On the Dirichlet-Neumann boundary problem for scalar conservation laws

Marin Mišur

email: mmisur@math.hr
University of Zagreb
Joint work with Darko Mitrović and Andrej Novak.

1st of August 2016.
Problem statement

- \(\Omega \subseteq [0, \infty) \times \mathbb{R} \) open bounded domain
- boundary \(\partial \Omega = \Gamma_N \cup \Gamma_D \) of class \(C^{0,1} \), where \(\Gamma_D \subset \{ t = 0 \} \)
- consider the following mixed boundary problem:

\[
\begin{align*}
\frac{\partial t}{\partial t} u + \frac{\partial x}{\partial x} (f(t, x, u)) &= 0 \text{ in } \Omega \\
\nabla_{(t,x)} u \cdot \nu &= 0 \text{ on } \Gamma_N \\
u(0, .) &= u^0(.) \in L^\infty(\mathbb{R}) \text{ on } \Gamma_D,
\end{align*}
\]

- \(f(t, x, \lambda) \) is a Caratheodory type function i.e. it is of bounded variation with respect to the variables \((t, x)\) and differentiable with respect to the third variable \(\lambda \).
An example of domain $\Omega \subseteq [0, \infty) \times \mathbb{R}$
Additional assumptions on f

Take $p \in \langle 2, \infty \rangle$ fixed.

A1: \((\forall \Lambda \subset \mathbb{R} \text{ compact})(\forall K \subset \Omega \text{ compact})(\exists C_1 = C_1(K, \Lambda) > 0)(\forall \xi \in \Lambda)\)

$$\left\| \chi_K \int_0^{\xi} f(t, x, \lambda) d\lambda \right\|_{L^p(\Omega)} < C_1,$$

A2: \((\forall \Lambda \subset \mathbb{R} \text{ compact})(\forall K \subset \Omega \text{ compact})(\exists C_2 = C_2(K, \Lambda) > 0)(\forall \xi \in \Lambda)\)

$$\left\| \chi_K \int_0^{\xi} f'_x(t, x, \lambda) d\lambda \right\|_{L^1(\Omega)} < C_2,$$

A3: \((\forall \Lambda \subset \mathbb{R} \text{ compact})(\forall K \subset \Omega \text{ compact})(\exists C_3 = C_3(K, \Lambda) > 0)(\forall \lambda \in \Lambda)\)

$$\left\| \chi_K f(t, x, \lambda) \right\|_{L^p(\Omega)} < C_3.$$
Assumptions A1 and A3, due to the boundedness of Ω, imply that for every $\Lambda \subset \mathbb{R}$ compact and every $\varphi \in C_c(\Omega)$, the following holds for positive constants $C_{1,p,K,\Lambda}$ and $C_{3,p,K,\Lambda}$ with $K = \text{supp} \varphi$:

C1: $(\forall \xi \in \Lambda) \quad \left\| \varphi(t, x) \int_{0}^{\xi} f(t, x, \lambda) d\lambda \right\|_{L^1(\Omega)} < C_{1,p,K,\Lambda} \| \varphi \|_{L^\infty(\Omega)}$

C3: $(\forall \lambda \in \Lambda) \quad \left\| \varphi(t, x) f(t, x, \lambda) \right\|_{L^1(\Omega)} < C_{3,p,K,\Lambda} \| \varphi \|_{L^\infty(\Omega)}$.
Approximation\(^1\) of the problem

\[
\partial_t u_n + \partial_x (f_n(t, x, u_n)) = \frac{1}{n} \triangle_{(t, x)} u_n \text{ in } \Omega
\]

\[
\nabla_{(t, x)} u_n \cdot \nu = 0 \text{ on } \Gamma_N
\]

\[
u_n(0, \cdot) = u_n^0(\cdot) \text{ on } \Gamma_D,
\]

\(f_n(t, x, \lambda) = f(\cdot, \cdot, \lambda) \star n^2 \omega(nt, nx) \) is a regularization of the flux \(f \) via the standard non-negative mollifier \(\omega \in C^\infty_c((−1, 1)^2) \),

\((u_n^0) \) is a bounded sequence of functions converging strongly in \(L^1_{loc}(\mathbb{R}) \) toward \(u_0 \).

Problem: what is the appropriate solution concept?

