Exploring Limit Behaviour of Non-quadratic Terms via H-measures. Application to Small Amplitude Homogenisation.

Martin Lazar University of Dubrovnik

September 5, 2016 Dubrovnik

Outline

Introduction

Exploring non-quadratic terms

Application to small amplitude homogenisation for a stationary diffusion problem

- introduced around 1990. by L. Tartar and P. Gérard
- lacktriangle Radon measures associated to bounded $L^2({f R}^d)$ sequences

$$\mu \sim (u_n)$$

- \blacktriangleright express limit of $\int u_n^2$
- ▶ a microlocal defect tool

4□ > 4□ > 4□ > 4□ > 4□ > 4□

- introduced around 1990. by L. Tartar and P. Gérard
- ${\color{red}\blacktriangleright}$ Radon measures associated to bounded $L^2({\bf R}^d)$ sequences

$$\mu \sim (u_n)$$

- \blacktriangleright express limit of $\int u_n^2$
- ► a microlocal defect tool
 - include dual variable (ξ) , in addition to the physical one (x),

- introduced around 1990. by L. Tartar and P. Gérard
- ${\blacktriangleright}$ Radon measures associated to bounded $L^2({\bf R}^d)$ sequences

$$\mu \sim (u_n)$$

- express limit of $\int u_n^2$
- ▶ a microlocal defect tool
 - include dual variable (ξ) , in addition to the physical one (x),
 - measure deflection of weak from strong ${\rm L}^2$ convergence.

- introduced around 1990. by L. Tartar and P. Gérard
- lacktriangle Radon measures associated to bounded $L^2({f R}^d)$ sequences

$$\mu \sim (u_n)$$

- express limit of $\int u_n^2$
- a microlocal defect tool
 - include dual variable (ξ) , in addition to the physical one (x),
 - measure deflection of weak from strong ${\rm L}^2$ convergence.

$$(u_n)$$
 - bounded in $L^2(\mathbf{R}^d)$, $u_n \longrightarrow 0$.

$$\mu = 0 \Longleftrightarrow u_n \longrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d)$$

Theorem 1. (Existence) ^a

Let $u_n \to 0$ in $L^2(\mathbf{R}^d)$. There exists a subsequence $(\mathsf{u}_{n'})$ and a non-negative Radon measure μ_H on $\mathbf{R}^d \times S^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$, $\psi \in C(S^{d-1})$:

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_n)(\mathbf{x}) \overline{(\varphi_2 u_n)(\mathbf{x})} \, d\mathbf{x} = \langle \mu_H, \varphi \boxtimes \psi \rangle$$

$$= \int_{\mathbf{R}^d \times S^{d-1}} \varphi \, \psi(\boldsymbol{\xi}) \, d\mu(\mathbf{x}, \boldsymbol{\xi}) .$$

where: \mathcal{A}_{ψ} is the (Fourier) multiplier operator $\mathcal{F}(\mathcal{A}_{\psi}u)(\boldsymbol{\xi}) = \psi(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|})\hat{u}(\boldsymbol{\xi})$, $\varphi = \varphi_1 \bar{\varphi}_2$.

Measure μ_H we call H-measure associated to the (sub)sequence (u_n) .

 $^{^{}a}\mathrm{LUC}$ Tartar: H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations, Proceedings of the Royal Society of Edinburgh, 115A (1990) 193–230.

Theorem 1. (Existence) ^a

Let $u_n \rightharpoonup \mathbf{u}$ in $L^2(\mathbf{R}^d)$. There exists a subsequence $(\mathbf{u}_{n'})$ and a non-negative Radon measure μ_H on $\mathbf{R}^d \times S^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d), \ \psi \in C(S^{d-1})$:

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_n)(\mathbf{x}) \overline{(\varphi_2 u_n)(\mathbf{x})} d\mathbf{x} = \langle \mu_H, \varphi \boxtimes \psi \rangle + \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u)(\mathbf{x}) \overline{(\varphi_2 u)(\mathbf{x})} d\mathbf{x}.$$

where: \mathcal{A}_{ψ} is the (Fourier) multiplier operator $\mathcal{F}(\mathcal{A}_{\psi}u)(\boldsymbol{\xi}) = \psi(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|})\hat{u}(\boldsymbol{\xi})$, $\varphi = \varphi_1 \bar{\varphi}_2$.

