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@ Stationary Friedrichs systems
o Classical theory
o Abstract theory
@ Examples

Q Theory for non-stationary systems
o Abstract Cauchy problem
o Examples
o Complex spaces

© Possible further research
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Motivation

Introduced in:
B K. O. Friedrichs, CPAM, 1958
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Introduced in:
B K. O. Friedrichs, CPAM, 1958

Goal:

o treating the equations of mixed type, such as the Tricomi equation:
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Motivation

Introduced in:
B K. O. Friedrichs, CPAM, 1958

Goal:

o treating the equations of mixed type, such as the Tricomi equation:

?u O

e
y8x2+8y2 ’

@ unified treatment of equations and systems of different type.
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Friedrichs system

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Friedrichs system

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;

Ay € W (Q: M, (R)), k € 1..d, and C € L=(; M, (R))
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Friedrichs system

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;

Ay € WH2(Q; M,.(R)), k € 1..d, and C € L°°(; M,.(R)) satisfying

(F1) matrix functions Ay are symmetric: A, = A ;

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Friedrichs system

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;

Ay € WH2(Q; M,.(R)), k € 1..d, and C € L°°(; M,.(R)) satisfying

(F1) matrix functions Ay are symmetric: A, = A ;
d
(F2) (Fpo>0) C+CT+> Ay >2uI  (aeon Q).
k=1
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Friedrichs system

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;

Ay € WH2(Q; M,.(R)), k € 1..d, and C € L°°(; M,.(R)) satisfying

(F1) matrix functions Ay are symmetric: A, = A ;
d
(F2) (Fpo>0) C+CT+> Ay >2uI  (aeon Q).
k=1

Operator £ : L2(Q;R") — D'(Q; R")

d
Lu:= Z@k(Aku) + Cu

k=1

is called the symmetric positive operator or the Friedrichs operator,
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Friedrichs system

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;

Ay € WH2(Q; M,.(R)), k € 1..d, and C € L°°(; M,.(R)) satisfying

(F1) matrix functions Ay are symmetric: A, = A ;
d
(F2) (Fpo>0) C+CT+> Ay >2uI  (aeon Q).
k=1

Operator £ : L2(Q;R") — D'(Q; R")

d
Lu:= Z@k(Aku) + Cu

k=1
is called the symmetric positive operator or the Friedrichs operator, and
Lu=f

the symmetric positive system or the Friedrichs system.
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Boundary conditions and the trace operator

Weak solution of a Friedrichs system belongs only to the graph space
W={uel?(Q;R"): Luec (R},

which is a Hilbert space with (- | - )r2rr) + (£ | £-)12(0Rr")-
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Boundary conditions and the trace operator

Weak solution of a Friedrichs system belongs only to the graph space
W={uel?(Q;R"): Luec (R},

which is a Hilbert space with (- | - )r2rr) + (£ | £-)12(0Rr")-

Boundary field

d
A, = Z kA € L(0Q; M,.(R)),
k=1

where v = (v, 19, -+ ,14) is the outward unit normal on 9.
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Boundary conditions and the trace operator

Weak solution of a Friedrichs system belongs only to the graph space
W={uel?(Q;R"): Luec (R},

which is a Hilbert space with (- | - )r2rr) + (£ | £-)12(0Rr")-

Boundary field

d
A, = Z kA € L(0Q; M,.(R)),
k=1

where v = (v, 19, -+ ,14) is the outward unit normal on 9.

Then
u— A u

defines the trace operator W — H™2 (9€%; R").
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Boundary conditions and the trace operator

Weak solution of a Friedrichs system belongs only to the graph space
W={uel?(Q;R"): Luec (R},

which is a Hilbert space with (- | - )r2rr) + (£ | £-)12(0Rr")-
Boundary field

d
A, = Z kA € L(0Q; M,.(R)),
k=1
where v = (v, 19, -+ ,14) is the outward unit normal on 9.

Then
u— A u

defines the trace operator W — H™2 (9€%; R").