Concept of solution

Multiplying equation

\[\partial_t u_n + \partial_x (f_n(t, x, u_n)) = (1/n) \triangle (t, x) u_n \]

by \(\text{sgn}(u_n(t, x) - \lambda) \), we get:

\[\partial_t |u_n - \lambda| + \partial_x (\text{sgn}(u_n - \lambda)(f_n(u_n) - f_n(\lambda))) \leq \]

\[\leq \frac{1}{n} \triangle (t, x) |u_n - \lambda| - \text{sgn}(u_n - \lambda) f'_{n,x}(t, x, \lambda) \text{ in } \Omega. \]

Multiply by \(\varphi \in C^2(\Omega) \) supported away from \(\{t = 0\} \) and integrate over \(\Omega \). After taking into account (2), we get:

\[- \int_{\Omega} (|u_n - \lambda| \partial_t \varphi + \text{sgn}(u_n - \lambda)(f_n(u_n) - f_n(\lambda)) \partial_x \varphi) \, dx \, dt + \]

\[+ \int_{\partial \Omega} \left(|u_n - \lambda|, \text{sgn}(u_n - \lambda)(f_n(u_n) - f_n(\lambda)) \right) \cdot \nu \, \varphi \, ds \leq \]

\[\leq \frac{1}{n} \int_{\Omega} \nabla (t, x) |u_n - \lambda| \cdot \nabla (t, x) \varphi \, dx \, dt - \int_{\Omega} \varphi \text{sgn}(u_n - \lambda) f'_{n,x}(t, x, \lambda) \, d\lambda \, dx \, dt. \]
Concept of solution - continued

Using the idea from the recent article by Andreianov & Mitrović\(^2\), we introduce the following definition:

Definition

The function \(u \in L^2(\Omega) \) is called a solution to (1), (2), (3) if there exists a function \(p \in L^1(\Gamma_N) \) such that for every \(\varphi \in C_c(\Omega \setminus \Gamma_D) \) the following holds:

- \[
\int_{\Omega} (|u - \lambda| \partial_t \varphi + \text{sgn}(u - \lambda)(f(t, x, u) - f(t, x, \lambda)) \partial_x \varphi) \, dx dt - \int_{\partial\Omega} \left(|p - \lambda|, \text{sgn}(p - \lambda)(f(t, x, p) - f(t, x, \lambda)) \right) \cdot \nu \varphi \, ds \geq \int_{\Omega} \varphi \text{sgn}(u - \lambda) f'_x(t, x, \lambda) \, d\lambda \, dx dt. \] (6)

- Initial data are satisfied in the strong sense i.e. for almost every \(x \in \Gamma_D \) it holds

\[
\lim_{t \to 0} |u(t, x) - u_0(x)| = 0.
\]

The main result

Theorem
Assume that the sequence \((u_n)\) of solutions to (4) is uniformly bounded by a constant \(M\). If the flux \(f\) satisfies the assumptions A1, A2 and A3, then the weak \(L^2(\Omega)\)-limit of \((u_n)\) along a subsequence satisfies the equation (1) in \(\Omega\).

Outline (of the proof):

- \[
\partial_t u_n + \partial_x (f(t, x, u_n)) \to 0 \quad \text{in } H^{-1}_{loc}(\Omega)
\]

- for all entropy-entropy flux pairs \((\Phi(\lambda), \Psi_n(t, x, \lambda))\):
 \[
 \partial_t(\Phi(u_n)) + \partial_x(\Psi_n(t, x, u_n)) \text{ is precompact in } H^{-1}_{loc}(\Omega)
 \]

- for all \(k \in \mathbb{R}\):
 \[
 \partial_t|u_n - k| + \partial_x(\text{sgn}(u_n - k)(f(t, x, u_n) - f(t, x, k))) \text{ is precompact in } H^{-1}_{loc}(\Omega)
 \]
Case when $f \in \mathcal{C}^1$

A corollary of the proof of the theorem and Panov’s result\(^3\) in the case when the flux is continuously differentiable with respect to all variables is the fact that the limiting function u satisfies the Kruzhkov admissibility conditions. However, we do not have a working solution concept for (1), (3), (2) so we cannot say anything about uniqueness.

