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Compliance maximization
State equation (Ω ⊆ Rd open and bounded){

−div (A∇u) = 1 = f
u ∈ H1

0(Ω)

Two phases: 0 < α < β
A = χαI + (1− χ)βI, χ ∈ L∞(Ω; {0, 1}),

∫
Ω
χ dx = qα, for given 0 < qα < |Ω|

Cost functional:

J(χ) =

∫
Ω

u(x)dx −→ max

Interpretations:

Maximize the amount of heat kept inside body

Maximize the torsional rigidity of a rod made of two materials

Maximize the flow rate of two viscous immiscible fluids through pipe

In general, compliance functional

J(χ) =

∫
Ω

f (x)u(x) dx −→ max
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Classical vs. relaxed optimal design

Intuition for annulus? In general, there might exist no classical optimal
design. The relaxation is needed, introducing
composite materials

χ ∈ L∞(Ω; {0, 1}) · · · θ ∈ L∞(Ω; [0, 1])
A ∈ K(θ) a.e. on Ω

classical design relaxed design
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Effective conductivities – set K(θ)

K(θ) is given in terms of eigenvalues:

λ−θ ≤ λj ≤ λ+
θ j = 1, . . . , d

d∑
j=1

1

λj − α
≤ 1

λ−θ − α
+

d − 1

λ+
θ − α

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d − 1

β − λ+
θ

,

where

λ+
θ = θα + (1− θ)β

1

λ−θ
=

θ

α
+

1− θ
β

2D:

O λ1

λ2

α
θ = 1

α

β
θ = 0

β

λ+θ

λ+θ

λ−θ

λ−θ

K(θ)

3D:

λ1

λ2

λ3
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Multiple state optimal design problem
State equations {

−div (A∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, . . . ,m

State function u = (u1, . . . , um)
I (χ) =

∑m
i=1 µi

∫
Ω

fiui dx→ max

u = (u1, . . . , um) state function for A = χαI + (1− χ)βI

χ ∈ L∞(Ω; {0, 1}) ,
∫

Ω

χ dx = qα ,

for some given weights µi > 0. Relaxed designs:

A :=

{
(θ,A) ∈ L∞(Ω; [0, 1]×Md(R)) :

∫
Ω

θ dx = qα , A(x) ∈ K(θ(x)) a.e. on Ω

}

Relaxation . . .

 J(θ,A) =
∑m

i=1 µi

∫
Ω

fiui dx→ max

(θ,A) ∈ A
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Single vs. multiple state problems
A. Single state equation
[Murat & Tartar, 1985] There exists relaxed solution (θ∗,A∗) among simple
laminates . . . conductivity λ−θ in one direction (∇u), and λ+

θ in orthogonal
directions. As a consequence, θ∗ is also a solution of

I (θ) =
∫

Ω
fu dx→ max

θ ∈ L∞(Ω; [0, 1]) ,

∫
Ω

θ dx = qα , −div (λ−θ ∇u) = f

u ∈ H1
0(Ω) can be rewritten as a convex minimization problem

B. Multiple state equations
It is not enough to use only simple laminates, but composite materials that
correspond to a non-affine boundary of K(θ) . . . higher order sequential laminates.
The above simpler relaxation fails.
The aim of this talk

in spherically symmetric case, simpler relaxation is correct

present some problems with classical optimal design
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Extended set of admissible designs

We shall enlarge the set A of admissible designs

A =

{
(θ,A) ∈ L∞(Ω; [0, 1]× Sym) :

∫
Ω

θ dx = qα , A ∈ K(θ) (a.e. on Ω)

}

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ

K(θ)

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ

B(θ)

B =

{
(θ,A) ∈ L∞(Ω; [0, 1]× Sym) :

∫
Ω

θ dx = qα , A ∈ B(θ) (a.e. on Ω)

}
C :=

{
(θ,B) ∈ L∞(Ω; [0, 1]× Sym) : (θ,B−1) ∈ B

}
.
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Extended set of admissible designs

B and C are convex sets: e.g. B can be rewritten as

λmin(A) ≥ λ−θ , λmax(A) ≤ λ+
θ , a.e. on Ω ,

where λmin and λ+
· are concave, and λmax and λ−· are convex functions.