Contribution: K. O. Friedrichs, C. Morawetz, P. Lax, L. Sarason, R. S.
Phillips, J. Rauch, ...
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Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007
o theory written in terms of operators on Hilbert spaces

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

o theory written in terms of operators on Hilbert spaces
@ intrinsic criterion for bijectivity of an abstract Friedrichs operator

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

o theory written in terms of operators on Hilbert spaces
@ intrinsic criterion for bijectivity of an abstract Friedrichs operator
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Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

o theory written in terms of operators on Hilbert spaces
@ intrinsic criterion for bijectivity of an abstract Friedrichs operator
@ avoiding the question of traces for functions in the graph space

Different type of representation of boundary condition and a better
connection with the classical theory:

B N. Antoni¢, K. B., CPDE, 2010
B N. Antoni¢, K. B., JDE, 2011
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Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

o theory written in terms of operators on Hilbert spaces
@ intrinsic criterion for bijectivity of an abstract Friedrichs operator
@ avoiding the question of traces for functions in the graph space

Different type of representation of boundary condition and a better
connection with the classical theory:

B N. Antoni¢, K. B., CPDE, 2010
B N. Antoni¢, K. B., JDE, 2011

Applications: transport equation, stationary diffusion equation, heat
equation, Maxwell system in diffusive regime, linearised elasticity,. . .
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Abstract setting

@ A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

o theory written in terms of operators on Hilbert spaces
@ intrinsic criterion for bijectivity of an abstract Friedrichs operator
@ avoiding the question of traces for functions in the graph space

Different type of representation of boundary condition and a better
connection with the classical theory:

B N. Antoni¢, K. B., CPDE, 2010
B N. Antoni¢, K. B., JDE, 2011

Applications: transport equation, stationary diffusion equation, heat
equation, Maxwell system in diffusive regime, linearised elasticity,. . .

Numerics:
@ A. Ern, J.-L. Guermond, SIAM JNA, 2006, 2006, 2008

@ T.Bui-Thanh, L. Demkowicz, O. Ghattas, SIAM JNA, 2013
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Assumptions

L - a real Hilbert space (L' = L), D C L a dense subspace, and
L,L :D — L linear unbounded operators satisfying

(T1) Vo, €D) (Lol ={p|Ly)L;
(T2) Fe>0)(VeeD) (L+L)el <clell;

(T3)  Buo>0)(VeeD) ((L+L)p|e)r>2ullel] -
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An example: The classical Friedrichs operator

Let D := CX(QR"), L =L2(%R") and £, £ : D — L be defined by

d

Lu:= Z@k(Aku) + Cu,
k=1
d d
Lu:==> 0k(Afu)+(CT+> A )u,
k=1 k=1

where Ay and C are as before (they satisfy (F1)—(F2)).

Then £ and £ satisfy (T1)—(T3)
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Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.
Denote by W, the completion of D.
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(D,{-]-)z) is an inner product space, with
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|| - |z is the graph norm.
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Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

Extensions

(D,{-]-)z) is an inner product space, with
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|| - |z is the graph norm.
Denote by Wy the completion of D.
L,L:D — L are continuous with respect to (|| - ||z, | - |l)
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Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.
Denote by Wy the completion of D.
L,L:D — L are continuous with respect to (|| - ||z, | - |l)
... extension by density to L(Wy, L)
Gelfand triple:
Wo e L=L1 < W.

Let £* € L£(L,W}) be the adjoint operator of £ : Wy —» L:
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Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.
Denote by Wy the completion of D.
L,L:D — L are continuous with respect to (|| - ||z, | - |l)
... extension by density to L(Wy, L)
Gelfand triple:
Wo e L=L1 < W.

Let £* € L£(L,W}) be the adjoint operator of £ : Wy —» L:

(Vu e L)Vv € W) W6<£~*U,U>WO =(u|Lv)g.
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Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.
Denote by Wy the completion of D.
L,L:D — L are continuous with respect to (|| - ||z, | - |l)
... extension by density to L(Wy, L)
Gelfand triple:
Wo e L=L1 < W.

Let £* € L£(L,W}) be the adjoint operator of £ : Wy —» L:
(Vu e L)Vv € W) W6<£~*U,U>WO =(u|Lv)g.

Therefore £ = L
|W0
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Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.
Denote by Wy the completion of D.
L,L:D — L are continuous with respect to (|| - ||z, | - |l)
... extension by density to L(Wy, L)
Gelfand triple:
Wo e L=L1 < W.

Let £* € L£(L,W}) be the adjoint operator of £ : Wy —» L:
(Vu e L)Vv € W) W6<£~*U,U>WO =(u|Lv)g.

Therefore £ = L
|W0

Analogously £ = ET
Wo
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Extensions

(D,{-]-)z) is an inner product space, with
(Ie=C1 0+ (L[ L)Ls

|| - |z is the graph norm.
Denote by Wy the completion of D.
L,L:D — L are continuous with respect to (|| - ||z, | - |l)
... extension by density to L(Wy, L)
Gelfand triple:
Wo e L=L1 < W.