Measure μ_H we call H-measure associated to the (sub)sequence (u_n) .

^aLuc Tartar: *H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,* Proceedings of the Royal Society of Edinburgh, **115A** (1990) 193–230.

Theorem 1. (Existence) ^a

Let $u_n \rightharpoonup u$ in $L^2(\mathbf{R}^d)$. There exists a subsequence $(\mathsf{u}_{n'})$ and a non-negative Radon measure μ_H on $\mathbf{R}^d \times S^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d), \ \psi \in C(S^{d-1})$:

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_n)(\mathbf{x}) \overline{(\varphi_2 u_n)(\mathbf{x})} \, d\mathbf{x} = \langle \mu_H, \varphi \boxtimes \psi \rangle
+ \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u)(\mathbf{x}) \overline{(\varphi_2 u)(\mathbf{x})} \, d\mathbf{x}.$$

where: \mathcal{A}_{ψ} is the (Fourier) multiplier operator $\mathcal{F}(\mathcal{A}_{\psi}u)(\boldsymbol{\xi}) = \psi(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|})\hat{u}(\boldsymbol{\xi})$, $\varphi = \varphi_1 \bar{\varphi}_2$.

Measure μ_H we call H-measure associated to the (sub) sequence $(\mathsf{u}_n).$

The theorem is also valid:

- ▶ for u_n of class L^2_{loc} , but the associated H-measure does not need to be finite, test functions $\varphi \in C_c(\mathbf{R}^d)$,
- ▶ for vector functions $\mathbf{u}_n \in \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r)$, the H-measure is a positive semi-definite matrix Radon measure.

^aLuc Tartar: *H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,* Proceedings of the Royal Society of Edinburgh, **115A** (1990) 193–230.

• Compensated compactness 1 - if $u_{n}, v_{n} \longrightarrow 0$, does $u_{n}v_{n} \longrightarrow 0$?

2

3

4

 $^{^{1}\}mathrm{L}$. Tartar 1990; P. Gérard 1991; E. Yu. Panov 2011; N. Antonić, M. Erceg & M.L. 2015

- Compensated compactness 1 if $u_n, v_n \longrightarrow 0$, does $u_n v_n \longrightarrow 0$?
- Homogenisation ²
 - defect measures describe limits of quadratic terms.

 $^{^1\}mathrm{L}$. Tartar 1990; P. Gérard 1991; E. Yu. Panov 2011; N. Antonić, M. Erceg & M.L. 2015

²L. Tartar 1990; N. Antonić & M. Vrdoljak 2009; N. Antonić & M. L. 2008, 2010

⁴

- Compensated compactness 1 if $u_n, v_n \longrightarrow 0$, does $u_n v_n \longrightarrow 0$?
- Homogenisation ²

 defect measures describe limits of quadratic terms.
- Velocity averaging ³ under which conditions $\int_{\mathbf{R}_y} u_n(x,y) \rho(y) dy \longrightarrow 0$ in L²?

 $^{^{3}\}text{P.}$ Gérard 1991; E. Yu. Panov 2009, 2010; M. L. & D. Mitrović 2011, 2012

 $^{^1\}mathrm{L}$. Tartar 1990; P. Gérard 1991; E. Yu. Panov 2011; N. Antonić, M. Erceg & M.L. 2015

²L. Tartar 1990; N. Antonić & M. Vrdoljak 2009; N. Antonić & M. L. 2008, 2010

- Compensated compactness 1 if $u_n, v_n \longrightarrow 0$, does $u_n v_n \longrightarrow 0$?
- Homogenisation ²
 defect measures describe limits of quadratic terms.
- Velocity averaging 3 under which conditions $\int_{\mathbf{R}_y} u_n(x,y) \rho(y) dy \longrightarrow 0$ in L^2 ?
- (Averaged) control theory ⁴ under which conditions can we control the averaged quantity $\int_{\mathbf{R}_y} u_n(x,y) \rho(y) dy$?

. . .