−J(θ,A) = −
m∑
i=1

µi

∫
Ω

fiui dx

= −
m∑
i=1

µi

∫
Ω

A∇ui · ∇ui − 2fiui dx

= − min
v∈H1

0(Ω;Rm)

m∑
i=1

µi

∫
Ω

A∇vi · ∇vi − 2fivi dx

= −max
σ∈S

(
−

m∑
i=1

µi

∫
Ω

A−1σi · σi dx

)
,

where S = {σ ∈ L2(Ω; Rd)
m

: −div σi = fi , i = 1, . . . ,m}.
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Representation by a convex optimization problem

Lemma
There exists a unique σ∗ ∈ S = {σ ∈ L2(Ω; Rd)

m
: −divσi = fi , i = 1..m} such

that

max
(θ,A)∈B

J(θ,A) = max
(θ,A)∈B

m∑
i=1

µi

∫
Ω

A−1σ∗i · σ∗i dx = max
(θ,B)∈C

m∑
i=1

µi

∫
Ω

Bσ∗i · σ∗i dx .

(1)
Moreover, if (θ∗,A∗) is an optimal design for problem maxB J and u∗ the
corresponding state function, then A∗∇u∗i = σ∗i , i = 1, . . . ,m .

Above maximization problems are easily solved:
Design (θ∗,A∗) is optimal if and only if (almost everywhere in Ω)

(A∗)−1σ∗i =
1

λ−θ∗
σ∗i i = 1..m .

If u∗ is the corresponding state function, we have

σ∗i = λ−θ∗∇u∗i or equivalently A∗∇u∗i = λ−θ∗∇u∗i , i = 1..m .
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Simpler relaxation problem
... in terms of only local fraction θ belonging to the set

T :=

{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω

θ dx = qα

}
Theorem
Let (θ∗,A∗) be an optimal design for the problem maxB J. Then θ∗ solves

I (θ) =
m∑
i=1

µi

∫
Ω

fiui dx −→ max

θ ∈ T and u determined uniquely by −div (λ−θ ∇ui ) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m ,

(2)

Conversely, if θ̃ is a solution of optimal design problem (2), and ũ is the

corresponding state function, then for any measurable Ã ∈ B(θ̃) such that

Ã∇ũi = λ−(θ̃)∇ũi almost everywhere on Ω, e.g. for Ã = λ−(θ̃)I, (θ̃, Ã) is an
optimal design for the problem maxB J.
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Necessary and sufficient optimality conditions

Similar to Lemma above, one can rephrase the simpler relaxation problem (2):
there exists a unique σ∗ ∈ S = {σ ∈ L2(Ω; Rd)

m
: −divσi = fi , i = 1..m} such

that

max
T

I = max
θ∈T

m∑
i=1

µi

∫
Ω

β − α
αβ

θ|σ∗i |2 dx .

Moreover, σ∗ is the same as for the problem maxB J.

Lemma
The necessary and sufficient condition of optimality for solution θ∗ ∈ T of optimal
design problem (2) simplifies to the existence of a Lagrange multiplier c ≥ 0 such
that

m∑
i=1

µi |σ∗i |2 > c ⇒ θ∗ = 1 ,

m∑
i=1

µi |σ∗i |2 < c ⇒ θ∗ = 0 .
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Spherically symmetric case

Let Ω ⊆ Rd be spherically symmetric: in spherical coordinates given by r ∈ ω (an
interval), and the right-hand side f = f(r), r ∈ ω be a radial function.
Since σ∗ is unique, it must be radial: σ∗i = σ∗i (r)er .

Lemma
For any maximizer (θ∗,A∗) for the problem maxB J, there exist a radial maximizer

(θ̃, Ã) ∈ B where

θ̃(r) = −
∫
∂B(0,r)

θ∗ dS .

Theorem

a. If θ̃ is a maximizer of I over T , then for a simple laminate Ã ∈ K
(
θ̃
)

with

layers orthogonal to er , (θ̃, Ã) is a maximizer of J over A.

b. For any maximizer (θ∗,A∗) of J over A, θ∗ is a maximizer of I over T .
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Back to the example ε > 0

1ε

B(0, 1)

1−ε

B(0, 1)

f1,2(r) =


±ε, 0 ≤ r ≤ 1

5

0, 1
5 < r ≤ 1

2

1, 1
2 < r ≤ 1 .

