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Scalar first order pde

Let © C R? open and u, — 0 in LY, (Q) satisfies
b-Vun+ cun = fn,
where b € C'(Q; R%), ¢ € C(Q), and f,, — 0 in H_1(Q).

loc
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Scalar first order pde

Let © C R? open and u, — 0 in LY, (Q) satisfies
b Vun, + cun = fn,
where b € C'(Q; R%), ¢ € C(Q), and f,, — 0 in H_1(Q).

loc

Theorem (Tartar, 1990)

If u, — 0 in L} (€; C"), then there exist a subsequence (u,) and
1€ M(Q x 8971 M, (C)) such that for any @1, 2 € Ce(Q) and 1 € C(S™1)
we have

im [ (pm@)e m@))w(é—') dE = (1, 012 W)

n’ Jrd

Measure p we call the H-measure corresponding to the (sub)sequence (uy).
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Scalar first order pde

Let © C R? open and u, — 0 in LY, (Q) satisfies
b Vun, + cun = fn,
where b € C'(Q; R%), ¢ € C(Q), and f,, — 0 in H_1(Q).

loc

Theorem (Tartar, 1990)

If u, — 0 in L} (€; C"), then there exist a subsequence (u,) and
1€ M(Q x 8971 M, (C)) such that for any @1, 2 € Ce(Q) and 1 € C(S™1)
we have

im [ (pm@)e m@))w(é—') dE = (1, 012 W)

n’ Jrd

Measure p we call the H-measure corresponding to the (sub)sequence (uy).

[~ Un
What we can tell about (the support) of u?
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Localisation principle

Theorem (Tartar, 1990)

Let u, — 0 in LE (Q; C"), and let for a given m € N

Z Oa(A%un) — 0 strongly in H; ;7' (€;C?),

le|<m
where A% € C(Q2; Mgx-(C)), then for the associated H-measure p we have

p:m"lJ'T =0,

where

Prr(x,€) == ) (2r)"EA%(X), (x,§) € QxS

|a|=m

3111



Localisation principle

Theorem (Tartar, 1990)

Let u, — 0 in LE (Q; C"), and let for a given m € N

Z Oa(A%un) — 0 strongly in H; ;7' (€;C?),

le|<m
where A% € C(Q2; Mgx-(C)), then for the associated H-measure p we have

pprll'T =0,

where

Prr(x,€) == ) (2r)"EA%(X), (x,§) € QxS

lax|=m

div (bu,) + (¢ —divb)u, = fn = (£-b)u=0
——
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Propagation principle for b - Vu, + cu, = fn

If in addition we assume:

o fn—0in L3(Q) (v ~ (un, f), thus p = ')

e bec X'(RY) := {b €8 :kbe Ll(Rd)}, where k(€) := (1 + [27€|?)2
then we have

Theorem (Tartar, 1990)

(VO e CLQxS™™™) (4, {®,p}) + ((—divb + 2Rec), ®) = (2Rev'?, D)

Poisson bracket: {1, p} := V& - Ve — Vixtp - VEp

4111



Propagation principle for b - Vu, + cu,

If in addition we assume:

o fo—0in L3 (Q) (v ~ (n, fn), thus p = v'1)

o be X'(RY) = {b €S kbe Ll(Rd)}, where k(€) := (1 + |27€[?)%
then we have

Theorem (Tartar, 1990)

(VO e CLQxS™™™) (4, {®,p}) + ((—divb + 2Rec), ®) = (2Rev'?, D)

Poisson bracket: {1, p} := V& - Ve — Vixtp - VEp

Conclusion: Oscillations and concentration effects propagate along
bicharacteristic rays defined by

dx

ax _ e
ds Vep
e :
ds = VP

4111



Second commutation lemma

Fourier multiplier: Ayu := (ya)Y; for ¢ € L= (R?) we have A, € L(L*(R?))
Operator of multiplication: B,u := @u; for ¢ € L°(R%) we have

B, € L(L*(R%)

Commutator: C := [Ay, By] = Ay B, — By Ay

xR = {ues kM ae LRY) k@) = (1+ 2ng)?