 $^{^{1}\}mathrm{L}$. Tartar 1990; P. Gérard 1991; E. Yu. Panov 2011; N. Antonić, M. Erceg & M.L. 2015

²L. Tartar 1990; N. Antonić & M. Vrdoljak 2009; N. Antonić & M. L. 2008, 2010

³P. GÉRARD 1991; E. YU. PANOV 2009, 2010; M. L. & D. MITROVIĆ 2011, 2012

⁴N. Burq & P. Gérard 1997; B. Dehman, M. Léautaud & J. Le Rousseau 2014; M. L. & E. Zuazua 2014

H-measures – restricted to quadratic terms of ${\rm L}^2$ sequences.

H-distributions: 5

- ▶ a generalisation of the concept to the L^p , $p \ge 1$ framework.
- explore products of a form

$$\int u_n v_n \quad , u_n \in L^p, v_n \in L^{p'}.$$

The aim of the paper: 6

- to deal with higher order terms

$$\int u_n^p, \quad u_n \in L^p.$$

 $^{^6\}mathrm{M.L.}$ Exploring Limit Behaviour of Non-quadratic Terms via H-measures... *Appl. Anal.* (2016), to appear

 $^{^5}$ N. Antonić, D. Mitrovic, H-distributions – an extension of the H-measures in L^p-L^q setting, *Abstr. Appl. Anal.* **2011** (2011), 12 pp.

H-measures – restricted to quadratic terms of ${\rm L}^2$ sequences.

H-distributions: 5

- ▶ a generalisation of the concept to the L^p , $p \ge 1$ framework.
- explore products of a form

$$\int u_n v_n \quad , u_n \in L^p, v_n \in L^{p'}.$$

The aim of the paper: 6

- to deal with higher order terms

$$\int u_n^p, \quad u_n \in L^p.$$

More precisely

$$\lim_{n} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{1}}(\varphi_{1}u_{n})(\mathbf{x}) \mathcal{A}_{\psi_{2}}(\varphi_{2}u_{n})(\mathbf{x}) \dots \mathcal{A}_{\psi_{p}}(\varphi_{p}u_{n})(\mathbf{x}) d\mathbf{x} = ?$$

 $^{^6\}mathrm{M.L.}$ Exploring Limit Behaviour of Non-quadratic Terms via H-measures... Appl. Anal. (2016), to appear



 $^{^5}$ N. Antonić, D. Mitrovic, H-distributions – an extension of the H-measures in L^p-L^q setting, *Abstr. Appl. Anal.* **2011** (2011), 12 pp.

Split the integrand into two parts

$$\int_{\mathbf{R}^d} \underbrace{\mathcal{A}_{\psi_1}(\varphi_1 u_n) \dots \mathcal{A}_{\psi_{p/2}}(\varphi_{p/2} u_n)}_{v_n} \underbrace{\mathcal{A}_{\psi_{p/2+1}}(\varphi_{p/2+1} u_n) \dots \mathcal{A}_{\psi_p}(\varphi_p u_n)}_{w_n} d\mathbf{x}$$

Theorem 2.

Let $u_n \longrightarrow 0$ in $L^{p+\varepsilon}(\mathbf{R}^d), p \in \mathbf{N}, \varepsilon > 0$.

Then for any choice of test functions $\varphi_i \in C_0(\mathbf{R}^d), \psi_i \in C^d(S^{d-1}), i = 1..p$ it holds

$$\lim_{n} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{1}}(\varphi_{1}u_{n})(\mathbf{x}) \cdot \ldots \cdot \mathcal{A}_{\psi_{p}}(\varphi_{p}u_{n})(\mathbf{x}) d\mathbf{x} = \langle \mu_{vw}, \varphi \boxtimes 1 \rangle + \int_{\mathbf{R}^{d}} (\varphi v)(\mathbf{x}) \overline{w}(\mathbf{x}) d\mathbf{x},$$

where:

- $\varphi = \prod_{i=1}^p \varphi_i$,
- μ_{vw} off-diagonal component of the matrix H-measure associated to $(v_n v, w_n w)$.