Let £* € L£(L,W}) be the adjoint operator of £ : Wy —» L:
(Vu e L)Vv € W) W6<£~*U,U>WO =(u|Lv)g.

Therefore £ = L
|W0

Analogously £ = ET
Wo

Further extensions ... L := L* L:=L* ... L, L€ L(L, W) ...(T)
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Examples

Posing the problem

The graph space

Wi={ueL:LueL}={uecL:Luecl}

is a Hilbert space with respect to (- | - ).
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Examples

Posing the problem

The graph space

Wi={ueL:LueL}={uecL:Luecl}

is a Hilbert space with respect to (- | - ).

Problem: for given f € L find u € W such that Lu = f.
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Posing the problem

The graph space

Wi={ueL:LueL}={uecL:Luecl}

is a Hilbert space with respect to (- | - ).

Problem: for given f € L find u € W such that Lu = f.

Find sufficient conditions on V' < W such that £|v :V — Lisan

isomorphism.
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Boundary operator

Boundary operator D € L(W,W'):

wi{ Du,v)w = (Lu|v)p — (u| Lo, u,v € W.
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Boundary operator

Boundary operator D € L(W,W'):

wi{ Du,v)w = (Lu|v)p — (u| Lo, u,v € W.
If £ is the classical Friedrichs operator, then for u,v € C(R%; R"):

{Du,v) /A u| V|F(x)dS(x).
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Boundary operator

Boundary operator D € L(W,W'):

wi{ Du,v)w = (Lu|v)p — (u| Lo, u,v € W.
If £ is the classical Friedrichs operator, then for u,v € C(R%; R"):

{Du,v) /A u| V|F(x)dS(x).

Let V and V be subspaces of W that satisfy

VueV) wA Du,u)w >0,

(V1) .
VoeV) w{Dv,v)w <0,

(V2) V=DV, V=DW)?O.
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Well-posedness theorem

Under assumptions (T1)-(T3) and (V1)-(V2), the operators
L"V :V — L and £|f/ : V. — L are isomorphisms.

Theorem

(Banach—Netas—Babuska) Let V and L be two Banach paces, L' dual
of L and L € L(V; L). Then the following statements are equivalent:

a) L is a bijection;

b) It holds:

| A\

Fa>0)(VueV) |[Lulr = alullv;
(VvelL) ((VUEV) L/<v,£u>L:O) = v=0.
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An example — stationary diffusion equation

@ N. Antoni¢, K. B., M. Vrdoljak, NA-RWA, 2014
We consider the equation

—div(AVu) +cu = f

in Q C R4,
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An example — stationary diffusion equation

@ N. Antoni¢, K. B., M. Vrdoljak, NA-RWA, 2014
We consider the equation

—div(AVu) +cu = f

in Q C R4, where f € L2(Q), A € L™(; My(R)), ¢ € L>(Q) satisfy
al <A <BI a<c<pg, forsome > a > 0.
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An example — stationary diffusion equation

@ N. Antoni¢, K. B., M. Vrdoljak, NA-RWA, 2014
We consider the equation

—div(AVu) +cu = f

in Q C R4, where f € L2(Q), A € L™(; My(R)), ¢ € L>(Q) satisfy
al <A <BI a<c<pg, forsome > a > 0.

New unknown vector function taking values in R4+1:

-]

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

An example — stationary diffusion equation

@ N. Antoni¢, K. B., M. Vrdoljak, NA-RWA, 2014
We consider the equation

—div(AVu) +cu = f

in Q C R4, where f € L2(Q), A € L™(; My(R)), ¢ € L>(Q) satisfy
al <A <BI a<c<pg, forsome > a > 0.

New unknown vector function taking values in R4+1:

=[]

Then the starting equation can be written as a first-order system

Vu' + A7 =0
divu? +cu® = f
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An example — stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

Al 0
A =e;,®eq1 +e€411 Qe EMd+1(R), C= |: 0 C] .

Kre3imir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems Classical theory
Abstract theory
Examples

An example — stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

Al 0
A =e;,®eq1 +e€411 Qe EMd+1(R), C= |: 0 C] .

The graph space: W = L3, (Q) x H(Q2).
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An example — stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

Al 0
A =e;,®eq1 +e€411 Qe EMd+1(R), C= |: 0 C] .

