Multiple state optimal design problems with explicit solution

Marko Vrdoljak
Department of Mathematics
Faculty of Science
University of Zagreb, Croatia

Krešimir Burazin
Department of Mathematics
University of Osijek, Croatia

88th GAMM Annual Meeting, Weimar, March 2017
Multiple state problem optimizing energy

Fill $\Omega \subseteq \mathbb{R}^d$ with two isotropic materials with conductivity $0 < \alpha < \beta$, quantity q_α of the first material is given:

$$A = \chi \alpha I + (1 - \chi) \beta I, \quad \chi \in L^\infty(\Omega; \{0, 1\})$$

$$\int_{\Omega} \chi \, dx = q_\alpha$$

State equations

$$\begin{align*}
-\text{div} (A \nabla u_i) &= f_i \\
u_i &\in H^1_0(\Omega)
\end{align*} \quad i = 1, \ldots, m, $$

Goal functional is a conic sum of energies ($\mu_i > 0$)

$$I(\chi) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i(x) u_i(x) \, dx \longrightarrow \min / \max$$

Relaxation via homogenization theory:

<table>
<thead>
<tr>
<th>classical design</th>
<th>relaxed design</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi \in L^\infty(\Omega; {0, 1})$</td>
<td>$\theta \in L^\infty(\Omega; [0, 1])$</td>
</tr>
<tr>
<td>$A \in \mathcal{K}(\theta)$ a.e. on Ω</td>
<td>$J(\theta, A)$ – given by the same formula</td>
</tr>
</tbody>
</table>
Example – maximization

\[\Omega := B(0, 1) \subseteq \mathbb{R}^2, \quad q_\alpha := 0.8|\Omega| \]

\[I(\chi) = \sum_{i=1}^{2} \int_{\Omega} f_i(x) u_i(x) dx \longrightarrow \max \]

\[f_1 = \chi_A + \varepsilon \chi_B \]

\[f_2 = \chi_A - \varepsilon \chi_B \]

where

\[A := B(0, \frac{1}{2})^c, \quad B := B(0, \frac{1}{5}) \]

Numerical solution, \(\varepsilon = 0.01 \)

Numerical solution, \(\varepsilon = 0 \)
The space of admissible local fractions

\[\mathcal{T} := \left\{ \theta \in L^\infty(\Omega; [0, 1]) : \int_\Omega \theta \, dx = q_\alpha \right\} \]

Admissible (relaxed) designs

\[\mathcal{A} = \{ (\theta, A) \in \mathcal{T} \times L^\infty(\Omega; \text{Sym}) : A \in \mathcal{K}(\theta) \text{ (a.e. on } \Omega) \} \]

\[\mathcal{B} = \{ (\theta, A) \in \mathcal{T} \times L^\infty(\Omega; \text{Sym}) : A \in \mathcal{B}(\theta) \text{ (a.e. on } \Omega) \} \]

\[\lambda_1^+ = \theta \alpha + (1 - \theta) \beta \]

\[\lambda_1^- = \frac{\theta}{\alpha} + \frac{1 - \theta}{\beta} \]
Lemma

There exists a unique $\sigma^* \in S = \{ \sigma \in L^2(\Omega; \mathbb{R}^d)^m : -\text{div } \sigma_i = f_i, i = 1..m \}$ such that

$$\max_{(\theta,A) \in B} J(\theta, A) = \max_{(\theta,A) \in B} \sum_{i=1}^{m} \mu_i \int_{\Omega} A^{-1} \sigma^*_i \cdot \sigma^*_i \, dx. \quad (1)$$

Moreover, if (θ^*, A^*) is an optimal design for problem $\max_{B} J$ and u^* the corresponding state function, then $A^* \nabla u^*_i = \sigma_i^*$, $i = 1, \ldots, m$.

Above maximization problems is easily solved:

Design (θ^*, A^*) is optimal if and only if (almost everywhere in Ω)

$$A^* \sigma_i^* = \lambda_{\theta^*} \sigma_i^*, \quad i = 1..m.$$

If u^* is the corresponding state function, we have

$$\sigma_i^* = \lambda_{\theta^*} \nabla u_i^* \text{ or equivalently } A^* \nabla u_i^* = \lambda_{\theta^*} \nabla u_i^*, \quad i = 1..m.$$
Simpler relaxation problem

Theorem

Let \((\theta^*, A^*)\) be an optimal design for the problem \(\max_B J\). Then \(\theta^*\) solves

\[
I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, dx \rightarrow \max
\]

\(\theta \in T\) and \(u\) determined uniquely by

\[
\begin{align*}
-\text{div} \left(\lambda^- \nabla u_i \right) &= f_i \\
u_i &\in H^1_0(\Omega) \quad i = 1, \ldots, m
\end{align*}
\]