The proof is based on:

- ▶ the Marcinkiewicz multiplier theorem
- ▶ the (First) commutation lemma

The proof is based on:

- ▶ the Marcinkiewicz multiplier theorem A_{ψ} is a bounded operator on $L^p(\mathbf{R}^d)$, for any $p \in \langle 1, \infty \rangle$, $\psi \in C^d(S^{d-1})$.
- ▶ the (First) commutation lemma

The proof is based on:

- ▶ the Marcinkiewicz multiplier theorem A_{ψ} is a bounded operator on $L^p(\mathbf{R}^d)$, for any $p \in \langle 1, \infty \rangle$, $\psi \in C^d(S^{d-1})$.
- ► the (First) commutation lemma

$$u_n \longrightarrow 0 \text{ in } L^2(\mathbf{R}^d) \cap L^p(\mathbf{R}^d), \ p \in \langle 2, \infty].$$

$$C = \mathcal{A}_{\psi} \varphi - \varphi \mathcal{A}_{\psi} \text{ the commutator determined by } \varphi \in C_0(\mathbf{R}^d),$$

$$\psi \in C^d(S^{d-1}).$$

Then:

$$Cu_n \longrightarrow 0 \text{ in } L^q(\mathbf{R}^d), q \in [2, p\rangle.$$

The proof is based on:

- ▶ the Marcinkiewicz multiplier theorem A_{ψ} is a bounded operator on $L^p(\mathbf{R}^d)$, for any $p \in \langle 1, \infty \rangle$, $\psi \in C^d(S^{d-1})$.
- the (First) commutation lemma Let:

$$\begin{array}{c} u_n \longrightarrow 0 \text{ in } \mathrm{L}^2(\mathbf{R}^d) \cap \mathrm{L}^p(\mathbf{R}^d), \, p \in \langle 2, \infty]. \\ C = \mathcal{A}_{\psi} \varphi - \varphi \mathcal{A}_{\psi} \text{ the commutator determined by } \varphi \in \mathrm{C}_0(\mathbf{R}^d), \\ \psi \in \mathrm{C}^d(\mathrm{S}^{d-1}). \end{array}$$

Then:

$$Cu_n \longrightarrow 0 \text{ in } L^q(\mathbf{R}^d), q \in [2, p\rangle.$$

 $\blacktriangleright u_n \in \mathcal{L}^p \Longrightarrow v_n, w_n \in \mathcal{L}^2$

The periodic setting

Let (u_n) be a sequence of periodic functions

$$u_n(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{Z}^d} \hat{u}_{\mathbf{k}} e^{2\pi i n \mathbf{k} \cdot \mathbf{x}} \longrightarrow 0.$$

The associated H-measure:

$$\mu(\mathbf{x}, \boldsymbol{\xi}) = \sum_{\mathbf{k}} |\hat{u}_{\mathbf{k}}|^2 \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}}(\boldsymbol{\xi}) \lambda(\mathbf{x}).$$

Can we express $\lim \int \mathcal{A}_{\psi_1}(\varphi_1 u_n) \dots \mathcal{A}_{\psi_p}(\varphi_p u_n)$ explicitly?

The periodic setting

Let (u_n) be a sequence of periodic functions

$$u_n(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{Z}^d} \hat{u}_{\mathbf{k}} e^{2\pi i n \mathbf{k} \cdot \mathbf{x}} \longrightarrow 0.$$

The associated H-measure:

$$\mu(\mathbf{x}, \boldsymbol{\xi}) = \sum_{\mathbf{k}} |\hat{u}_{\mathbf{k}}|^2 \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}}(\boldsymbol{\xi}) \lambda(\mathbf{x}).$$

Can we express $\lim \int \mathcal{A}_{\psi_1}(\varphi_1 u_n) \dots \mathcal{A}_{\psi_p}(\varphi_p u_n)$ explicitly?