The graph space: W = L3, (Q) x H(Q2).
Dirichlet, Neumann and Robin boundary conditions are imposed by the
following choice of V' and V:
Vi = Vi :=Lg;, () x Hy(Q),
Vy = Vy ::{(u",u“)T eW:v-u? =0},
Ve ={(u",u")T e W:v-u” = auu|r}7

Ve :={(u”,u")T eW:v-u = —au“|r}.
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
Let QC R T >0and Qp :=Q x (0,7T).
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
Let Q C R, T >0 and Qr :=Q x (0,T). We consider:

Opu — divx (AVyu) + cu = f in Qr .
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
Let Q C R, T >0 and Qr :=Q x (0,T). We consider:
Opu — divx (AVyu) + cu = f in Qr .

It can be written as Friedrichs system in a similar way as stationary
diffusion equation, with the following difference:
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
Let Q C R, T >0 and Qr :=Q x (0,T). We consider:
Opu — divx (AVyu) + cu = f in Qr .

It can be written as Friedrichs system in a similar way as stationary
diffusion equation, with the following difference:

domain is QT - Rd+1 and Ad+1 = €d+1 X €441 € Md+1(R).
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
Let Q C R, T >0 and Qr :=Q x (0,T). We consider:
Opu — divx (AVyu) + cu = f in Qr .

It can be written as Friedrichs system in a similar way as stationary
diffusion equation, with the following difference:

domain is QT - Rd+1 and Ad+1 = €d+1 X €441 € Md+1(R).

The graph space: W = {u € L3, (Qr) : u* € L2(0,T; Hl(Q))} .
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An example — heat equation

@ N. Antoni¢, K. B., M. Vrdoljak, JMAA, 2013
Let Q C R, T >0 and Qr :=Q x (0,T). We consider:
Opu — divx (AVyu) + cu = f in Qr .

It can be written as Friedrichs system in a similar way as stationary
diffusion equation, with the following difference:

domain is QT - Rd+1 and Ad+1 = €d+1 X €441 € Md+1(R).
The graph space: W = {u € L3, (Qr) : u* € L2(0,T; Hl(Q))} .
Dirichlet boundary condition and zero initial condition:

V= {u €W :ut € L2(0,T; HY(Q)), u(-,0) =0 ae. on Q}

V= {v € W:ov" € L*(0,T;Hy()), v“(-,T)=0a.e. on Q}
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Homogenisation theory for (classical) Friedrichs systems

[ K. B., M. Vrdoljak, CPAA, 2014
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Homogenisation theory for (classical) Friedrichs systems

[ K. B., M. Vrdoljak, CPAA, 2014

@ notions of H- and G-convergence
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Homogenisation theory for (classical) Friedrichs systems

[ K. B., M. Vrdoljak, CPAA, 2014

@ notions of H- and G-convergence

@ compactness result
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Homogenisation theory for (classical) Friedrichs systems

[ K. B., M. Vrdoljak, CPAA, 2014

@ notions of H- and G-convergence
@ compactness result

@ contains homogenisation theory for the stationary diffusion equation
and the heat equation
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@ Stationary Friedrichs systems
o Classical theory
o Abstract theory
@ Examples

Q Theory for non-stationary systems
o Abstract Cauchy problem
o Examples
o Complex spaces

© Possible further research
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Abstract Cauchy problem
Theory for non-stationary systems Examples
Complex spaces

Non-stationary problem

L - real Hilbert space, as before (L' =L), T > 0
We consider an abstract Cauchy problem in L:

{ u'(t) 4+ Lu(t) = f(t)

(P) WO =
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Abstract Cauchy problem
Theory for non-stationary systems Examples
Complex spaces

Non-stationary problem

L - real Hilbert space, as before (L' =L), T > 0
We consider an abstract Cauchy problem in L:

{ u'(t) 4+ Lu(t) = f(t)

(P) WO =

where
o f:(0,T) — L, ug € L are given,
o L (not depending on t) satisfies (T1), (T2) and

(T3) (Ve eD) ((L+L)p|p)L>0,

@ u:[0,T) — L is unknown.
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Abstract Cauchy problem
Theory for non-stationary systems Examples
Complex spaces

Non-stationary problem

L - real Hilbert space, as before (L' =L), T > 0
We consider an abstract Cauchy problem in L:

{ u'(t) 4+ Lu(t) = f(t)

(P) WO =

where
o f:(0,T) — L, ug € L are given,
o L (not depending on t) satisfies (T1), (T2) and

(T3) (Ve eD) ((L+L)p|p)L>0,

@ u:[0,T) — L is unknown.
Numerics:
@ E. Burman, A. Ern, M. A. Fernandez, SIAM JNA, 2010
@ D. A. Di Pietro, A. Ern, 2012
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Semigroup setting

A priori estimate:

