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Motivation

Introduced in:

K. O. Friedrichs, CPAM, 1958

Goal:

treating the equations of mixed type, such as the Tricomi equation:

y
∂2u

∂x2
+
∂2u

∂y2
= 0 ;

unified treatment of equations and systems of different type.
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Friedrichs system

Assumptions:
d, r ∈ N, Ω ⊆ Rd open and bounded with Lipschitz boundary;

Ak ∈W1,∞(Ω; Mr(R)), k ∈ 1..d, and C ∈ L∞(Ω; Mr(R)) satisfying

(F1) matrix functions Ak are symmetric: Ak = A>k ;

(F2) (∃µ0 > 0) C + C> +

d∑
k=1

∂kAk ≥ 2µ0I (ae on Ω) .

Operator L : L2(Ω; Rr) −→ D′(Ω; Rr)

Lu :=

d∑
k=1

∂k(Aku) + Cu

is called the symmetric positive operator or the Friedrichs operator, and

Lu = f

the symmetric positive system or the Friedrichs system.
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Boundary conditions and the trace operator

Weak solution of a Friedrichs system belongs only to the graph space

W := {u ∈ L2(Ω; Rr) : Lu ∈ L2(Ω; Rr)} ,

which is a Hilbert space with 〈 · | · 〉L2(Ω;Rr) + 〈 L· | L· 〉L2(Ω;Rr).

Boundary field

Aν :=
d∑
k=1

νkAk ∈ L∞(∂Ω; Mr(R)) ,

where ν = (ν1, ν2, · · · , νd) is the outward unit normal on ∂Ω.

Then
u 7→ Aνu

defines the trace operator W −→ H−
1
2 (∂Ω; Rr).

Contribution: K. O. Friedrichs, C. Morawetz, P. Lax, L. Sarason, R. S.
Phillips, J. Rauch, . . .
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Krešimir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems
Theory for non-stationary systems

Possible further research

Classical theory
Abstract theory
Examples

Boundary conditions and the trace operator

Weak solution of a Friedrichs system belongs only to the graph space

W := {u ∈ L2(Ω; Rr) : Lu ∈ L2(Ω; Rr)} ,

which is a Hilbert space with 〈 · | · 〉L2(Ω;Rr) + 〈 L· | L· 〉L2(Ω;Rr).

Boundary field

Aν :=

d∑
k=1

νkAk ∈ L∞(∂Ω; Mr(R)) ,

where ν = (ν1, ν2, · · · , νd) is the outward unit normal on ∂Ω.

Then
u 7→ Aνu

defines the trace operator W −→ H−
1
2 (∂Ω; Rr).

Contribution: K. O. Friedrichs, C. Morawetz, P. Lax, L. Sarason, R. S.
Phillips, J. Rauch, . . .
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Abstract setting

A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

theory written in terms of operators on Hilbert spaces
intrinsic criterion for bijectivity of an abstract Friedrichs operator
avoiding the question of traces for functions in the graph space

Different type of representation of boundary condition and a better
connection with the classical theory:

N. Antonić, K. B., CPDE, 2010

N. Antonić, K. B., JDE, 2011

Applications: transport equation, stationary diffusion equation, heat
equation, Maxwell system in diffusive regime, linearised elasticity,. . .

Numerics:

A. Ern, J.-L. Guermond, SIAM JNA, 2006, 2006, 2008

T. Bui-Thanh, L. Demkowicz, O. Ghattas, SIAM JNA, 2013
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Krešimir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems
Theory for non-stationary systems

Possible further research

Classical theory
Abstract theory
Examples

Abstract setting

A. Ern, J.-L. Guermond, G. Caplain, CPDE, 2007

theory written in terms of operators on Hilbert spaces
intrinsic criterion for bijectivity of an abstract Friedrichs operator
avoiding the question of traces for functions in the graph space

Different type of representation of boundary condition and a better
connection with the classical theory:
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N. Antonić, K. B., JDE, 2011

Applications: transport equation, stationary diffusion equation, heat
equation, Maxwell system in diffusive regime, linearised elasticity,. . .