−divσi = fi , i = 1, 2 in polar coordinates: −1

r
(rσi )

′ = fi . Due to regularity at

r=0, we can calculate unique solutions σ∗1 and σ∗2 :

11
2

1
5

0 r

σ∗1
2 + σ∗2

2

c

σ∗1
2 + σ∗2

2 > c ⇒ θ∗ = 1 ,
σ∗1

2 + σ∗2
2 < c ⇒ θ∗ = 0 .

For any c , the solution θ∗ is unique
and classical (more precisely, the
uniqueness of solution for maxB J fol-
lows).
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How to determine Lagrange multiplier c?

11
2

1
5

0 r

σ∗1
2 + σ∗2

2

c

β α β α

σ∗1
2 + σ∗2

2 > c ⇒ θ∗ = 1 ,
σ∗1

2 + σ∗2
2 < c ⇒ θ∗ = 0 .

Amount qα of the first phase uniquely
determines c (as usual).
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The case ε = 0

f1,2(r) := f (r) =

{
0, 0 < r ≤ 1

2

1, 1
2 < r ≤ 1 .

Small qα: unique classical solution

11
2

0 r

σ∗2

c

β α

σ∗2 > c ⇒ θ∗ = 1 ,
σ∗2 < c ⇒ θ∗ = 0 .

If qα >
3
4π then c have to be zero. Now, solution is not unique – it is only

important to put α in annulus B
(
0, 1

2

)c
.
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Uniqueness
Conditions of optimality:

m∑
i=1

µi |σ∗i |2 > c ⇒ θ∗ = 1 ,

m∑
i=1

µi |σ∗i |2 < c ⇒ θ∗ = 0 .

In case of spherical symmetry σ∗i = σ∗i (r)er , we denote

ψ(r) :=
m∑
i=1

µi |σ∗i |2 =
m∑
i=1

µi (σ
∗
i )2 .

Corollary
For spherically symmetric case, if ψ is piecewise strictly monotone on ω then the
problem maxT I has a unique solution θ∗, which is a characteristic function.
Consequently, the solutions of the problems maxB J and maxA J are unique and
classical.
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Example
Two state equations on a ball Ω = B(0, 2R) ⊆ Rd , d = 2 or 3.

f1 = χB(0,R) , f2 = χB(0,R)c ,{
−div (λ−θ ∇ui ) = fi
ui ∈ H1

0(Ω)
i = 1, 2

µ1

∫
Ω

f1u1 dx +

∫
Ω

f2u2 dx→ max

For studying conditions of optimality, we introduce

ψ(r) = µ1 (σ∗1 (r))2 + (σ∗2 (r))2
.

The case 0 < µ1 < 3 for d = 2, or 0 < µ1 <
49

15
for d = 3:

1 20

r

ψ

c

β α

1 20

r

ψ

c

β α β α

1 20

r

ψ

c

β α
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Example
The case 3 ≤ µ1 < 15 for d = 2, or

49

15
≤ µ1 < 35:

1 20

r

ψ

c

β α

1 20

r

ψ

c

β α β α

1 20

r

ψ

c

β α β

The case µ1 ≥ 15 for d = 2, or µ1 ≥ 35 for d = 3:

1 20

r

ψ

c

β α

1 20

r

ψ

c

β α β
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Multiple states
Three optimal configurations, depending on µ1 and qα:

α β

Overall percentage of the
first material: η = qα

|Ω| .

Radii are obtained by
solving algebraic equations
in terms of µ1 and η:

d = 2 – explicitly

d = 3 – numerically.

µ1 = 2, d = 3

R

2R

η1 η30

β

α

1 η

r
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Conclusion

General strategy for solving maxA J in spherically symmetric case:

1 Solve −divσi = fi , i = 1..m – candidates for σ∗ (in case of ball there is only
one candidate).

2 Study conditions of optimality (they usually give unique solution θ∗ – radial,
but also classical).

3 Construct solution to maxA J (commonly, it would be classical solution; for
minimization problem the situation is quite different).

Thank you for your attention!
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