Wie0.T)  [ull < et(nuoni - ||f<s>||%) |
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Semigroup setting

A priori estimate:

Wie0.T)  [ull < et(nuoni - ||f<s>||%) |

let A:VCL—L, A:= —£|V
Then (P) becomes:

(P")
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Semigroup setting

A priori estimate:

Wie0.T)  [ull < et(nuon% - ||f<s>||%) |

let A:VCL—L, A:= —£|V
Then (P) becomes:

(P")

The operator A is an infinitensimal generator of a Cy-semigroup on L. I
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Existence and uniqueness result

Corollary

Let £ be an operator that satisfies (T1)-(T2) and (T3), let V be a
subspace of its graph space satisfying (V1)-(V2), and f € L1({0,T); L).
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Existence and uniqueness result

Corollary

Let £ be an operator that satisfies (T1)-(T2) and (T3), let V be a
subspace of its graph space satisfying (V1)-(V2), and f € L1({0,T); L).

@ Then for every ug € L the problem (P) has the unique weak solution
u e C([0,T]; L) given with
t
u(t) =T (t)uo + / T(t—s)f(s)ds, te (0,717,
0

where (T (t))i>0 Is the semigroup generated by A.
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Existence and uniqueness result

Corollary

Let £ be an operator that satisfies (T1)-(T2) and (T3), let V be a
subspace of its graph space satisfying (V1)-(V2), and f € L1({0,T); L).

@ Then for every ug € L the problem (P) has the unique weak solution
u e C([0,T]; L) given with

u(t) =T (t)uo + /0 T(t—s)f(s)ds, te (0,717,

where (T (t))i>0 Is the semigroup generated by A.

o If additionally f € C([0,T}; L) N (W“((O,T}; L)ULY((0,T); V))
with V' equipped with the graph norm and ug € V, then the above
weak solution is the classical solution of (P) on [0,T).
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Weak solution

Letug € L, f € LY((0,T); L) and let
t
u(t) =T (t)uo + / T(t—s)f(s)ds, teo,7],
0

be the weak solution of (P).
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Weak solution

Letug € L, f € LY((0,T); L) and let
t
u(t) =T (t)uo + / T(t—s)f(s)ds, teo,7],
0

be the weak solution of (P).
Then o, Lu,f € L*((0,T); W}) and

v+ Lu=f,

in L1((0, T); WY).
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Bound on solution

From

u(t) =T (t)uo + /Ot T(t—s)f(s)ds, te 0,17,

we get:

(veelo,T])  u@lr < uoll +/0 1f(s)llzds -
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Bound on solution

From

u(t) =T (t)uo + /Ot T(t—s)f(s)ds, te 0,17,

we get:
t
(veelo,T])  u@lr < uoll +/0 1F(s)llzds -

A priori estimate was:

Wie0.7)  ul? < €t<||uo||% - ||f<s>||%) .
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Non-stationary Maxwell system 1/5

Let 2 C R? be open and bounded with a Lipshitz boundary T,
p,e € W2 (Q) positive and away from zero, ¥;; € L>°(Q; M3(R)),
i,j € {1,2}, and f,fy € L1((0,T); L2(£2; R3)).
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Non-stationary Maxwell system 1/5

Let 2 C R? be open and bounded with a Lipshitz boundary T,

p,e € W2 (Q) positive and away from zero, ¥;; € L>°(Q; M3(R)),
i,j € {1,2}, and f,fy € L1((0,T); L2(£2; R3)).

We consider a generalized non-stationary Maxwell system

OH+rotE+ X H+XpE=f
(MS) e o H 2 Y in (0, T) x Q,
EatE_rOtH"_EQlH"_EQQE:fQ
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Non-stationary Maxwell system 1/5

Let 2 C R? be open and bounded with a Lipshitz boundary T,

p,e € W2 (Q) positive and away from zero, ¥;; € L>°(Q; M3(R)),
i,j € {1,2}, and f,fy € L1((0,T); L2(£2; R3)).

We consider a generalized non-stationary Maxwell system

in (0,T) x Q,

(MS) uoH +rotE4+ 311H+ X1 E=1
EatE —rotH + 221H + EQQE = f2

where E,H : [0,T) x © — R3 are unknown functions.
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Non-stationary Maxwell system 1/5

Let 2 C R? be open and bounded with a Lipshitz boundary T,

p,e € W2 (Q) positive and away from zero, ¥;; € L>°(Q; M3(R)),
i,j € {1,2}, and f,fy € L1((0,T); L2(£2; R3)).