Numerics:

A. Ern, J.-L. Guermond, SIAM JNA, 2006, 2006, 2008

T. Bui-Thanh, L. Demkowicz, O. Ghattas, SIAM JNA, 2013
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N. Antonić, K. B., CPDE, 2010
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Assumptions

L - a real Hilbert space (L′ ≡ L), D ⊆ L a dense subspace, and
L, L̃ : D −→ L linear unbounded operators satisfying

(T1) (∀ϕ,ψ ∈ D) 〈 Lϕ | ψ 〉L = 〈ϕ | L̃ψ 〉L ;

(T2) (∃ c > 0)(∀ϕ ∈ D) ‖(L+ L̃)ϕ‖L ≤ c‖ϕ‖L ;

(T3) (∃µ0 > 0)(∀ϕ ∈ D) 〈 (L+ L̃)ϕ | ϕ 〉L ≥ 2µ0‖ϕ‖2L .
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An example: The classical Friedrichs operator

Let D := C∞c (Ω; Rr), L = L2(Ω; Rr) and L, L̃ : D −→ L be defined by

Lu :=

d∑
k=1

∂k(Aku) + Cu ,

L̃u :=−
d∑
k=1

∂k(A>k u) + (C> +

d∑
k=1

∂kA
>
k )u ,

where Ak and C are as before (they satisfy (F1)–(F2)).

Then L and L̃ satisfy (T1)–(T3)
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Extensions

(D, 〈 · | · 〉L) is an inner product space, with

〈 · | · 〉L := 〈 · | · 〉L + 〈 L· | L· 〉L ;

‖ · ‖L is the graph norm.

Denote by W0 the completion of D.
L, L̃ : D −→ L are continuous with respect to (‖ · ‖L, ‖ · ‖L)
. . . extension by density to L(W0, L)
Gelfand triple:

W0 ↪→ L ≡ L′ ↪→W ′0 .

Let L̃∗ ∈ L(L,W ′0) be the adjoint operator of L̃ : W0 −→ L:

(∀u ∈ L)(∀ v ∈W0) W ′
0
〈 L̃∗u, v 〉W0

= 〈u | L̃v 〉L .

Therefore L = L̃∗|W0

Analogously L̃ = L∗|W0

Further extensions . . .L := L̃∗, L̃ := L∗, . . .L, L̃ ∈ L(L,W ′0) . . . (T)
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Posing the problem

Lemma

The graph space

W := {u ∈ L : Lu ∈ L} = {u ∈ L : L̃u ∈ L}

is a Hilbert space with respect to 〈 · | · 〉L.

Problem: for given f ∈ L find u ∈W such that Lu = f .

Find sufficient conditions on V 6W such that L|V : V −→ L is an

isomorphism.
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Boundary operator

Boundary operator D ∈ L(W,W ′):

W ′〈Du, v 〉W := 〈 Lu | v 〉L − 〈u | L̃v 〉L , u, v ∈W .

If L is the classical Friedrichs operator, then for u, v ∈ C∞c (Rd; Rr):

W ′〈Du, v 〉W =

∫
Γ

Aν(x)u|Γ(x) · v|Γ(x)dS(x) .

Let V and Ṽ be subspaces of W that satisfy

(V1)
(∀u ∈ V ) W ′〈Du, u 〉W ≥ 0 ,

(∀ v ∈ Ṽ ) W ′〈Dv, v 〉W ≤ 0 ,

(V2) V = D(Ṽ )0 , Ṽ = D(V )0 .
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Let V and Ṽ be subspaces of W that satisfy

(V1)
(∀u ∈ V ) W ′〈Du, u 〉W ≥ 0 ,
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Well-posedness theorem

Theorem

Under assumptions (T1)–(T3) and (V1)–(V2), the operators
L|V : V −→ L and L̃|Ṽ

: Ṽ −→ L are isomorphisms.