Remark

 $\mathcal{A}_{\psi}u_n$ is a periodic function:

$$\mathcal{A}_{\psi}u_{n}(\mathbf{x}) = \sum_{\mathbf{k}} \hat{u}_{\mathbf{k}} \, \psi(\mathbf{k}) e^{2\pi i n \mathbf{k} \cdot \mathbf{x}}.$$

Specially,

$$v_n(\mathbf{x}) = (\mathcal{A}_{\psi_1} u_n) (\mathcal{A}_{\psi_2} u_n)(\mathbf{x}) = \sum_{\mathbf{j}, \mathbf{k}} \hat{u}_{\mathbf{j}} \, \hat{u}_{\mathbf{k}} \, \psi_1(\mathbf{j}) \psi_2(\mathbf{k}) \, e^{2\pi i n (\mathbf{j} + \mathbf{k}) \cdot \mathbf{x}}$$

$$\longrightarrow \sum_{\mathbf{k}} \hat{u}_{\mathbf{k}} \, \hat{u}_{-\mathbf{k}} \, \psi_1(\mathbf{k}) \psi_2(-\mathbf{k}) \, .$$

Similarly for

$$\overline{w_n}(\mathbf{x}) = (\mathcal{A}_{\psi_3} u_n) (\mathcal{A}_{\psi_4} u_n)(\mathbf{x}).$$

The measure μ_{vw} determined by the sequences $(v_n - v)$ and $(w_n - w)$ reads

$$\mu_{vw} = \sum_{\substack{\mathbf{j}, \mathbf{k} \\ \mathbf{j} + \mathbf{k} \neq \{0\}}} \left(\sum_{\substack{\mathbf{l}, \mathbf{m} \\ |\mathbf{j} + \mathbf{k}|}} \hat{u}_{\mathbf{j}} \, \hat{u}_{\mathbf{k}} \, \hat{u}_{\mathbf{l}} \, \hat{u}_{\mathbf{m}} \, \psi_{1}(\mathbf{j}) \psi_{2}(\mathbf{k}) \psi_{3}(\mathbf{l}) \psi_{4}(\mathbf{m}) \right) \delta_{\substack{\mathbf{j} + \mathbf{k} \\ |\mathbf{j} + \mathbf{k}|}}(\boldsymbol{\xi}) \, \lambda(\mathbf{x}) \,.$$

Taking into account the form of the limits v and w:

$$\lim_{n} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{1}}(\varphi_{1}u_{n})(\mathbf{x}) \cdot \ldots \cdot \mathcal{A}_{\psi_{4}}(\varphi_{4}u_{n})(\mathbf{x}) d\mathbf{x}$$

$$= \sum_{\substack{\mathbf{j},\mathbf{k},\mathbf{l},\mathbf{m} \\ \mathbf{l}+\mathbf{m}=-(\mathbf{j}+\mathbf{k})}} \hat{u}_{\mathbf{j}} \, \hat{u}_{\mathbf{k}} \, \hat{u}_{\mathbf{l}} \, \hat{u}_{\mathbf{m}} \, \psi_{1}(\mathbf{j}) \psi_{2}(\mathbf{k}) \psi_{3}(\mathbf{l}) \psi_{4}(\mathbf{m}) \int_{\mathbf{R}^{d}} \varphi(\mathbf{x}) d\mathbf{x},$$

where $\varphi = \prod_i \varphi_i$.

Explicit formula for general p

Theorem 3.

Let (u_n) be a bounded sequence of periodic functions in $L^{\infty}_{loc}(\mathbf{R}^d)$, $u_n \longrightarrow 0$. For any $p \in \mathbf{N}$, $\varphi_i \in C_c(\mathbf{R}^d)$, $\psi_i \in C^d(S^{d-1})$, i = 1..p it holds

$$\lim_{n} \int_{\mathbf{R}^{d}} \mathcal{A}_{\psi_{1}}(\varphi_{1}u_{n})(\mathbf{x}) \cdot \dots \cdot \mathcal{A}_{\psi_{p}}(\varphi_{p}u_{n})(\mathbf{x}) d\mathbf{x} = \sum_{\mathbf{k}_{i} \in \mathbf{Z}^{d}, \ i=1} \left(\prod_{i=1}^{p} \hat{u}_{\mathbf{k}_{i}} \psi_{i}(\mathbf{k}_{i}) \right) \int_{\mathbf{R}^{d}} \varphi(\mathbf{x}) d\mathbf{x},$$

$$\sum_{i} \mathbf{k}_{i} = 0$$

where $\varphi = \prod_{i=1}^p \varphi_i$.

