We examine the following mixed boundary problem on an open bounded domain $\Omega \subseteq [0, \infty) \times \mathbb{R}$ with boundary of class $C^{1,1}$:

\begin{align}
\partial_t u + \partial_x (f(t, x, u)) &= 0 \quad \text{in } \Omega \\
\nabla (t, x, u) \cdot \nu &= 0 \quad \text{on } \Gamma_N \\
\nu (0, \cdot) &= u(0, \cdot) \in L^\infty (\mathbb{R}) \text{ on } \Gamma_D, \tag{1}
\end{align}

where Γ_N and $\Gamma_D \subseteq \{ t = 0 \}$ are partitions of $\partial \Omega$ of strictly positive (Hausdorff) measure and ν is the outer unit normal vector on Γ_N. We also assume that $f \in C^2(\Omega \times \mathbb{R})$.

Motivation: Initial-boundary value problems for scalar conservation laws were first considered in [7]. Applications of such problems are usually in the traffic flow [11] or filtration and sedimentation models [12]. In [11] initial-boundary problem for (1) with zero-flux boundary conditions was considered. It is called the Neumann problem for (1). In this situation the total mass is conserved, but there can be difference in the inflow and outflow through a boundary point.

In the problem we consider, we require that the inflow is equal to the outflow in the normal direction of every point (t, x) of the boundary Γ_D.

Sketch of the proof I

The proof employs standard methods of compensated compactness (div-rot lemma) and the theory of Young measures.

Denote by u a weak $L^2(\Omega)$-limit of (u_n) along some subsequence. The main difficulty is to identify $f(\cdot, u)$ as a weak limit of $f(\cdot, u_n)$.

Step 1: using the assumptions, obtain the strong convergence:

\begin{align}
\partial_t u_n + \partial_x (f(t, x, u_n)) &\rightharpoonup 0 \quad \text{in } H^{-1}(\Omega) \tag{5}
\end{align}

Step 2: take a convex $\Phi : \mathbb{R} \rightarrow \mathbb{R}$ such that Φ' is bounded and define $\Psi(y) = \int_0^y f(s, t, x, \lambda) \Phi'(\lambda) \, d\lambda$; show that $(\partial_t \Psi(u_n))_n$ is precompact in $H^1(\Omega)$ and that $(\partial_t (\Phi(u_n)))_n$ is bounded in $M(\mathbb{R})$.

Step 3: use a particular entropy-entropy flux pair (Φ, Ψ):

\begin{align}
\Phi(t, x, u, \lambda) &= |\lambda - u(t, x)|, \\
\Psi(t, x, u, \lambda) &= \text{sgn}(\lambda - u(t, x)) \{ f(t, x, \lambda) - f(t, x, u(t, x)) \}
\end{align}

and Murat’s lemma to show that $(\partial_t (\Phi(u_n)))_n$ is precompact in $H^{-1}(\Omega)$. \tag{6}

Step 4: use the div-rot lemma (div and rot with respect to variables (t, x)) on the vector fields $v_n = (u_n, f(t, x, u_n))$ and $\omega = (\Psi(u_n), -\Phi(u_n))$ and Young measure associated with the weak $L^2(\Omega)$-convergence u_n to show that $f(\cdot, u)$ is a weak limit of $f(\cdot, u_n)$; now conclude we have the weak solution of (1) in Ω; Q.E.D.

Approximation and the main result

Question: What would be proper solution concept for (1), (2), (3)?

At this moment, we are not able to introduce appropriate definition (this will be a subject of further investigation). Instead, we shall consider an elliptic approximation to the problem:

\begin{align}
\partial_t u + \partial_x (f(t, x, u)) &= 0 \quad \text{in } \Omega \\
\nabla (t, x, u) \cdot \nu &= 0 \quad \text{on } \Gamma_N \\
u(0, \cdot) &= u(0, \cdot) \quad \text{on } \Gamma_D, \tag{4}
\end{align}

where (u^n_0) is a bounded sequence of functions converging strongly in $L^{1,0}_0(\mathbb{R})$ toward u_0.

It can be shown that $u_n \in H^{1/2}_0(\Omega) \cap H^{3/2-}(\Omega)$, where $\nu > 0$ and $H^{1/2}_0(\Omega)$ is the set of $H^{1/2}(\Omega)$ functions which are zero on Γ_D.

Theorem. Assume that the sequence (u_n) of solutions to (4) satisfies

(i) $\frac{1}{2} \int_{\mathbb{R}} |u_n(t, x)|^2 \, dx \leq C < \infty$;

(ii) the sequence (u_n) is uniformly bounded by a constant M.

Then the weak $L^2(\Omega)$-limit of (u_n) along a subsequence satisfies the equation (1) in Ω.

Numerical example

Let $\Omega = \{ (t, x) \in \mathbb{R}^2 : 0 \leq x \leq 1, 0 \leq t \leq 4x - 1 \}$. We focus on solving the regularized Burgers equation:

\begin{align}
\partial_t u + \partial_x (\frac{u^2}{2}) &= \gamma (\lambda, x) \nu \quad \text{in } \Omega, \\
\nabla (t, x, u) \cdot \nu &= 0 \quad \text{on } \Gamma_N, \\
u(0, \cdot, x) &= u(0, \cdot) \quad \text{on } \Gamma_D, \tag{7}
\end{align}

where $u_0 = -2\pi(x - 1)$ and $\Gamma_D = \{ (t, x) \in \partial \Omega : t = 0 \}$. The standard fixed point arguments (Picard iterations) is:

For given initial guess u_0, construct a sequence of solutions $u_n \in \{ u \in H^1(\Omega) : \| \nabla u_n \|_{H^1} = u_0 \}$ of

\begin{align}
(\Psi(u_n))_{t, x, u, \lambda} = \mathcal{K}(\lambda, x, \nu) \\
\int_{\Omega} \int_0^1 (\partial_t u_n + \nu \partial_x u_n) \psi \, dtdx + \\
\int_{\Omega} \int_0^1 \nabla (t, x, u_n) \cdot \nabla \psi \, dtdx = 0.
\end{align}

References