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Compliance maximization
State equation (2 C R? open and bounded)

{ —div(AVu)=1=f
u e Hy(Q)

Two phases: 0 < < f3

A = xal+ (1 —x)BI, x € L=(2:{0,1}), [ x dx = gq, for given 0 < g, < |Q|
Cost functional:

J(x) = /Q u(x)dx — max

Interpretations:

m Maximize the amount of heat kept inside body

m Maximize the torsional rigidity of a rod made of two materials

m Maximize the flow rate of two viscous immiscible fluids through pipe
In general, compliance functional

J(x) = /Q f(x)u(x) dx — max
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Classical vs. relaxed optimal design
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Intuition for annulus? In general, there might exist no classical optimal
design. The relaxation is needed, introducing
composite materials

x € L>(Q;{0,1}) --- 6€L>(Q;[0,1])
AcK(f) ae onQ
classical design relaxed design

Marko Vrdoljak Classical Optimal Design in Two-phase Conductivity Problems



Effective conductivities — set IC2 0)

K(0) is given in terms of eigenvalues:
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Multiple state optimal design problem

State equations

—div(AVu;) = f;
u; € H(l)(Q)

State function u = (u1, ..., Un)

I(x) = > pi Jq fiuj dx — max
u=(u1,...,Uun) state function for A = yal + (1 — x)5l

x € L>*(€;{0,1}), /de:qa,
Q

for some given weights p; > 0. Relaxed designs:
A= {(Q,A) € L*°(2;[0,1] x My(R)) : / 0dx = qo, A(x) € K£(6(x)) a.e. on Q}
Q

JO,A) =37 pi [ fiui dx — max
(6,A)e A
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Single vs. multiple state problems

A. Single state equation

[Murat & Tartar, 1985] There exists relaxed solution (6*, A*) among simple
laminates . .. conductivity A, in one direction (Vu), and A/ in orthogonal
directions. As a consequence, 6* is also a solution of

1(0) = [ fudx — max
6 € L>(Q;[0,1]), /de: Go s
Q
—div(A\, Vu) =f

u € HY(Q) can be rewritten as a convex minimization problem

B. Multiple state equations
It is not enough to use only simple laminates, but composite materials that
correspond to a non-affine boundary of () ... higher order sequential laminates.
The above simpler relaxation fails.
The aim of this talk

m in spherically symmetric case, simpler relaxation is correct

m present some problems with classical optimal design
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Extended set of admissible designs

We shall enlarge the set A of admissible designs
A= {(O,A) € L*>(Q;[0,1] x Sym) : / 0dx=q,, AcK(9)(a.e. on Q)}
Q

)\2‘; ) )\2A
K@) - B@O)
Ag”r*”(”)*j# N o[- U
Ay 71‘/”””’*: Ao [ |
Ay AN Ay AT M
{ € L*°(;[0,1] x Sym) : / 0dx =q,, A € B(0) (a.e. on Q)}
Q

— {(6,B) € L=(Q;[0,1] x Sym) : (9,B~1) € B}.
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Extended set of admissible designs

B and C are convex sets: e.g. B can be rewritten as
Amin(A) > Ay, Amax(A) < AJ, ae. on Q,

where Amin and AT are concave, and Amax and A~ are convex functions.

—J(0,A) = qu,-/Qf,-u,- dx
i=1

- Z“f/ AVu; - Vu; — 2fiu; dx
=1 70

m
—  min i [ AVv;-Vv; — 2fv; dx
vEHé(Q;R’");N /Q

- - i | Al oidx |,
(o)

where S = {0 € L?(Q;RY)" : —divo; = f;,i=1,...,m}.
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Representation by a convex optimization problem

Lemma
There exists a unique o* € S = {o € L2(Q;R))" : —dive; = f;,i = 1..m} such
that

J(6,A) i | Aot o] dx = i | Boj-ofdx.
RIOR) = r S [ W07 o= e 3 [ B o o

(1)
Moreover, if (6%, K*) is an optimal design for problem maxg J and u* the
corresponding state function, then A*Vu! =o?, i=1,...,m

Above maximization problems are easily solved:
Design (6*, A*) is optimal if and only if (almost everywhere in Q)

1 .
(A) o= ——0of i=1.m.
Ae*
If u* is the corresponding state function, we have

o7 = N\ Vu; or equivalently A"Vu = X\, Vui, i=1.m.
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Simpler relaxation problem
. in terms of only local fraction 8 belonging to the set

T {GEL“(Q; [0,1]):/Qadx—qa}

Theorem
Let (0*, A*) be an optimal design for the problem maxg J. Then 0* solves

:Z“"/ fiu; dx — max
=1

0 € T and u determined uniquely by (2)
—div(\, Vu;) =f;
(A Vi) i=1,...,m,
up € H(l)(Q)

Conversely, if 6 is a solution of optimal design problem (2) and u is the
correspond/ng state function, then for any measurable Ac B(6O ) such that
AV = A_(0)VT; almost everywhere on 0, e.g. for A = A_(A)1, (6,A) is an
optimal design for the problem maxg J.
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Necessary and sufficient optimality conditions

Similar to Lemma above, one can rephrase the simpler relaxation problem (2):
there exists a unique o* € S = {o € L?(Q;RY)" : —dive; = f;,i = 1..m} such

that .
max | = many;/ f-a floF|? dx.
-1 /9

af
Moreover, o* is the same as for the problem maxg J.