Corollary

Assume that the flux $f \in \mathcal{C}^1(\Omega \times (-M, M))$. The distributional limit u of the sequence (u_n) of solutions to (4) satisfies for every entropy-entropy flux pair (Φ, Ψ)

$$
\partial_t(\Phi(u)) + \partial_x(\Psi(t, x, u)) \leq -\int_0^u f_x'(t, x, \lambda) \Phi''(\lambda) d\lambda \quad \text{in} \quad \mathcal{D}'(\Omega).
$$

Lighthill-Whitham-Richards model for traffic flow

\[\partial_t \rho + \partial_x (\rho v(\rho)) = 0, \]

where the velocity is assumed to have linear dependence upon density of the cars

\[v(\rho) = v_{\text{max}} \left(1 - \frac{\rho}{\rho_{\text{max}}} \right), \quad 0 \leq \rho \leq \rho_{\text{max}}. \]

Let \(L \) and \(\tau \) be a typical length and time, respectively, such that \(v_{\text{max}} = L/\tau \). Introducing new variables

\[\bar{x} = \frac{x}{L}, \quad \bar{t} = \frac{x}{L}, \quad u = 1 - \frac{2\rho}{\rho_{\text{max}}}, \]

we obtain the inviscid Burgers equation

\[\partial_t \rho + \partial_x \left[\rho \left(1 - \frac{\rho}{\rho_{\text{max}}} \right) \right] = -\frac{\rho_{\text{max}}}{2\tau} \partial_{\bar{t}} u - \frac{\rho_{\text{max}}}{2\tau} \partial_{\bar{x}} \left(\frac{u^2}{2} \right) = 0. \]
Examples

Let \(\Omega = \{(t, x) \in \mathbb{R}^2 : 0 \leq x \leq 1, 0 \leq t \leq -4x(x - 1)\} \).
We focus on solving the (regularized) Burgers equation

\[
\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = \epsilon \Delta_{(t,x)} u \quad \text{in } \Omega,
\]
\[
\nabla_{(t,x)} u \cdot \nu = 0 \quad \text{on } \Gamma_N,
\]
\[
u(0, x) = u_D \quad \text{on } \Gamma_D,
\]

where \(\Gamma_D = \{(t, x) \in \partial \Omega : t = 0\} \) and \(\Gamma_N = \partial \Omega \setminus \Gamma_D \).
Let \(V_D(\Omega) = \{v \in H^1(\Omega) : v|_{\Gamma_D} = u_D\} \) and \(H^1_D(\Omega) = \{v \in H^1(\Omega) : v|_{\Gamma_D} = 0\} \).

We use the following numerical scheme:

For given initial guess \(u_0 \), construct sequence \(u_n \in V_D, n \geq 1 \), that are solutions of

\[
\int_{\Omega} \left(\frac{\partial u_n}{\partial t} + u_{n-1} \frac{\partial}{\partial x} u_n \right) \psi dt dx + \epsilon \int_{\Omega} \nabla_{(t,x)} u_n \cdot \nabla_{(t,x)} \psi dt dx = 0, \quad \forall \psi \in H^1_D(\Omega).
\]

(7)
Two scenarios: in the first one $\epsilon = 1/N$ and in the second one $\epsilon = 1/N^2$ with $u_D = -2x(x-1)$ in both.

We performed two convergence tests, where referent solution u_R has been computed on $N \times N = 640^2$ grid.

<table>
<thead>
<tr>
<th>$N = 1/\epsilon$</th>
<th>$|u_N - u_R|_2/|u_R|_2$</th>
<th>$N = 1/\sqrt{\epsilon}$</th>
<th>$|u_N - u_R|_2/|u_R|_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.179448</td>
<td>10</td>
<td>0.0539613</td>
</tr>
<tr>
<td>20</td>
<td>0.130928</td>
<td>20</td>
<td>0.0137841</td>
</tr>
<tr>
<td>40</td>
<td>0.076787</td>
<td>40</td>
<td>0.0038117</td>
</tr>
<tr>
<td>80</td>
<td>0.038821</td>
<td>80</td>
<td>0.0010069</td>
</tr>
<tr>
<td>160</td>
<td>0.0167232</td>
<td>160</td>
<td>0.00029879</td>
</tr>
<tr>
<td>320</td>
<td>0.0054824</td>
<td>320</td>
<td>0.000093223</td>
</tr>
</tbody>
</table>
Example 1 - $N = 160$ and $\epsilon = 1/160^2$
Example 1 - $N = 160$ and $\epsilon = 1/160^2$, iso-values of the solution
$u_D = H(0.5 - x)$, where H is Heaviside function
Example 3

$u_D = H(x - 0.5)$, where H is Heaviside function