The theorem:

- easily generalises to a case when each factor in the integrand above is associated to a different sequence $(u_n^i)_n, i=1..p$, just by adjusting the Fourier coefficients on the right hand side;
- incorporates the expression for an H-measure associated to a sequence of periodic functions (case p=2).

Application to a stationary diffusion problem

A sequence of elliptic problems:

$$\begin{cases} -\operatorname{div}\left(\mathbf{A}^{n}\nabla u^{n}\right) = f \in \operatorname{H}^{-1}(\Omega) \\ u^{n} \in \operatorname{H}_{0}^{1}(\Omega), \end{cases} \tag{1}$$

where $\Omega \subseteq \mathbf{R}^d$ is an open, bounded domain.

The coefficients \mathbf{A}^n are taken from the set (with $0 < \alpha < \beta$)

$$\mathcal{M}(\alpha, \beta; \Omega) := \{ \mathbf{A} \in L^{\infty}(\Omega; M_d(\mathbf{R}^d)) : \mathbf{A}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \ge \alpha |\boldsymbol{\xi}|^2, \ \mathbf{A}^{-1}(\mathbf{x}) \boldsymbol{\xi} \cdot \boldsymbol{\xi} \ge \frac{1}{\beta} |\boldsymbol{\xi}|^2 \},$$

Then

$$\mathbf{A}^n \stackrel{H}{\longrightarrow} \mathbf{A}^{\infty} \in \mathcal{M}(\alpha, \beta; \Omega),$$

i.e. for any choice of $f \in H^{-1}(\Omega)$, solutions to (1) satisfy:

$$\begin{split} u^n & \longrightarrow u^\infty & \text{ in } \mathrm{H}^1_0(\Omega) \\ \mathbf{A}^n \nabla u^n & \longrightarrow \mathbf{A}^\infty \nabla u^\infty & \text{ in } \mathrm{L}^2(\Omega) \;, \end{split}$$

where u^{∞} is the solution of (1) with ∞ instead of n.

Small amplitude homogenisation

The coefficients A^n are perturbations of a constant:

$$\mathbf{A}_{\gamma}^{n}(t,\mathbf{x}) = \mathbf{A}_{0} + \gamma \mathbf{A}_{1}^{n}(t,\mathbf{x}) + \gamma^{2} \mathbf{A}_{2}^{n}(t,\mathbf{x}) + \gamma^{3} \mathbf{A}_{3}^{n}(t,\mathbf{x}) + o(\gamma^{3}),$$

where $\mathbf{A}_i^n \stackrel{*}{\longrightarrow} \mathbf{0}$ in $\mathrm{L}^{\infty}(\Omega)$ for any $i \geq 1$.

Assuming $A_0 \in \mathcal{M}(\alpha, \beta; \Omega)$, we have (for small values of γ)

$$\mathbf{A}_{\gamma}^{n} \xrightarrow{H} \mathbf{A}_{\gamma}^{\infty} = \mathbf{A}_{0} + \gamma \mathbf{A}_{1}^{\infty}(t, \mathbf{x}) + \gamma^{2} \mathbf{A}_{2}^{\infty}(t, \mathbf{x}) + \gamma^{3} \mathbf{A}_{3}^{\infty}(t, \mathbf{x}) + o(\gamma^{3}),$$

where the limit $\mathbf{A}_{\gamma}^{\infty}$ is measurable in \mathbf{x} and analytic in γ .

Existing results:

- $A_1^\infty = 0$
- ▶ \mathbf{A}_2^{∞} the limit of a quadratic term in \mathbf{A}_1^n ,
- expressed via H-measure $oldsymbol{\mu} \sim \mathbf{A}_1^n$.

Missing:

- ▶ Higher order correction terms, A_3^{∞} , etc.
 - the limit of expressions involving higher order powers,
 - beyond the scope of H-measures.

Applying expansion in powers of γ .

For an arbitrary $u \in H_0^1(\Omega)$

$$\mathbf{A}_{2}^{\infty}\nabla u = -\lim_{n} \mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \left(\mathbf{A}_{1}^{n} \nabla u \right),$$

where \mathcal{A}_{ψ} is the multiplier operator with the symbol $\Psi(\xi) = \frac{\xi \otimes \xi}{A_0 \xi \cdot \xi}$.

