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The necessary and sufficient condition of optimality

Statement of the problem Relaxed design: Effective conductivity Generalized (convex) problem B

Let Q c RY be open and bounded set. It consists of two phases each with For characteristic functions relaxation consists of:
different isotropic conductivity: a, 5 (0 < a < (). (3) X EL®Q{0.1}) ~ 8e L9, [0,1]),

with fQHdw = (o

Unfortunately, A is not a convex set. To achieve convexity, an enlarged

(artificial) set is introduced:
(o is the prescribed volume of the first phase o (0 < g < [©]).

x € L>®(Q,{0,1}) a measurable characteristic function. B = {(H,A) e L>(Q, [0, 1] x Symy)

fQHdm:CIOd? }

M) TS Al) < )\g@I, a.c. T

Conductivity can be expressed as Set of effective conductivities K(0) :

A € K(0) iff there exists sequence of characteristic functions and with it
A(x) == xaI+(1 - x)AL 1o, m
— 0 B max J(0,A max -/f-a:u-a:da:
where Xn (B) 0.A)eB ( ) = 0.A)eB ; i J i(@)ui(x)

H
/QX(w)diB_(]a- A" = xpal+(1 — xp) T —A.

State functions u; € H%(Q), 1=1,2, ...,
boundary value problems:

Using fluxes one can rewrite problem (B) as max-min problem and prove:

Visual representation of a set K(60) Theorem

m are solutions of the followin
5 Optimization problem (B) is equivalent to following optimization problem:

JC(0) is given in terms of eigenvalues

( m
0 { —div(A Vu;) = f; ma% PP, Ny <N <A j=1,....d 1(6) = Z1M Jo fiui dz — max
u; = 0 on OS2, Y 1=
: | 1 d—1 (I) \ st. 0€L>®[0,1]), [o0 = qa, where u satisfies
Z \ < Ao ™ )\+ .
Energy functional: j=1"" ) 2 o~ e B . div()\éTVui) =Ji w € H(l)(Q)’ 0= Ly ey T,
Y Ed: 1 < : + -1 2 a AE— A+ 6 M =
I(x) =) / filx)u;(x) de. SB-X T BN B Ay A The necessary and sufficient condition of optimality
1=1
()
h Define
where p; >0, 1 =1,2,....m WHELE m "
Ay = ba+(1-6)8 vi= ) pilef]”
_ =1
Optimal design problem: L_ — Q + u x |
Ag Qo 5 M Lemma
( . _ The necessary and sufficient condition of optimality for solution 8* of
I(x) = D i1 1 / fiu; dx — max Relaxed problem A: optimal design problem (I) simplifies to the existence of a Lagrange
(2) ) 109001, {0 1Q ] r [,0d multiplier ¢ > 0 such that
— £r = ,
S.t. X c < 7{ ) })7 /QX xIr dovs A: ) (9,A> c LQQ<Q’ [07 1] > Symd> 0 o } m o )

| w solves (1) with A = xaI+(1 - x)S1I. { Alz) € K(0(z)), ae x ¢:Zﬂi|0'z| >c=0"=1,

[f solution x exists for (2) we call it classical solution. Relaxed problem can be written as: (4) ‘m
m QP:ZM|0';’2<C:>9*:O-

Important: For general optimal design problems the classical solutions (A) IX%X J(0,A) = r&ax Z o / fi(x)u;(x) do i—1
usually do not exist. 6,2)€A G.A)ed QO |

Analytical example on annulus for single state problem Gradient method using shape derivative

For spherically symmetric problem such that:
() = R(f)) for any rotation R

f; are radial functions

it can be proved that there exists radial solution ¢ of (I). ( 2 If ¢ is small (i.e. |[t3)||yyk.00 << 1) mapping Id +£1) is homeomorphism. This allows us to
S 0 d—14, = define shape derivative:
In particular, it can be shown that d / (P)p p=fa y
"1 Definition (Shape derivative)
(9%%2 A J(6,A) = I{0R). (6) < 2 . 2 ) Let J = J(£2) be a shape functional. J is said to be shape differentiable at §2 in direction
u(rg) =0 <— 7/( >dp:/—dp Y if
a(p)p?! a(p) : J(%) — J()
rl r J(£2,) = tl{]% ;
Single state equation: \ olry) =¢ olr-)=—c, where ¢ >0 exists and the mapping ¢ — J'(£2,1)) is linear and continuous.
O 5 _ div()\e_ (xVu)=1 inQ where J' (2, 1)) is called the shape derivative.
u=>0 on OS2 y , o(r) 1 —0(r) 1 H
o(r) = =1 7 & alr)= — + 5 For our optimal design problem : shape derivative is given with:
r

D) 1
where Ay (z) = (9( blz) | 1-b(z) g( >) .

Optimization problem:

For 8 € T =

{6 € L*>(Q, [0
()= F(Oa TQ)\K(Ov Tl) ]<9> B /QUdCIZ — max

One can rewrite (5) in polar coordinates :

Direct calculations

Necessary and sufficient condition of optimality can also be
expressed as a non-linear system (unknowns vy, ¢, r4r_):

Results for d = 2, 3

3) case beta-alpha

Non-linear system (6) does
not admit a solution (proved

for d =2 and d = 3).

Perturbation of the set €2 is given with
) = (Id +t)Q
where 1) € WH°(R? R

J’(Q, Y) = /QA(_ div(y)) + VY + V" )\Vug - Vug de

+- / 2(div() f + V f - Y)ugde
€2

where wy is solution of BVP (1) on domain €2 with A.
Vector field 1) € HO ) is constructed from:

/w w+/w o= J(Qg), Ve e HYQ)

1 ( d—1 \— 1 ) I < > () (1) The shape is evolved by gradually moving the boundary between phases.
— r w(r)) =1in (rq,r u(ry) = u(ry) =
rd—1 A/ br2l ! : Numerical results:
o

Observe that o satisfies
7
d —1
a(r):(0,00) =+ R is a strictly decreasing function.

o= v > 0

The necessary and sufficient condition of optimality for 6* states

of| >c=0"=1,
0¥ <c=60"=0.

There are only three possible candidates for optimal design:

Remark: [’Homogénéisation Théorie et Applications en Physique, Coll. Dir. Etudes et
L, r€lry,ry) e Problem can be easily generalized to multi-state problem for Recher(.:hes DT, 57,.Eyrolles-,Parls, p?'319_'369 (1985) o
1) 0*(r) =< 0, r € [ry,r_) alpha-beta-alpha example m, = 2: |2 ] Vrdoljak, M. Classical Optimal Design in Two-Phase Conductivity Problems,
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Therefore, cases: 1) and 2) should be considered as only
possible solutions. One can easily prove if g, is very small, case
alpha-beta is always solution (for arbitrary chosen parameters

a, B,71,72).

Furthermore, one can numerically obtain critical value for which
optimal design changes from case alpha-beta to
alpha-beta-alpha.

o alpha-beta alpha—beta—alpha
(go < critical value) (o > critical value)
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