We consider a generalized non-stationary Maxwell system

oH tE+ 3 H+XE=F
(MS) {Mt FrotE 4 2 H+ X 1 in (0,T) x

EatE —rotH + 221H + EQQE = f2

where E,H : [0,T) x © — R3 are unknown functions.
Change of variable

][] oo
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Non-stationary Maxwell system 1/5

Let 2 C R? be open and bounded with a Lipshitz boundary T,

p,e € W2 (Q) positive and away from zero, ¥;; € L>°(Q; M3(R)),
i,j € {1,2}, and f,fy € L1((0,T); L2(£2; R3)).

We consider a generalized non-stationary Maxwell system

OH + rotE + S H + SioE = f
(MS) {Mt FrotEE SR HeE = 0,1 <,

EatE —rotH + 221H + EQQE = f2

where E,H : [0,T) x © — R3 are unknown functions.
Change of variable

][] oo

turns (MS) to the Friedrichs system

Oiu+ Lu=F,
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Non-stationary Maxwell system 2/5

with
r 0 0 07 0 0 1
0 0 0 -1 0 0 O
01 o0 -1 0 0
A =c 0 0 0 , Ay =c 00 -1 ,
0 0 1 0 0 0 O 0
LO —1 O J 1 0 0
r 0 -1 07
0 1 0 0
0 0 0 2=
AS_C 0 10 s F:l%ﬁf‘|7 C =
\/52
-1 0 0 0
LO 0 O J
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Non-stationary Maxwell system 2/5

with
r 0 0 07 0 0 1
0 0 0 -1 0 0 O
01 o0 -1 0 0
A =c 0 0 0 , Ay =c 00 -1 ,
0 0 1 0 0 0 O 0
LO —1 O J 1 0 0
r 0 -1 07
0 1 0 0
0 0 0 2=
A3::C 0 1 0 s F:l%ﬁf‘|, C:=....
\/52
-1 0 0 0
LO 0 O J

(F1) and (F2) are satisfied (with change v := e~*u for large A > 0, if
needed)
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Non-stationary Maxwell system 3/5

The spaces involved:

L =L*(Q;R?) x L2(Q; R?),
W= Lfot(Q; RS) X Lfot(Q;Rg) ,

Wo = Lie o4 R?) x L (% R?) = Clw C° (O RY)

2
where L7,

Q:R3) is the graph space of the rot operator.
g
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Non-stationary Maxwell system 3/5

The spaces involved:

L =L*(Q;R?) x L2(Q; R?),
W= Lfot(Q; RS) X Lfot(Q;Rg) ,

Wo = Lt o R?) x Ly, o(%R?) = Clw C° (O RY),

where L2 (€; R?) is the graph space of the rot operator.

The boundary condition
vV X ElF =0

corresponds to the following choice of spaces V, VCW:
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Non-stationary Maxwell system 3/5

The spaces involved:

L =L*(Q;R?) x L2(Q; R?),
W= Lfot(Q; RS) X Lfot(Q;Rg) ,

Wo = Lt o R?) x Ly, o(%R?) = Clw C° (O RY),

where L2 (€; R?) is the graph space of the rot operator.

The boundary condition
vV X ElF =0

corresponds to the following choice of spaces V, VCW:

V=V={ueW:vxuy=0}
={ueW:vxE=0}
= L2, (% R?) x L7, (4 RY).

rot
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Non-stationary Maxwell system 4/5

Theorem

Let Eg € L2, (2 R?),Ho € L2, (€ R?) and let

rot
f1,fa € C([0,7]; L2(Q; R?)) satisfy at least one of the following
conditions:

o fi,fy € WHI((0,T); L2(€; R?));
o f1 e L'((0,T); L2, (% R3)), fa € L1((0, T); LZ,; o (€ R?)).
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Non-stationary Maxwell system 4/5

Theorem

Let Eg € L2, (2 R?),Ho € L2, (€ R?) and let

rot

f1,fa € C([0,7]; L2(Q; R?)) satisfy at least one of the following
conditions:

o fi,fo € WHI((0, T); L* (% R?));
o fi € L((0, T); L2, (% RY), f2 € LY((0, T); LE,, o( R?)).
Then the abstract initial-boundary value problem

pH +rotE+ 3 H+ X, E =1
eE —rotH + 301 H + X9 FE =1
E(0) = Eo
H(0) = Ho

VXE|I‘:O
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Non-stationary Maxwell system 5/5

...has unique classical solution given by

Flo=[3 Sl %]
B L[ [T)e enm

+

where (T (t))i>0 Is the contraction Cy-semigroup generated by —L.
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Non-stationary Maxwell system 5/5

...has unique classical solution given by

Flo=[3 Sl %]
B L[ [T)e enm

+

where (T (t))i>0 Is the contraction Cy-semigroup generated by —L.