Theorem

(Banach–Nečas–Babuška) Let V and L be two Banach paces, L′ dual
of L and L ∈ L(V ;L). Then the following statements are equivalent:
a) L is a bijection;
b) It holds:

(∃α > 0)(∀u ∈ V ) ‖Lu‖L ≥ α‖u‖V ;

(∀ v ∈ L′)
(

(∀u ∈ V ) L′〈 v,Lu 〉L = 0
)

=⇒ v = 0 .
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An example – stationary diffusion equation

N. Antonić, K. B., M. Vrdoljak, NA-RWA, 2014
We consider the equation

−div (A∇u) + cu = f

in Ω ⊆ Rd,

where f ∈ L2(Ω), A ∈ L∞(Ω; Md(R)), c ∈ L∞(Ω) satisfy
αI ≤ A ≤ βI, α ≤ c ≤ β, for some β ≥ α > 0.

New unknown vector function taking values in Rd+1:

u =

[
uσ

uu

]
=

[
−A∇u
u

]
.

Then the starting equation can be written as a first-order system{
∇uu + A−1uσ = 0

div uσ + cuu = f
,
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An example – stationary diffusion equation (cont.)

which is a Friedrichs system with the choice of

Ak = ek ⊗ ed+1 + ed+1 ⊗ ek ∈ Md+1(R) , C =

[
A−1 0

0 c

]
.

The graph space: W = L2
div(Ω)×H1(Ω).

Dirichlet, Neumann and Robin boundary conditions are imposed by the
following choice of V and Ṽ :

VD = ṼD :=L2
div(Ω)×H1

0(Ω) ,

VN = ṼN :={(uσ, uu)> ∈W : ν · uσ = 0} ,
VR :={(uσ, uu)> ∈W : ν · uσ = auu|Γ} ,

ṼR :={(uσ, uu)> ∈W : ν · uσ = −auu|Γ} .
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An example – heat equation

N. Antonić, K. B., M. Vrdoljak, JMAA, 2013

Let Ω ⊆ Rd, T > 0 and ΩT := Ω× 〈0, T 〉. We consider:

∂tu− div x(A∇xu) + cu = f in ΩT .

It can be written as Friedrichs system in a similar way as stationary
diffusion equation, with the following difference:

domain is ΩT ⊆ Rd+1 and Ad+1 = ed+1 ⊗ ed+1 ∈ Md+1(R).

The graph space: W =
{

u ∈ L2
div(ΩT ) : uu ∈ L2(0, T ; H1(Ω))

}
.

Dirichlet boundary condition and zero initial condition:

V =
{

u ∈W : uu ∈ L2(0, T ; H1
0(Ω)), uu(·, 0) = 0 a.e. on Ω

}
,

Ṽ =
{

v ∈W : vu ∈ L2(0, T ; H1
0(Ω)), vu(·, T ) = 0 a.e. on Ω

}
.
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Ṽ =
{

v ∈W : vu ∈ L2(0, T ; H1
0(Ω)), vu(·, T ) = 0 a.e. on Ω

}
.
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Homogenisation theory for (classical) Friedrichs systems

K. B., M. Vrdoljak, CPAA, 2014

notions of H- and G-convergence

compactness result

contains homogenisation theory for the stationary diffusion equation
and the heat equation
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Abstract Cauchy problem
Examples
Complex spaces

3 Possible further research
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Non-stationary problem

L - real Hilbert space, as before (L′ ≡ L), T > 0
We consider an abstract Cauchy problem in L:

(P)

{
u′(t) + Lu(t) = f(t)

u(0) = u0

,

where

f : 〈0, T 〉 −→ L, u0 ∈ L are given,

L (not depending on t) satisfies (T1), (T2) and

(T3′) (∀ϕ ∈ D) 〈 (L+ L̃)ϕ | ϕ 〉L ≥ 0 ,

u : [0, T 〉 −→ L is unknown.