(2)

Conversely, if \(\tilde{\theta}\) is a solution of optimal design problem (2), and \(\tilde{u}\) is the corresponding state function, then for any measurable \(\tilde{A} \in B(\tilde{\theta})\) such that \(\tilde{A} \nabla \tilde{u}_i = \lambda_-(\tilde{\theta}) \nabla \tilde{u}_i\), e.g. for \(\tilde{A} = \lambda_-(\tilde{\theta}) I\), \((\tilde{\theta}, \tilde{A})\) is an optimal design for the problem \(\max_B J\).
Similar to Lemma above, one can rephrase the simpler relaxation problem (2): there exists a unique $\sigma^* \in S = \{\sigma \in L^2(\Omega; \mathbb{R}^d)^m : -\text{div} \sigma_i = f_i, i = 1..m\}$ such that

$$\max_{T} I = \max_{\theta \in T} \sum_{i=1}^{m} \mu_i \int_{\Omega} \frac{\beta - \alpha}{\alpha \beta} \theta |\sigma_i^*|^2 \, dx.$$

Moreover, σ^* is the same as for $\max_B J$.

Lemma

The necessary and sufficient condition of optimality for solution $\theta^* \in T$ of optimal design problem (2) simplifies to the existence of a Lagrange multiplier $c \geq 0$ such that

$$\sum_{i=1}^{m} \mu_i |\sigma_i^*|^2 > c \Rightarrow \theta^* = 1,$$

$$\sum_{i=1}^{m} \mu_i |\sigma_i^*|^2 < c \Rightarrow \theta^* = 0.$$
Spherically symmetric case

Let $\Omega \subseteq \mathbb{R}^d$ be spherically symmetric (ball or annulus), and let the right-hand sides be radial functions: $f_i = f_i(r)$. Since σ^* is unique, it must be radial: $\sigma_i^* = \sigma_i^*(r)e_r$.

Theorem

For any maximizer θ^* for $\max_T I$, the radial function

$$\tilde{\theta}(r) = \int_{\partial B(0,r)} \theta^* \, dS$$

is also a maximizer.

- If $\tilde{\theta}$ is a maximizer of I over T, then for a simple laminate $\tilde{A} \in \mathcal{K}(\tilde{\theta})$ with layers orthogonal to e_r, $(\tilde{\theta}, \tilde{A})$ is a maximizer of J over A.
- For any maximizer (θ^*, A^*) of J over A, θ^* is a maximizer of I over T.

For problems on a ball, σ^* is a unique (radial) solution of $-\text{div} \sigma_i = f_i$, $i = 1..m$, and so conditions of optimality easily determine optimal θ^*.
Energy minimization

A. Single state equation:
[Murat & Tartar, 1985]

\[I(\theta) = \int_{\Omega} f u \, dx \rightarrow \min \]

\(\theta \in \mathcal{T} \), and \(u \) determined uniquely by

\[
\begin{aligned}
- \text{div} (\lambda_\theta^{+} \nabla u) &= f \\
 u &\in H^1_0(\Omega)
\end{aligned}
\]

B. Multiple state equations:

\[I(\theta) = \sum_{i=1}^{m} \mu_i \int_{\Omega} f_i u_i \, dx \rightarrow \min \]

\(\theta \in \mathcal{T} \), and \(u_i \) determined uniquely by

\[
\begin{aligned}
- \text{div} (\lambda_\theta^{+} \nabla u_i) &= f_i \\
u_i &\in H^1_0(\Omega) \\
i = 1, \ldots, m
\end{aligned}
\]

\[
\begin{aligned}
\min_{\mathcal{A}} J &\quad \iff \quad \min_{\mathcal{T}} I \\
A: \text{Holds always!} &\quad B: \text{Holds in spherically symmetric case or when } m < d.
\end{aligned}
\]
Theorem

If \(m < d \) then \(\min_{\mathcal{A}} J = \min_{\mathcal{T}} I \) and:

- There is unique \(u^* \in H^1_0(\Omega; \mathbb{R}^m) \) which is the state for every solution of \(\min_{\mathcal{A}} J \) and \(\min_{\mathcal{T}} I \).

- If \((\theta^*, A^*)\) is an optimal design for the problem \(\min_{\mathcal{A}} J \), then \(\theta^* \) is optimal design for \(\min_{\mathcal{T}} I \).

- Conversely, if \(\theta^* \) is a solution of optimal design problem \(\min_{\mathcal{T}} I \), then any \((\theta^*, A^*) \in \mathcal{A}\) satisfying \(A^* \nabla u^*_i = \lambda^+_\theta^* \nabla u^*_i, \ i = 1, \ldots, m \) (e.g. simple laminates) is an optimal design for the problem \(\min_{\mathcal{A}} J \).
\(\Omega \subseteq \mathbb{R}^d \) is spherically symmetric and right-hand sides \(f_i = f_i(r), \ i = 1, \ldots, m \) are radial functions.

