Numerical approximation of classical optimal design on annuli
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The necessary and sufficient condition of optimality

Statement of the problem

Let Q c RY be open and bounded set. It consists of two phases each with

different isotropic conductivity: a, 8 (0 < a < ().
(o is the prescribed volume of the first phase o (0 < g < [©]).
x € L°°(€2,{0,1}) a measurable characteristic function.

Conductivity can be expressed as

A(x) == xaI+(1 - x)8L

/QX(CB) dz = gq.

State functions u; € H%(Q), 1=1,2, ...,
boundary value problems:

) —div(AVu;) = f; inQ
u; =0 on 01,

where

i=1,2. .. m.

Energy functional:

where p; >0, 1 =1,2,....m

Optimal design problem:

y

I(x) = D it i /Q fiu; dx — max

st xeL¥Q ), [ xde =g
2
u solves (1) with A = yaI+(1 — x)S1I.

(2)

/s

\

[f solution x exists for (2) we call it classical solution.

Important:
usually do not exist.

m are solutions of the following

For general optimal design problems the classical solutions (A)

Relaxed design: Effective conductivity
For characteristic functions relaxation consists of:
3 Y EL®Q{0,1}) ~ 0eL®Q,[,1))
with fQ 0dx = qq,.

Set of effective conductivities (0) :
A € K(0) iff there exists sequence of characteristic functions

Generalized (convex) problem B

Unfortunately, A is not a convex set. To achieve convexity, an enlarged
(artificial) set is introduced:
= A) e L>(0,]0,1

fQHdm:CIOd? }

0(x) 0(x)
and with 1t
B J(O. A ) 7 ) d
(B) Ja O = ;u Q/ File)ui(@) de

Using fluxes one can rewrite problem (B) as max-min problem and prove:

Visual representation of a set K(60)

JC(0) is given in terms of eigenvalues

Ay <A <A G=1,....d

Theorem
Optimization problem (B) is equivalent to following optimization problem:

( m
1[(0) = Z ti Jo fiu; doz — max

1=1

i 1 - 1 N d—1 (1) \ s.t. ¢ L*>(Q, 10, 1]), fQH = o, where u satisfies
— Ni—a T\, —« A\ — A (N Ta ) — £ . 1 .
j=1"17 0 0 | \ div(Ay Vu;) = fi,  u; € Hy(Q), ¢=1,...,m,
zdjl oL d- — _
— B=Xj — B=Xy B-=X A The necessary and sufficient condition of optimality
where Define -
: 2
A= 0a+(1—0)8 V=) mlof]
1 6 1-—46 / i=1
— = —+—. x
Ag ¢ b 1 Lemma
_ The necessary and sufficient condition of optimality for solution 6* of
Relaxed problem A: optimal design problem (I) simplifies to the existence of a Lagrange
r multiplier ¢ > 0 such that
A=<(0,A) € L>(Q,]0,1] x Symy) Jo9dz = ga, m
| ) ) [V A( )EIC(@( )), a.c. & ¢:ZMZ|U;<|2>C:>(9*:17
Relaxed problem can be written as: (4) =1
0 = wloff<c= 0c=0.
max J(,A)= max Y g / fi(@)uy(x) dae ; ad
<‘9 A)E-A (Q,A)E.A 1= 0 .

Analytical example on annulus for single state problem

For spherically symmetric problem such that:
() = R(f)) for any rotation R
f; are radial functions
it can be proved that there exists radial solution 67 of (I).

In particular, it can be shown that

J(0,A) = (0
(9%@ (0,A) = 1(0p).

Single state equation:

—div(A, (zVu) =1 inQ
o) { fb = () on Of)

D) 1
where Ay (z) = (9( blz) | 1-b(z) g( >) .

Optimization problem:

For 8 € T =

{6 € L*>(Q, [0
()= F(Oa TQ)\K(Ov Tl) ]<9> B /QUdCIZ — max

One can rewrite (5) in polar coordinates :

1 1 :
(AW () = Tin (r1,ra) s u(ry)

-~

o

Observe that o satisfies

= u(ry) =

7
d —1
a(r):(0,00) =+ R is a strlctly decreasing function.

o

v >0

The necessary and sufficient condition of optimality for 6* states

of| >c=0"=1,
0¥ <c=60"=0.

There are only three possible candidates for optimal design:

1, relr,ry)

1) 0*(r)=< 0, r€|ry,r—) alpha-beta-alpha

L, r€lr—,mr
(1, r € [r,r4)
* _ ) L© 1 _
2) 0*(r) = <\ 0. 1 € [re,my) alpha-beta
(0, r € lry,r_)
k() ; 71, )
3) 0% (r) = < L relrm) beta-alpha

Direct calculations

Necessary and sufficient condition of optimality can also be
expressed as a non-linear system (unknowns vy, ¢, r4r_):

( 79
S / 0(p)p" " dp = qa
r
(6) 4 r2 | T2
p
ur) =0 = 7/ (a(p)pd1> = /@dp
T rl
. o(ry)=¢, o(r-)=—c, where ¢ > (
where
o(r) 1—0(r)\ "
o) = -5 &l = (224 =10

Results for d = 2, 3

3) case beta-alpha

Non-linear system (6) does
not admit a solution (proved

for d =2 and d = 3).

Therefore, cases: 1) and 2) should be considered as only
possible solutions. One can easily prove if g, is very small, case
alpha-beta is always solution (for arbitrary chosen parameters

a, B,71,72).

Furthermore, one can numerically obtain critical value for which
optimal design changes from case alpha-beta to
alpha-beta-alpha.

alpha-beta alpha—beta—alpha
(go < critical value) (o > critical value)

Remark:

e Problem can be easily generalized to multi-state problem for
example m = 2;
b

fl(r) =1, fQ(T) — T(b — 7”)27

e [ixistence of such solutions is important for any numerical
method like shape derivative method.

where b > 19

Gradient method using shape derivative
Perturbation of the set €2 is given with

QO = (Id+)Q2

where 1) € WH°(R? R
If ¢ is small (i.e. |[t3)||yyk.00 << 1) mapping Id +£1) is homeomorphism. This allows us to
define shape derivative:

Definition (Shape derivative)
Let J = J(£2) be a shape functional. J is said to be shape differentiable at §2 in direction

Y if
J () — J(Q)
J(Q,v) =i
(82,9) = Q) ;
exists and the mapping ¢ — J'(£2,1)) is linear and continuous.
J' (2, 1)) is called the shape derivative.

For our optimal design problem : shape derivative is given with:

J’(Q, Y) = /QA(_ div(y)) + VY + V" )\Vug - Vug de

+- / 2(div() f + V f - Y)ugde
€2

where wy is solution of BVP (1) on domain €2 with A.
Vector field 1) € HO ) is constructed from:

/w w+/w o= J(Qg), Ve e HYQ)

The shape is evolved by gradually moving the boundary between phases.

Numerical results:
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