@ K. B., M. Erceg, Non-stationary abstract Friedrichs systems via
semigroup theory, under review
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Other examples

@ Symmetric hyperbolic system

d
8tu+zak(Aku)+Cu:f in (0,7) x R
k=1 )

U(Oa ) = Uo
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Other examples

@ Symmetric hyperbolic system

d
8tu+zak(Aku)+Cu:f in (0,7) x R
k=1 )

U(Oa ) = Uo

o Non-stationary div-grad problem
2q+Vp="f in{0,T)xQ, QCRY,

1 . .
gatp—i—dlvq =fy in{0,T)xQ,

pl@Q :07 p(o):p()a Q(O)ZQO
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Other examples

@ Symmetric hyperbolic system

d
8tu+zak(Aku)+Cu:f in (0,7) x R
k=1 )

U(Oa ) = Ug
o Non-stationary div-grad problem
2q+Vp="f in{0,T)xQ, QCRY,
1 . .
%&gp—i—dlvq =fy in{0,T)xQ,

p|89 :07 p(o):p()a Q(O)ZQO

@ Wave equation
Oyu—c2Au=f in(0,T) x R?
u(0,-) =ug, Opu(0,-) = u} '
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Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L' = L its antidual, D C L,
L,L: L — L linear operators that satisfy (T1)—(T3) (or T3’ instead of
T3).
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Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L' = L its antidual, D C L,
L,L: L — L linear operators that satisfy (T1)—(T3) (or T3’ instead of

T3).
Technical differences with respect to the real case, but results remain the
same. . .
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Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L' = L its antidual, D C L,
L,L: L — L linear operators that satisfy (T1)—(T3) (or T3’ instead of
T3).

Technical differences with respect to the real case, but results remain the
same. . .

For the classical Friedrichs operator we require

(F1) matrix functions Ay are selfadjoint: A, = A},
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Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L' = L its antidual, D C L,
L,L: L — L linear operators that satisfy (T1)—(T3) (or T3’ instead of
T3).

Technical differences with respect to the real case, but results remain the
same. . .

For the classical Friedrichs operator we require

(F1) matrix functions Ay are selfadjoint: A, = A},
d
(F2) (Fpo>0) C+C* +> 0Ap>2uI  (aeon ),
k=1
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Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L' = L its antidual, D C L,
L,L: L — L linear operators that satisfy (T1)—(T3) (or T3’ instead of
T3).

Technical differences with respect to the real case, but results remain the
same. . .

For the classical Friedrichs operator we require

(F1) matrix functions Ay are selfadjoint: A, = A},
d
(F2) (Fpo>0) C+C* +> 0Ap>2uI  (aeon ),
k=1

and again (F1)—(F2) imply (T1)—-(T3).
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Application to Dirac system 1/2

We consider the Cauchy problem
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Application to Dirac system 1/2

We consider the Cauchy problem

3
Ou+> Apdu+Cu=f in(0,7) x R,
(DS) —
u(0) = ug,
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Application to Dirac system 1/2

We consider the Cauchy problem

Lu
3
Ou+> Apdwu+Cu=f in(0,7) x R,
(DS) —
u(0) = ug,
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Application to Dirac system 1/2

We consider the Cauchy problem

Lu
3
Ou+> Apdwu+Cu=f in(0,7) x R,
(DS) —
u(0) = ug,

where u : [0,T) x R® — C* is an unknown function, ug : R® — C*,
f:]0,7) x R® — C* are given, and
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Application to Dirac system 1/2

We consider the Cauchy problem

Lu
3
Ou+> Apdwu+Cu=f in(0,7) x R,
(DS) —
u(0) = ug,

where u : [0,T) x R® — C* is an unknown function, ug : R® — C*,
f:]0,7) x R® — C* are given, and

| 0 ok _|al 0
N R
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Application to Dirac system 1/2

We consider the Cauchy problem

Lu
3
Ou+> Apdwu+Cu=f in(0,7) x R,
(DS) —
u(0) = ug,

where u : [0,T) x R® — C* is an unknown function, ug : R® — C*,
f:]0,7) x R® — C* are given, and

| 0 ok _|al 0
N I P
where

|10 1 10 = |1 0
=0 ol %27 o 9T o -1l
are Pauli matrices, and c¢;,c2 € L®(R?; C). ... (F1)—=(F2)
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Application to Dirac system 2/2

