Introduction and some tools

Div-rot lemma and Quadratic theorem

Lemma. Assume that Ω is open and bounded subset of \mathbb{R}^d, and that it holds $w_n \rightharpoonup w$ in $L^2(\mathbb{R}^d; \mathbb{R}^d)$, $w_n \rightharpoonup_\ast w$ in $L^2(\mathbb{R}^d)$, and $\nabla w_n \rightharpoonup_\ast \nabla w$ in $L^2(\mathbb{R}^d)$.

Then $w_n \rightharpoonup w$ in the sense of distributions.

Theorem. Assume that $\Omega \subset \mathbb{R}^d$ is open and that $\mathcal{A} \subset \mathbb{R}^d$ is defined by

$$\mathcal{A} = \left\{ x \in \mathbb{R}^d : (x, y) \in \Omega \times \mathbb{R}^d \right\},$$

and that Q is a real quadratic form on \mathbb{R}^d, which is nonnegative on \mathcal{A}, i.e.

$$(y, \mathcal{A}y) \geq 0, \quad \forall (y, x) \in Q(\mathcal{A}) = 0.$$

Furthermore, assume that the sequence of functions (u_n) satisfies $u_n \rightharpoonup u$ weakly in $L^2(\mathbb{R}^d)$.

Then every subsequence of (u_n) which converges in distributions to its limit u satisfies

$$Q(u) \leq Q(u_n).$$

H-distributions

H-distributions were introduced by N. Antonic and D. Mitrović (2011) as an extension of H-measures to the $L^p - L^q$ content. Existing applications are related to the velocity averaging and $L^p - L^q$ compactness by compensation.

Theorem. If $u_n \rightharpoonup u$ in $L^2(\mathbb{R}^d)$ and $u_n \rightharpoonup_\ast u$ in $L^2(\mathbb{R}^d)$ for some $r \in (1, \infty)$, and $p, q \geq 2$, then there exist subsequences (u_{n_k}) and (u_{n_j}) and a complex valued distribution $\mu \in \mathcal{D}^\prime(\mathbb{R}^d)$, such that, for every $\phi \in C_0^\infty(\mathbb{R}^d)$, we have

$$\lim_{k \to \infty} \int_{\mathbb{R}^d} u_{n_k}(x) \phi(x) \, dx = \int_{\mathbb{R}^d} \mu(x) \phi(x) \, dx,$$

for $\Omega \subset \mathbb{R}^d$, satisfies conditions of the existence theorem, (u_n) and (v_n) form a pure and the corresponding H-distribution is compact.

H-measures

H-measures are mathematical objects introduced by L. Tartar, which were motivated by possible applications in homogenization, and independently by P. Gérard, who was motivated by problems in kinetic theory.

Theorem. If $u_n \rightharpoonup u$ and $u_n \rightharpoonup_\ast u$ in $L^2(\mathbb{R}^d)$, then there exist subsequences (u_{n_k}) and a complex valued Radon measure $\mu \in \mathcal{D}^\prime(\mathbb{R}^d)$, and for each $\phi \in C_0^\infty(\mathbb{R}^d)$ and $\epsilon \in (0, \infty)$ one has

$$\lim_{k \to \infty} \int_{\mathbb{R}^d} u_{n_k}(x) \phi(x) \, dx = \int_{\mathbb{R}^d} \mu(x) \phi(x) \, dx + \epsilon \int_{\mathbb{R}^d} |\nabla \phi(x)| \, dx,$$

for $\Omega \subset \mathbb{R}^d$, satisfies conditions of the existence theorem, (u_n) and (v_n) form a pure and the corresponding H-distribution is compact.

One-scale H-measures

Theorem. Complexity $R^d \setminus \{0\}$ by adding two spheres (around the origin, S_0, and in the infinity, S_∞).

Distributions of anisotropic order

Let Ω and S_0 be open sets in \mathbb{R}^d and \mathbb{R}^d (C_0^∞)-manifolds of dimensions d' and d and $\Omega \subset S_0 \times \mathbb{R}^d$ an open set.

By $C^{\infty}(\mathbb{R}^d)$ we denote the space of functions f on \mathbb{R}^d such that for any $n \in \mathbb{N}$ and $R \in (0, \infty)$, we have $f \in C^{\infty}(\mathbb{R}^d)$.

A distribution of order α in x and order β in y is any linear functional on $C^{\infty}(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $D^{\alpha, \beta}(\Omega)$.

Some properties of L^p - L^q variant of compensation

Lemma. For a sequence (u_n) in $L^p(\mathbb{R}^d)$, $p \in (1, \infty)$, the following are equivalent:

1. $u_n \rightharpoonup u$ in $L^p(\mathbb{R}^d)$.
2. For every sequence (v_n) satisfying conditions of the existence theorem, (u_n) and (v_n) form a pure and the corresponding H-distribution is compact.

Example. $u_n \rightharpoonup u$ in $L^2(\mathbb{R}^d)$, $u_n \rightharpoonup_\ast u$ in $L^2(\mathbb{R}^d)$, for some $r \in (1, \infty)$, and $p, q \geq 2$. Then there exist subsequences (u_{n_k}), (u_{n_j}), and a complex valued distribution $\mu \in \mathcal{D}^\prime(\mathbb{R}^d)$, such that, for every $\phi \in C_0^\infty(\mathbb{R}^d)$, we have

$$\lim_{k \to \infty} \int_{\mathbb{R}^d} u_{n_k}(x) \phi(x) \, dx = \int_{\mathbb{R}^d} \mu(x) \phi(x) \, dx,$$

for $\Omega \subset \mathbb{R}^d$, satisfies conditions of the existence theorem, (u_n) and (v_n) form a pure and the corresponding H-distribution is compact.

Application

Now, let us consider the following non-linear parabolic type equation

$$\frac{\partial u}{\partial t} - \Delta u + f(u) = 0,$$

where $u_0 = u(0, \cdot)$ is an open subset of \mathbb{R}^d. We assume that $u \in L^2(\mathbb{R}^d)$, $f(u, x) \in L^2(\mathbb{R}^d)$, $1 < p < 2$, and $A \in L^2(0, \infty; L^2(\mathbb{R}^d)), \lambda \in L^2(0, \infty; L^2(\mathbb{R}^d)), \nabla \phi \in L^2(\mathbb{R}^d)$, β, where $\lambda(x, \cdot)$ is a matrix valued function on \mathbb{R}^d.

Furthermore, assume that f is a Carathéodory function and non-decreasing with respect to the third variable.

References