Numerics:

E. Burman, A. Ern, M. A. Fernandez, SIAM JNA, 2010

D. A. Di Pietro, A. Ern, 2012
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L - real Hilbert space, as before (L′ ≡ L), T > 0
We consider an abstract Cauchy problem in L:

(P)

{
u′(t) + Lu(t) = f(t)

u(0) = u0

,

where

f : 〈0, T 〉 −→ L, u0 ∈ L are given,

L (not depending on t) satisfies (T1), (T2) and

(T3′) (∀ϕ ∈ D) 〈 (L+ L̃)ϕ | ϕ 〉L ≥ 0 ,

u : [0, T 〉 −→ L is unknown.

Numerics:

E. Burman, A. Ern, M. A. Fernandez, SIAM JNA, 2010

D. A. Di Pietro, A. Ern, 2012
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A priori estimate:

(∀ t ∈ [0, T ]) ‖u(t)‖2L 6 et
(
‖u0‖2L +

∫ t

0

‖f(s)‖2L
)
.

Let A : V ⊆ L −→ L, A := −L|V
Then (P) becomes:

(P′)

{
u′(t)−Au(t) = f(t)

u(0) = u0

.

Theorem

The operator A is an infinitensimal generator of a C0-semigroup on L.
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Existence and uniqueness result

Corollary

Let L be an operator that satisfies (T1)–(T2) and (T3)′, let V be a
subspace of its graph space satisfying (V1)–(V2), and f ∈ L1(〈0, T 〉;L).

Then for every u0 ∈ L the problem (P) has the unique weak solution
u ∈ C([0, T ];L) given with

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds , t ∈ [0, T ] ,

where (T (t))t>0 is the semigroup generated by A.

If additionally f ∈ C([0, T ];L) ∩
(

W1,1(〈0, T 〉;L) ∪ L1(〈0, T 〉;V )
)

with V equipped with the graph norm and u0 ∈ V , then the above
weak solution is the classical solution of (P) on [0, T 〉.
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Let u0 ∈ L, f ∈ L1(〈0, T 〉;L) and let

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds , t ∈ [0, T ] ,

be the weak solution of (P).

Then u′,Lu, f ∈ L1(〈0, T 〉;W ′0) and

u′ + Lu = f ,

in L1(〈0, T 〉;W ′0).
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Non-stationary Maxwell system 1/5

Let Ω ⊆ R3 be open and bounded with a Lipshitz boundary Γ,
µ, ε ∈W1,∞(Ω) positive and away from zero, Σij ∈ L∞(Ω; M3(R)),
i, j ∈ {1, 2}, and f1, f2 ∈ L1(〈0, T 〉; L2(Ω; R3)).

We consider a generalized non-stationary Maxwell system

(MS)

{
µ∂tH + rot E + Σ11H + Σ12E = f1

ε∂tE− rot H + Σ21H + Σ22E = f2
in 〈0, T 〉 × Ω ,

where E,H : [0, T 〉 × Ω −→ R3 are unknown functions.
Change of variable

u :=

[
u1

u2

]
=

[√
µH√
εE

]
, c :=

1
√
µε
∈W1,∞(Ω) ,

turns (MS) to the Friedrichs system

∂tu + Lu = F ,
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Non-stationary Maxwell system 2/5

with

A1 := c


0 0 0

0 0 0 −1
0 1 0

0 0 0
0 0 1 0
0 −1 0

 , A2 := c


0 0 1

0 0 0 0
−1 0 0

0 0 −1
0 0 0 0
1 0 0

 ,

A3 := c


0 −1 0

0 1 0 0
0 0 0

0 1 0
−1 0 0 0
0 0 0

 , F =

[
1√
µ f1

1√
ε

f2

]
, C := . . . .

