \mathbf{u}^k(\mathbf{x})) + l + \frac{\partial g}{\partial \theta}(\theta, \mathbf{N}^k(\mathbf{x})),$$
 (3)

and if a zero doesn't exist, take 0 (or 1) if the function is positive (or negative) on [0,1].

4. Let $\mathbf{A}^{k+1}(\mathbf{x})$ be the minimizer in the definition of $g(\theta^{k+1}(\mathbf{x}), \mathbf{N}^k(\mathbf{x}))$.

Optimality criteria method

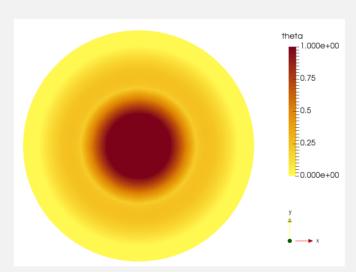
Example 1. Consider two-dimensional problem of weighted energy minimization

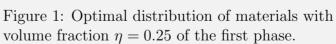
$$J(\theta, \mathbf{A}) = 2 \int_{\Omega} f_1 u_1 d\mathbf{x} + \int_{\Omega} f_2 u_2 d\mathbf{x} \longrightarrow \min,$$

where $\Omega \subseteq \mathbf{R}^2$ is a ball $B(\mathbf{0}, 2)$, $\alpha = 1$, $\beta = 2$, while u_1 and u_2 are state functions for

$$\begin{cases} -\operatorname{div}(\mathbf{A}\nabla u_i) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{cases}, \quad i = 1, 2,$$

where we take $f_1 = \chi_{B(\mathbf{0},1)}$ and $f_2 \equiv 1$ for right-hand sides.





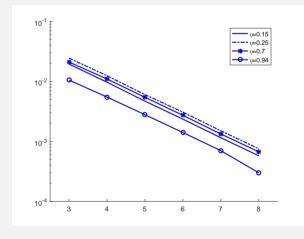


Figure 2: Dependence of L¹ error between numerical and exact solution with respect to mesh refinement for various choices of volume fractions η of the first phase.

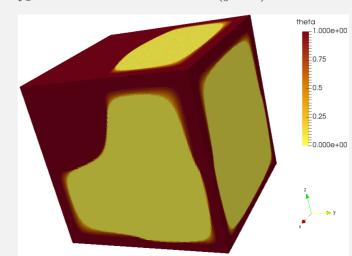
Example 2. Consider three-dimensional energy minimization problem

$$J(\theta, \mathbf{A}) = \int_{\Omega} (f_1 u_1 + f_2 u_2) d\mathbf{x} \longrightarrow \min,$$

on a cube $[-1,1]^3$, with $\alpha=1,\ \beta=2$ and two state equations

$$\left\{ \begin{array}{l} -\mathsf{div}\left(\mathbf{A}\nabla u_i\right) = f_i \\ u_i \in \mathrm{H}^1_0(\Omega) \end{array} \right., \quad i = 1, 2.$$

We take function f_1 to be zero on the upper half (z > 0) and 10 on the lower half of the cube, and function f_2 to be zero on the left half (y < 0) and 10 on the right half of the cube.



(a) Outer look.

(b) Intersection of the cube with x=0 plane.

1.000e+00

0.75

E0.25

=0.000e+00

Figure 3: Optimal distribution of materials with volume fraction $\eta = 0.5$ of the first phase.