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Parameter dependent systems of ODE’s

The topic
– control of a parameter dependent system in a ro-
bust manner.
The system
A finite dimensional linear control system x ′(t) = A(ν)x(t) + Bu(t), 0 < t < T ,

x(0) = x 0.
(1)

•A(ν) is a N × N−matrix,
•B is a N ×M control operator, M ≤ N ,
•ν is a parameter living in a compact set N of Rd .
Assumptions:
– the system is (uniform) controllable for all ν ∈ N ,
– system dimension N is large.

The problem
Fix a control time T > 0, an arbitrary initial data
x 0, and a final target x 1 ∈ RN.
Given ε > 0 we aim at determining a family

of parameters ν1, ..., , νn in N so that the corre-
sponding controls u1, ..., un are such that for every
ν ∈ N there exists u?ν ∈ span{u1, ..., un} steer-
ing the system (1) to the state x?ν (T ) within the
ε distance from the target x 1.

Method
– based on greedy algorithms and reduced bases
methods for parameter dependent PDEs [1, 2].

The greedy approach

X – a Banach space
K ⊂ X – a compact subset.
The method approximates K by a a series of finite
dimensional linear spaces Vn (a linear method).

A general greedy algorithm
The first step
Choose x1 ∈ K such that

‖x1‖X = max
x∈K
‖x‖X .

The general step
Having found x1..xn, denote

Vn = span{x1, . . . , xn}.
Choose the next element

xn+1 := argmax
x∈K

dist(x ,Vn) .

The algorithm stops
when σn(K ) := maxx∈K dist(x ,Vn) becomes less
than the given tolerance ε.

The Kolmogorov n width, dn(K ) – measures op-
timal approximation of K by a n-dimensional sub-
space.

dn(K ) := inf
dimY =n

sup
x∈K

inf
y∈Y
‖x − y‖X .

The greedy approximation rates have same decay as
the Kolmogorov widths.
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Figure 1: Evolution of a) last 5 system components and b)
the approximate control for ν = π.

Greedy control

Each control can be uniquely determined by the re-
lation

uν = B∗e(T−t)A∗νϕ0
ν,

where ϕ0
ν ∈ RN is the unique minimiser of a

quadratic functional associated to the adjoint prob-
lem.
This minimiser can be expressed as the solution of
the linear system

Λνϕ0
ν = x1 − eT Aνx0,

where Λν is the controllability Gramian
Λν =

∫ T

0
e(T−t)AνBνB∗νe(T−t)A∗νdt .

Perform a greedy algorithm to the manifold ϕ0(N ):
ν ∈ N → ϕ0

ν ∈ RN .

The (unknown) quantity dist(ϕ0
ν, ϕ

0
i ) to be max-

imised by the greedy algorithm is replaced by a sur-
rogate (Fig. 2):

dist(ϕ0
ν, ϕ

0
i ) ∼ dist(Λνϕ0

ν,Λνϕ0
i )

= dist(x1 − eT Aνx0,Λνϕ0
i ) .
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Figure 2: The surrogate of dist(ϕ0
ν, ϕ

0
i )

The greedy control algorithm results in an optimal
decay of the approximation rates.

Numerical examples

We consider the system (1) with

A =
 0 −I
ν(N/2 + 1)2Ã 0

 ,

Ã =



2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
... ... ... . . . ...
0 0 0 · · · 2


, B =



0
0
...
0
1


.

The system corresponds to the discretisation of the
wave equation problem with the control on the right
boundary:

∂ttv − ν∂xxv = 0, (t, x) ∈ 〈0,T 〉 × 〈0, 1〉
v(t, 0) = 0, v(t, 1) = u(t)

v(0, x) = v0, ∂tv(x , 0) = v1 .
(2)

We take the following values:
T = 3, N = 20, v0 = sin(πx), v1 = 0, x 1 = 0

ν ∈ [1, 10] = N

The greedy control has been applied with ε = 0.5
and the uniform discretisation of N in k = 100 val-
ues.
The offline algorithm stopped after 10 iterations.
The 20-D controls manifold is well approximated by
a 10-D subspace (Fig. 1, 3).
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Figure 3: Evolution of the solution to the semi-discretised
problem (2) governed by the approximate control u?ν for ν = π.
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