(F1) and (F2) are satisfied (with change v := e−λtu for large λ > 0, if
needed)
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Non-stationary Maxwell system 3/5

The spaces involved:

L = L2(Ω; R3)× L2(Ω; R3) ,

W = L2
rot(Ω; R3)× L2

rot(Ω; R3) ,

W0 = L2
rot,0(Ω; R3)× L2

rot,0(Ω; R3) = ClWC∞c (Ω; R6) ,

where L2
rot(Ω; R3) is the graph space of the rot operator.

The boundary condition
ν × E|Γ = 0

corresponds to the following choice of spaces V, Ṽ ⊆W :

V = Ṽ = {u ∈W : ν × u2 = 0}
= {u ∈W : ν × E = 0}
= L2

rot(Ω; R3)× L2
rot,0(Ω; R3) .
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Non-stationary Maxwell system 4/5

Theorem

Let E0 ∈ L2
rot,0(Ω; R3),H0 ∈ L2

rot(Ω; R3) and let
f1, f2 ∈ C([0, T ]; L2(Ω; R3)) satisfy at least one of the following
conditions:

f1, f2 ∈W1,1(〈0, T 〉; L2(Ω; R3));

f1 ∈ L1(〈0, T 〉; L2
rot(Ω; R3)), f2 ∈ L1(〈0, T 〉; L2

rot,0(Ω; R3)).

Then the abstract initial-boundary value problem

µH′ + rot E + Σ11H + Σ12E = f1

εE′ − rot H + Σ21H + Σ22E = f2

E(0) = E0

H(0) = H0

ν × E|Γ = 0

,
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Krešimir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems
Theory for non-stationary systems

Possible further research

Abstract Cauchy problem
Examples
Complex spaces

Non-stationary Maxwell system 5/5

Theorem

...has unique classical solution given by[
H
E

]
(t) =

[
1√
µI 0

0 1√
ε
I

]
T (t)

[√
µH0√
εE0

]

+

[
1√
µI 0

0 1√
ε
I

]∫ t

0

T (t− s)

[
1√
µ f1(s)

1√
ε

f2(s)

]
ds , t ∈ [0, T ] ,

where (T (t))t>0 is the contraction C0-semigroup generated by −L.

K. B., M. Erceg, Non-stationary abstract Friedrichs systems via
semigroup theory, under review
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Other examples

Symmetric hyperbolic system
∂tu +

d∑
k=1

∂k(Aku) + Cu = f in 〈0, T 〉 ×Rd

u(0, ·) = u0

,

Non-stationary div-grad problem
∂tq +∇p = f1 in 〈0, T 〉 × Ω , Ω ⊆ Rd ,

1

c20
∂tp+ div q = f2 in 〈0, T 〉 × Ω ,

p|∂Ω
= 0 , p(0) = p0 , q(0) = q0

Wave equation{
∂ttu− c24u = f in 〈0, T 〉 ×Rd

u(0, ·) = u0 , ∂tu(0, ·) = u1
0

.
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u(0, ·) = u0

,

Non-stationary div-grad problem
∂tq +∇p = f1 in 〈0, T 〉 × Ω , Ω ⊆ Rd ,

1

c20
∂tp+ div q = f2 in 〈0, T 〉 × Ω ,

p|∂Ω
= 0 , p(0) = p0 , q(0) = q0

Wave equation{
∂ttu− c24u = f in 〈0, T 〉 ×Rd

u(0, ·) = u0 , ∂tu(0, ·) = u1
0

.
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Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L′ ≡ L its antidual, D ⊆ L,
L, L̃ : L −→ L linear operators that satisfy (T1)–(T3) (or T3’ instead of
T3).

Technical differences with respect to the real case, but results remain the
same. . .

For the classical Friedrichs operator we require

(F1) matrix functions Ak are selfadjoint: Ak = A∗k ,

(F2) (∃µ0 > 0) C + C∗ +
d∑
k=1

∂kAk ≥ 2µ0I (ae on Ω) ,

and again (F1)–(F2) imply (T1)–(T3).