Theorem

There is a unique radial \(u^* \) which is the state for any solution of \(\min_{\mathcal{A}} J \) and \(\min_{\mathcal{T}} I \). Moreover,

- If \((\theta^*, \mathbf{A}^*) \in \mathcal{A} \) is a solution of the relaxed problem \(\min_{\mathcal{A}} J \) then \(\theta^* \) is optimal for \(\min_{\mathcal{T}} I \), and \(\mathbf{A}^* \nabla u_i^* = \lambda_{\theta^*}^+ \nabla u_i^* \), \(i = 1, \ldots, m \).

- There exists a radial minimizer \(\theta^* \) of \(I \) over \(\mathcal{T} \) and for any radial minimizer \(\theta^* \) of \(I \) over \(\mathcal{T} \) there exists a simple laminate \(\mathbf{A}^* \in \mathcal{K}(\theta^*) \) such that \((\theta^*, \mathbf{A}^*) \) is an optimal design for \(\min_{\mathcal{A}} J \).
Optimality conditions for $\min_I l$

$$\min_{\theta \in T} l(\theta) = -\max_{\theta \in T} \min_{v \in H^1_0(\Omega; \mathbb{R}^m)} \sum_{i=1}^m \mu_i \int_{\Omega} \lambda^+_\theta |\nabla v_i|^2 - 2f_i v_i \, dx$$

Saddle points exist . . . share the same v (aka u^*).

$$\min_{\theta \in T} l(\theta) = -\max_{\theta \in T} \sum_{i=1}^m \mu_i \int_{\Omega} \lambda^+_\theta |\nabla u_i^*|^2 - 2f_i u_i^* \, dx$$

Lemma

$\theta^* \in T$ is a solution $\min_T l$ if and only if there exists a Lagrange multiplier $c \geq 0$ such that

$$\sum_{i=1}^m \mu_i |\nabla u_i^*|^2 > c \quad \Rightarrow \quad \theta^* = 0,$$

$$\sum_{i=1}^m \mu_i |\nabla u_i^*|^2 < c \quad \Rightarrow \quad \theta^* = 1.$$
Example – energy minimization

\[\Omega = B(0, 2), \ f_1 = \chi_{B(0,1)}, \ f_2 \equiv 1, \]

\[
\begin{cases}
-\text{div} \ (\lambda_\theta^+ \nabla u_i) = f_i \\
\quad u_i \in H^1_0(\Omega)
\end{cases} \quad i = 1, 2
\]

\[
\mu \int_{\Omega} f_1 u_1 \, dx + \int_{\Omega} f_2 u_2 \, dx \to \text{min}
\]

Solving state equation in polar coordinates

\[
u_i'(r) = \frac{\sigma_i(r)}{\theta(r)\alpha + (1 - \theta(r))\beta}, \quad i = 1, 2,
\]

with

\[
\sigma_1(r) = \begin{cases}
-\frac{r}{2}, & 0 \leq r < 1, \\
-\frac{1}{2r}, & 1 \leq r \leq 2,
\end{cases}
\]

and \(\sigma_2(r) = -\frac{r}{2} \).

Define \(\psi := \mu \sigma_1^2 + \sigma_2^2, \ g_\alpha := \frac{\psi}{\alpha^2}, \ g_\beta := \frac{\psi}{\beta^2}. \)
Geometric interpretation of optimality conditions

A: $0 < \mu \leq 1$

B: $1 < \mu \leq 4$

C: $4 < \mu \leq 16$

D: $16 < \mu$

$A: 0 < \mu \leq 1$

$B: 1 < \mu \leq 4$

$C: 4 < \mu \leq 16$

$D: 16 < \mu$
Optimal θ^* for case B

Optimal state u^* is unknown but $\sum_{i=1}^{m} \mu_i |\nabla u_i^*|^2 = \mu |u_1^*|^2 + |u_2^*|^2 \in [g_\beta, g_\alpha]$. By necessary conditions of optimality, on a set where $c > g_\alpha$ we have $\theta^* = 1$, on a set where $c < g_\beta$ we have $\theta^* = 0$, and if $g_\beta < c < g_\alpha$ we have $\theta^* \in \langle 0, 1 \rangle$, and θ^* is uniquely determined from $\psi = \lambda_+ (\theta^*)^2 = c$.

All possible optimal configurations (for various q_α):

- α
- $\alpha - \text{mix}$
- $\alpha - \text{mix} - \alpha - \text{mix}$
- $\alpha - \text{mix} - \beta$
- $\alpha - \text{mix} - \beta - \text{mix} - \beta$