Parameter dependent systems of ODE’s

The system

A finite dimensional linear control system
\[\begin{align*}
 x'(t) &= A(t)x(t) + B(t)u(t), \quad 0 < t < T, \\
 x(0) &= x_0, \\
\end{align*} \]

is large.

A general greedy algorithm

Choose \(x_1, x_2, \ldots, x_n \) such that \(\|x_i\|_X = \max_{x \in K} \|x\|_X \).

Having found \(x_1, x_2, \ldots, x_n \), denote
\(V_n = \text{span}\{x_1, \ldots, x_n\} \).

Choose the next element
\(x_{n+1} = \text{argmax}_{x \in K} \text{dist}(x, V_n) \).

The algorithm stops when \(\sigma_n(K) = \max_{x \in K} \text{dist}(x, V_n) \) becomes less than the given tolerance \(\varepsilon \).

The problem

Each control can be uniquely determined by the relation
\[u_\nu = B^* e^{(T-t)A^*} x_\nu, \]
where \(x_\nu \in \mathbb{R}^d \) is the unique minimiser of a quadratic functional associated to the adjoint problem.

Method

Based on greedy algorithms and reduced bases methods for parameter dependent PDEs [1, 2].

The greedy approach

The (unknown) quantity \(\text{dist} \) is approximated on the manifold \(\varphi_0(\mathcal{N}) \): \(\nu \in \mathcal{N} \rightarrow \varphi_0^* \in \mathbb{R}^d \).

Perform a greedy algorithm to the manifold \(\varphi_0(\mathcal{N}) \): \(\nu \in \mathcal{N} \rightarrow \varphi_0^* \in \mathbb{R}^d \).

The (unknown) quantity \(\text{dist} \) is approximated on the manifold \(\varphi_0(\mathcal{N}) \): \(\nu \in \mathcal{N} \rightarrow \varphi_0^* \in \mathbb{R}^d \).

The greedy control algorithm results in an optimal decay of the approximation rates.

Numerical examples

We consider the system (1) with
\[A = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]
\[\Lambda = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

The system corresponds to the discretisation of the wave equation problem with the control on the right boundary:
\[\begin{align*}
 &\frac{\partial v}{\partial t} - \Delta v = 0, \quad (t, x) \in (0, T) \times (0, 1), \\
 &v(t, 0) = 0, \quad v(t, 1) = u(t) \\
 &v(0, x) = v_0, \quad \frac{\partial v}{\partial t}(x, 0) = v_1. \\
\end{align*} \]

We take the following values:
\[T = 3, \quad N = 20, \quad v_0 = \sin(\pi x), \quad v_1 = 0, \quad x_1 = 0, \quad \nu \in [1, 10] = \mathcal{N} \]

References