Krešimir Burazin Non-stationary Friedrichs systems



Stationary Friedrichs systems
Theory for non-stationary systems

Possible further research

Abstract Cauchy problem
Examples
Complex spaces

Friedrichs systems in a complex Hilbert space

Let L be a complex Hilbert space, L′ ≡ L its antidual, D ⊆ L,
L, L̃ : L −→ L linear operators that satisfy (T1)–(T3) (or T3’ instead of
T3).

Technical differences with respect to the real case, but results remain the
same. . .

For the classical Friedrichs operator we require

(F1) matrix functions Ak are selfadjoint: Ak = A∗k ,

(F2) (∃µ0 > 0) C + C∗ +
d∑
k=1

∂kAk ≥ 2µ0I (ae on Ω) ,

and again (F1)–(F2) imply (T1)–(T3).
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Application to Dirac system 1/2

We consider the Cauchy problem

Lu︷ ︸︸ ︷
(DS)


∂tu +

3∑
k=1

Ak∂ku + Cu = f in 〈0, T 〉 ×R3 ,

u(0) = u0 ,

where u : [0, T 〉 ×R3 −→ C4 is an unknown function, u0 : R3 −→ C4,
f : [0, T 〉 ×R3 −→ C4 are given, and

Ak :=

[
0 σk
σk 0

]
, k ∈ 1..3 , C :=

[
c1I 0
0 c2I

]
,

where

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
, σ3 :=

[
1 0
0 −1

]
,

are Pauli matrices, and c1, c2 ∈ L∞(R3; C). . . . (F1)–(F2)
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Application to Dirac system 2/2

Theorem

Let u0 ∈W and let f ∈ C([0, T ]; L2(R3; C4)) satisfies at least one of the
following conditions:

f ∈W1,1(〈0, T 〉; L2(R3; C4));

f ∈ L1(〈0, T 〉;W ).

Then the abstract Cauchy problem
∂tu +

3∑
k=1

Ak∂ku + Cu = f

u(0) = u0

has unique classical solution given with

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds , t ∈ [0, T ] ,

where (T (t))t>0 is the contraction C0-semigroup generated by −L.
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Time-dependent coefficients

The operator L depends on t (i.e. the matrix coefficients Ak and C
depend on t if L is a classical Friedrichs operator):{

u′(t) + L(t)u(t) = f(t)

u(0) = u0

.

Semigroup theory can treat time-dependent case, but conditions
that ensure existence/uniqueness result are rather complicated to
verify. . .
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Semilinear problem

Consider {
u′(t) + Lu(t) = f(t, u(t))

u(0) = u0

,

where f : [0, T 〉 × L −→ L.

semigroup theory gives existence and uniqueness of solution

it requires (locally) Lipshitz continuity of f in variable u

if L = L2 it is not appropriate assumption, as power functions do
not satisfy it; L = L∞ is better. . .
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Banach space setting

Let L be a reflexive complex Banach space, L′ its antidual, D ⊆ L,
L, L̃ : D −→ L′ linear operators that satisfy a modified versions of
(T1)–(T3), e.g.

(T1) (∀ϕ,ψ ∈ D) L′〈 Lϕ,ψ 〉L = L′〈 L̃ψ, φ 〉L .

Technical differences with Hilbert space case, but results remain
essentially the same for the stationary case. . .

Problems:

in the classical case (F1)–(F2) need not to imply (T2) and (T3):
instead of (T3) we get

Lp′〈 (L+ L̃)ϕ,ϕ 〉Lp ≥ ‖ϕ‖L2

for semigroup treatment of non-stationary case we need to have
L : D ⊆ L −→ L
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Other. . .

regularity of the solution

application to new examples

numerical treatment

M. Hochbruck, T. Pažur, A. Schulz, E. Thawinan, C. Wieners,
Efficient time integration for discontinuous Galerkin
approximations of linear wave equations, Technical report,
Karlsruhe Institute of Technology, 2013
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Good luck Deutschland
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