It yields the (existing) expression for A_2^{∞} :

$$\int_{\Omega} \left(\mathbf{A}_{2}^{\infty} \right)_{ij}(\mathbf{x}) \phi(\mathbf{x}) d\mathbf{x} = -\sum_{k,l} \left\langle \mu_{11}^{iklj}, \phi \frac{\xi_{k} \xi_{l}}{\mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}} \right\rangle,$$

with μ_{11} standing for an H-measure (with four indices) associated to ${f A}_1^n$.

Higher order correction terms

Similarly

$$\mathbf{A}_{3}^{\infty}\nabla u = \lim_{n} \left(-\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{2}^{n} \nabla u - \mathbf{A}_{2}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{1}^{n} \nabla u + \mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \left(\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{1}^{n} \nabla u \right) \right),$$

Higher order correction terms

Similarly

$$\mathbf{A}_{3}^{\infty} \nabla u = \lim_{n} \left(-\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{2}^{n} \nabla u - \mathbf{A}_{2}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{1}^{n} \nabla u + \underbrace{\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi}}_{\mathbf{V}_{n}} (\underbrace{\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{1}^{n}}_{\mathbf{W}_{n}} \nabla u) \right),$$

Higher order correction terms

Similarly

$$\mathbf{A}_{3}^{\infty} \nabla u = \lim_{n} \left(-\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{2}^{n} \nabla u - \mathbf{A}_{2}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{1}^{n} \nabla u + \underbrace{\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi}}_{\mathbf{V}_{n}} (\underbrace{\mathbf{A}_{1}^{n} \mathcal{A}_{\Psi} \mathbf{A}_{1}^{n}}_{\mathbf{W}_{n}} \nabla u) \right),$$

providing:

$$\begin{split} \int_{\Omega} \left(\mathbf{A}_{3}^{\infty}\right)^{ij} \varphi \, d\mathbf{x} &= -\langle 2 \mathrm{Re} \, \boldsymbol{\mu}_{12}^{ij}, \varphi \frac{\boldsymbol{\xi} \otimes \boldsymbol{\xi}}{\mathbf{A}_{0} \boldsymbol{\xi} \cdot \boldsymbol{\xi}} \rangle + \langle \mathrm{tr} \boldsymbol{\mu}_{VW}^{ij}, \varphi \boxtimes 1 \rangle \,, \\ \text{where } \, \boldsymbol{\mu}_{12} \sim \left(\mathbf{A}_{1}, \mathbf{A}_{2}\right) \\ \boldsymbol{\mu}_{VW} \sim \left(\mathbf{V}_{n}, \mathbf{W}^{n}\right). \end{split}$$

And so on: $\mathbf{A}_4^{\infty}, \dots$

Periodic setting

Periodic coefficients

$$\mathbf{A}_{i}^{n}(n\mathbf{x}) = \mathbf{A}_{i}(n\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{Z}^{d}} \hat{\mathbf{A}}_{i,\mathbf{k}} e^{2\pi i n \mathbf{k} \cdot \mathbf{x}}, \quad i \in \mathbf{N}$$

We have explicit expressions for H-measures associated to (an arbitrary power of \mathbf{A}^n_i).

Specially:

$$\mathbf{A}_2^{\infty} = -\sum_{\mathbf{k} \in \mathbf{Z}^d} \frac{1}{\mathbf{A}_0 \mathbf{k} \cdot \mathbf{k}} (\hat{\mathbf{A}}_{1,\mathbf{k}} \mathbf{k}) \otimes \hat{\mathbf{A}}_{1,-\mathbf{k}} \mathbf{k}.$$

Periodic setting

Periodic coefficients

$$\mathbf{A}_{i}^{n}(n\mathbf{x}) = \mathbf{A}_{i}(n\mathbf{x}) = \sum_{\mathbf{k} \in \mathbf{Z}^{d}} \hat{\mathbf{A}}_{i,\mathbf{k}} e^{2\pi i n \mathbf{k} \cdot \mathbf{x}}, \quad i \in \mathbf{N}$$

We have explicit expressions for H-measures associated to (an arbitrary power of \mathbf{A}_i^n).