Lemma
The necessary and sufficient condition of optimality for solution 6* € T of optimal

design problem (2) simplifies to the existence of a Lagrange multiplier ¢ > 0 such
that

m
S wlaif > = 0 =1,

i=1
m

Zu;|aﬂ2 <c = 0*=0.
i=1
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Spherically symmetric case

Let Q C RY be spherically symmetric: in spherical coordinates given by r € w (an
interval), and the right-hand side f = f(r), r € w be a radial function.
Since o* is unique, it must be radial: o} = o7 (r)e,.

Lemma

For any maximizer (0*, A*) for the problem maxp J, there exist a radial maximizer

(6,A) € B where
i(r) :][ 0" ds .
8B(0,r)

Theorem

a. If 0 is a maximizer of | over T, then for a simple laminate A € IC(@) with
layers orthogonal to e,, (6, A) is a maximizer of J over A.

b. For any maximizer (6*, A*) of J over A, 6* is a maximizer of | over T .

Marko Vrdoljak Classical Optimal Design in Two-phase Conductivity Problems



Back to the example € > 0

1 1 e,
fio(r) = 0,
17
B(0,1) B(0,1)

0<r<
1
g<r§
1
§<r§

. ) . . 1 .
—dive; = f;,i = 1,2 in polar coordinates: —= (ro;)’ = f;. Due to regularity
r

r=0, we can calculate unique solutions o7 and o03:

2
o1

*2
+U'2

Jf2+o§2>c = 0*=1,
o’ +o’<c = 0" =0.

For any c, the solution 8* is unique
and classical (more precisely, the
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uniqueness of solution for maxg J fol-
T lows).
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How to determine Lagrange multiplier c?

2 2
A Uf +U§

o +o’>c = =1,
0}‘2+U’2“2<c = 60*=0.

Amount g, of the first phase uniquely
determines ¢ (as usual).

theta
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The case e =0

0, 0<r<i
fia(r):=f(r)= ’ -2
5 1 < 1
, s <r=<1.
Small q,: unique classical solution
A 0*2
o?>c = 0 =1,
Cl-=-=-=-=-=-=- === 0'*2 < C = 9* == 0.
5 >

B «
If go, > %71’ then ¢ have to be zero. Now, solution is not unique — it is only
important to put a in annulus B (0,3)*
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Uniqueness
Conditions of optimality:

m
douileiP>c = 67 =1,
i=1
m
Zu;|oﬂ2<c = 0*=0.

i=1

H * %
In case of spherical symmetry o} = o;(r)e,, we denote

W(r) =Y wilotP = pilof 7.
i=1 i=1

Corollary

For spherically symmetric case, if ¢ is piecewise strictly monotone on w then the
problem maxr | has a unique solution 6*, which is a characteristic function.
Consequently, the solutions of the problems maxg J and max 4 J are unique and
classical.
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Example
Two state equations on a ball Q = B(0,2R) C R9, d =2 or 3.
® fi = XB(0,R)> 2= XB(0,R) >
—div ()Ie Vui) =f; =12
uj € HO(Q)
Lt ﬂuldx—i—/)‘guzdx—)max
Q

Q
For studying conditions of optimality, we introduce

Y(r) = pa (07(r)* + (03(r)* -
Thecase0<,u1<3ford:2,or0</¢1<gford:3:
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Example
49
Thecase3§,u1<15ford:2,or1—5§u1<35:

Marko Vrdoljak Classical Optimal Design in Two-phase Conductivity Problems



Multiple states

Three optimal configurations, depending on 1 and qg:

Overall percentage of the pp=2d=3

first material: n = fﬁ"‘l. 2R

Radii are obtained by
solving algebraic equations
in terms of py and #:

m d =2 — explicitly

m d = 3 — numerically.

0 m
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Conclusion

General strategy for solving max4 J in spherically symmetric case:

Solve —dive; = f;,i = 1..m — candidates for o* (in case of ball there is only
one candidate).

Study conditions of optimality (they usually give unique solution 6* — radial,
but also classical).

Construct solution to max 4 J (commonly, it would be classical solution; for
minimization problem the situation is quite different).

Thank you for your attention!
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