Let ug € W and let f € C([0,T]; L2(R3; C*)) satisfies at least one of the
following conditions:

o f € WLL((0,T); L2(R3; CY));
o f e L1({0,T); W).
Then the abstract Cauchy problem

3
O+ Y Apdgu+ Cu=Ff
k=1
u(0) = ug

has unique classical solution given with

u(t) =T (t)uo + /Ot T(t—s)f(s)ds, te 0,17,

where (T (t))i>0 Is the contraction Cy-semigroup generated by —L.

v
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@ Stationary Friedrichs systems
o Classical theory
o Abstract theory
@ Examples

Q Theory for non-stationary systems
o Abstract Cauchy problem
o Examples
o Complex spaces

© Possible further research
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Possible further research

Time-dependent coefficients

The operator £ depends on t (i.e. the matrix coefficients A and C
depend on t if £ is a classical Friedrichs operator):

{u'(t) + L(tu(t) =f(t)
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Possible further research

Time-dependent coefficients

The operator £ depends on t (i.e. the matrix coefficients A and C
depend on t if £ is a classical Friedrichs operator):

{u'(t) + L(tu(t) =f(t)

@ Semigroup theory can treat time-dependent case, but conditions
that ensure existence/uniqueness result are rather complicated to
verify. ..
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Possible further research

Semilinear problem

Consider

where f : [0,T) x L — L.
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Possible further research

Semilinear problem

Consider

where f : [0,T) x L — L.
@ semigroup theory gives existence and uniqueness of solution
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Possible further research

Semilinear problem

Consider

where f : [0,T) x L — L.
@ semigroup theory gives existence and uniqueness of solution

o it requires (locally) Lipshitz continuity of f in variable u
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Possible further research

Semilinear problem

Consider

where f : [0,T) x L — L.
@ semigroup theory gives existence and uniqueness of solution
o it requires (locally) Lipshitz continuity of f in variable u

o if L = L2 it is not appropriate assumption, as power functions do
not satisfy it; L = L° is better. ..
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Possible further research

Banach space setting
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Possible further research

Banach space setting

Let L be a reflexive complex Banach space, L’ its antidual, D C L,
L,L: D — L’ linear operators that satisfy a modified versions of
(T1)~(T3)
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Possible further research

Banach space setting

Let L be a reflexive complex Banach space, L’ its antidual, D C L,
L,L: D — L’ linear operators that satisfy a modified versions of
(T1)—(T3), e.g.

(T1) (Yo, €D) LoV = (LY, )1
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Possible further research

Banach space setting

Let L be a reflexive complex Banach space, L’ its antidual, D C L,
L,L: D — L’ linear operators that satisfy a modified versions of
(T1)—(T3), e.g.

(T1) (Yo, €D) LoV = (LY, )1

Technical differences with Hilbert space case, but results remain
essentially the same for the stationary case. ..
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Possible further research

Banach space setting

Let L be a reflexive complex Banach space, L’ its antidual, D C L,
L,L: D — L’ linear operators that satisfy a modified versions of
(T1)—(T3), e.g.

(T1) (Yo, €D) LoV = (LY, )1

Technical differences with Hilbert space case, but results remain
essentially the same for the stationary case. ..

Problems:
@ in the classical case (F1)—(F2) need not to imply (T2) and (T3):
instead of (T3) we get

(L4 L)p, 0)re > |lolLe
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Possible further research

Banach space setting

Let L be a reflexive complex Banach space, L’ its antidual, D C L,
L,L: D — L’ linear operators that satisfy a modified versions of
(T1)—(T3), e.g.

(Tl) (VQD,’(,ZJ S D) L’< EC)O?w)L = L'< [:l/f, ¢>L .

Technical differences with Hilbert space case, but results remain
essentially the same for the stationary case. ..

Problems:
@ in the classical case (F1)—(F2) need not to imply (T2) and (T3):
instead of (T3) we get

(L4 L)p, 0)re > |lolLe

o for semigroup treatment of non-stationary case we need to have
L:DCL—L
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Possible further research

o regularity of the solution
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Possible further research

o regularity of the solution

@ application to new examples
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Possible further research

o regularity of the solution
@ application to new examples

@ numerical treatment

@ M. Hochbruck, T. Pazur, A. Schulz, E. Thawinan, C. Wieners,
Efficient time integration for discontinuous Galerkin
approximations of linear wave equations, Technical report,
Karlsruhe Institute of Technology, 2013
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