Theorem (Tartar, 1990)

Let ) € C(S?1) and ¢ € X' (R?), then C is continuous from L?(R?) to
H*(R%), and up to a compact operator on L?(R?) we have

8]-0 = AngEzZBVx¢ 9
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Fractional H-measures

e surface: S471 = {5 eERY: 243+ 462 = 1},
e curves: RT 35— sp e R\ {0} (n € 8¢71)
e projection: 7 : R%\ {0} — 8971,

() = %

Theorem

If u, — 0 in L}, .(€; C"), then there exist a subsequence (u,) and
€ M(Q x 871 M, (C)) such that for any ¢1,p2 € Co(Q) and 1 € C(S41)
we have

n'

lim [ (P10 (6) ® B2t (€)) (¥ 0 m)(€) dE = (1, 152 B 1)
R4

Measure p we call the H-measures corresponding to the (sub)sequence (uy).

<
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Fractional H-measures

a1 a2 ad “min

2 2 2
e surface: S%°1 ::{EeRdzg—l—l-g—Q—l-----l-i’i: L },a€<071]d

e curvess RT3 s — diag{s“fll,...,sﬁ}n eR\ {0} (ne€Q)
e projection: 7o : R\ {0} — Q,

where s is implicitly given.

If u, — 0 in LY (Q; C"), then there exist a subsequence (u,) and
g € M(Q x 8“1 M, (C)) such that for any ¢1, 2 € Ce(R) and ¢ € C(Q)
we have

lim [ (1 (€) © Fat (€) ) (¥ 0 7Q)(€) d€ = (g, 172 W)

n’ Jrd

Measure pu, we call the fractional H-measure corresponding to the
(sub)sequence (uy).
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Fractional H-measures

Qq Qmin

2 2 2
) surface:Q::{ﬁeRd:i—ll—i—%-i-“'—F&—d: L },ae(O,l}d

e curves: RT 55— diag{sf%l7 .. .,s‘%d}'r] € R? \ {0} (n€Q)
e projection: 7o : R\ {0} — Q,

0 = & ce gdl ,
@ (s@)%’ s(&)oﬁ)

where s is implicitly given.

If u, — 0 in LY (Q; C"), then there exist a subsequence (u,) and
g € M(Q x S M, (C)) such that for any ¢1, 2 € Ce(R) and ¢ € C(Q)
we have

tim [ (G10(8) © 2t (€)) (6 0 Q) (€) dE = {piq, 91028 ¥)

n!

Measure pu, we call the fractional H-measure corresponding to the
(sub)sequence (uy).

a1 =--r=ag=1

—> H-measure
o] = ,Oé2 =

ag=1 = parabolic H-measure [Antoni¢, Lazar, '07]

N
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Example (oscillations)

Let k € R?\ {0} and let us define

() = @7 OR ) g 12 (RY).
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Example (oscillations)

Let k € R?\ {0} and let us define

() = @7 OR ) g 12 (RY).

H-measure:
n(x, &) = A(X)5<1,0,.4.,0)(§)

Fractional H-measure (with oq = 3, ap = -+ = g = 1):

IJ’Q (X7 E) = )\(X)(;.".Q (k)
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Second commutation lemma (generalisation)

Fourier multiplier: Ayu := (y)Y; for ¢ € L= (R?) we have A, € L(L*(R?))
Operator of multiplication: Byu := @u; for ¢ € L°(R%) we have

B, € L(L*(R%)

Commutator: C' := [Ay, By] = Ay B, — By Ay

1
2

X™(RY) = {u €S ke Ll(Rd)} k(€)= (1+ [20€))

Let ¢ € C(S?1) and ¢ € X' (R?), then C is continuous from L?(R?) to
H*(R?), and up to a compact operator on L?(R?) we have

85C = Ag 9B

where 1[) =1 oT.
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Second commutation lemma (generalisation)

Fourier multiplier: Ayu := (ya)Y; for ¢ € L°(R?) we have Ay € L(L?(R?))
Operator of multiplication: Byu := @u; for ¢ € L°(R%) we have

B, € L(L*(R%))

Commutator: C' := [Ay, B,] = Ay B, — By Ay

XPeRY) = {ues ha e LR L ka(€) = LHIa]" el
H**(RY) := {u €S ke L2(Rd)}

For m € 0..d we assume a1, ...,am € (0,1), am+1 =+ = aqg = 1. We also
use x = (X,x'), x = (z!,...,2™), x' = (z™*,..., z%).

Theorem

Let ip € C1(S*™1) and ¢ € X*(R?), then C' is continuous from L?(R?) to
H*(R%), and up to a compact operator on L2(R?%) we have
aj JC = A(?ﬂ'i{j)aJ vg/qjijx,‘b .

27i

where ’(Z} =1 omg.
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Example 1/3

Let us consider
10" + (augy)es = [T iINR X R,
where a € X3 (R?) is real and f, — 0 in L2(R?). In addition, let us
assume u7, — 0 in L2(R?).
We study a fractional H-measure with o = (3, 1), i.e. on the
62

Q'.. T2+Z:1.

We want to derive a transport equation for the corresponding fractional
H-measure p associated to (u,).
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Example 1/3

Let us consider
10" + (augy)es = [T iINR X R,

where a € X3 (R?) is real and f, — 0 in L2(R?). In addition, let us
assume u7, — 0 in L2(R?).
We study a fractional H-measure with o = (3, 1), i.e. on the

62

Q'.. T2+Z:1.

We want to derive a transport equation for the corresponding fractional
H-measure p associated to (u,).

For ¢ € C*(Q) and ¢ € CL(R?) we first apply B,.A, on the equation above,
and then take the scalar product in L?(R?) by u}:

(i¢Pyuy [ uz) + (PPy(a(@)tas)e | ue) = (PP f | ua ).
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Example 1/3

Let us consider
10" + (augy)es = [T iINR X R,
where a € X3 (R?) is real and f, — 0 in L2(R?). In addition, let us
assume u7, — 0 in L2(R?).
We study a fractional H-measure with o = (3, 1), i.e. on the
62

Q'.. T2+Z:1.

We want to derive a transport equation for the corresponding fractional
H-measure p associated to (u,).

For ¢ € C*(Q) and ¢ € CL(R?) we first apply B,.A, on the equation above,
and then take the scalar product in L?(R?) by u}:

(i¢Pyuy [ uz) + (PPy(a(@)tas)e | ue) = (PP f | ua ).

After some more calculation (mostly using partial integration), on the limit we
get
4(p, au i) — (, pOzarh) — h}?( ©0z[Ayp, Baluge | uge) = 0.
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Example 2/3

By the Second commutation lemma we have
hm< Lpaz [A¢J7 Ba]u;x | u;x > = hm( Lpgagzzamau’:x | u:x >
=1lim( p(£0°Y) o wodpaul, | uly )

:<,LL, Lp@za£851/~2> ’
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Example 2/3

By the Second commutation lemma we have
lim( 90, [ Ay, Balul | ul,) =lim( g€ 00,aul, | ul,)
=lim(p(£0°)) o medraul, | uz, )
=(u, 0z ak0*P)
so finally we obtain

A, adepth) — (1, Ozarh) — (1, 90=a€0°D) .
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Example 2/3

By the Second commutation lemma we have
lim( 0, [ Ay, Balul, | ) =lim(p€0*d0,aul, | i)
=lim(p(£0°)) o medraul, | uz, )
=(u, 0z ak0*P)

so finally we obtain

A, adepth) — (1, Ozarh) — (1, 90=a€0°D) .

Now we want to rewrite the above equality in terms of the principle symbol
p(t, x;7, &) == 2n7 — 167*¢*a. Taking U := 1) we have

<€%, {w,p}> + <£ﬁ wazp> (¥, p} = 9 Wdup — 0, W0%p).
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Example 2/3

By the Second commutation lemma we have
lim( 90, [ Ay, Balul | ul,) =lim( g€ 00,aul, | ul,)
=lim(p(£0°)) o medraul, | uz, )
=(u, 0z ak0*P)
so finally we obtain

A, adepth) — (1, Ozarh) — (1, 90=a€0°D) .

Now we want to rewrite the above equality in terms of the principle symbol
p(t, x;7, &) == 2n7 — 167*¢*a. Taking U := 1) we have

<€3,{\1v p}> <£’L\If@z> ({¥,p} = 0°Wdup — 0, WOp).

Substituting ¥ by 31 we get

30%(5 — a?)
(1, {9, p}) + <M, ‘I’Wf&:p>

where a = (1 — —52)’%
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Example 2/3

amu<85p—(%+i+m)p€> —VT’Eu-<[8Sp]—([aS ]-n)n) =0,

where n = a1 £/4] is the outwardly directed unit normal vector to Q.
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