Specially:

$$\mathbf{A}_2^{\infty} = -\sum_{\mathbf{k} \in \mathbf{Z}^d} \frac{1}{\mathbf{A}_0 \mathbf{k} \cdot \mathbf{k}} (\hat{\mathbf{A}}_{1,\mathbf{k}} \mathbf{k}) \otimes \hat{\mathbf{A}}_{1,-\mathbf{k}} \mathbf{k}.$$

and

$$\mathbf{A}_{3}^{\infty} = \sum_{\mathbf{k} \in \mathbf{Z}^{d}} \frac{1}{\mathbf{A}_{0}\mathbf{k} \cdot \mathbf{k}} (\hat{\mathbf{A}}_{1,\mathbf{k}}\mathbf{k}) \otimes \left(-2\hat{\mathbf{A}}_{2,-\mathbf{k}}\mathbf{k} + \sum_{\substack{1,\mathbf{m} \in \mathbf{Z}^{d} \\ \mathbf{k}+1+\mathbf{m}=0}} \frac{\hat{\mathbf{A}}_{1,\mathbf{l}}\mathbf{k} \cdot \mathbf{m}}{\mathbf{A}_{0}\mathbf{m} \cdot \mathbf{m}} \hat{\mathbf{A}}_{1,\mathbf{m}}\mathbf{m} \right).$$

Periodic setting

Similarly:

$$\mathbf{A}_{4}^{\infty} = \sum_{\mathbf{k} \in \mathbf{Z}^{d}} \frac{1}{\mathbf{A}_{0}\mathbf{k} \cdot \mathbf{k}} \left(-2(\hat{\mathbf{A}}_{1,\mathbf{k}}\mathbf{k}) \otimes \hat{\mathbf{A}}_{3,-\mathbf{k}}\mathbf{k} - (\hat{\mathbf{A}}_{2,\mathbf{k}}\mathbf{k}) \otimes (\hat{\mathbf{A}}_{2},-\mathbf{k}) \right)$$

$$+ \sum_{\substack{\mathbf{l},\mathbf{m} \in \mathbf{Z}^{d} \\ \mathbf{k}+\mathbf{l}+\mathbf{m}=0}} \frac{1}{\mathbf{A}_{0}\mathbf{m} \cdot \mathbf{m}} \left(\hat{\mathbf{A}}_{1,\mathbf{l}}\mathbf{k} \cdot \mathbf{m} \left(\hat{\mathbf{A}}_{1,\mathbf{k}}\mathbf{k} \right) \otimes (\hat{\mathbf{A}}_{2,\mathbf{m}}\mathbf{m}) \right)$$

$$+ \hat{\mathbf{A}}_{2,\mathbf{l}}\mathbf{k} \cdot \mathbf{m} \left(\hat{\mathbf{A}}_{1,\mathbf{k}}\mathbf{k} \right) \otimes (\hat{\mathbf{A}}_{1,\mathbf{m}}\mathbf{m}) + \hat{\mathbf{A}}_{1,\mathbf{l}}\mathbf{k} \cdot \mathbf{m} \left(\hat{\mathbf{A}}_{2,\mathbf{k}}\mathbf{k} \right) \otimes (\hat{\mathbf{A}}_{1,\mathbf{m}}\mathbf{m})$$

$$- \sum_{\mathbf{j} \in \mathbf{Z}^{d}} \frac{1}{\mathbf{A}_{0}(\mathbf{j} + \mathbf{k}) \cdot (\mathbf{j} + \mathbf{k})} (\hat{\mathbf{A}}_{1,\mathbf{j}}\mathbf{k} + \hat{\mathbf{A}}_{1,\mathbf{l}}\mathbf{m}) \cdot (\mathbf{j} + \mathbf{k}) (\hat{\mathbf{A}}_{1,\mathbf{k}}\mathbf{k}) \otimes (\hat{\mathbf{A}}_{1,\mathbf{m}}\mathbf{m}) \right)$$

$$1 + \mathbf{m} = -(\mathbf{j} + \mathbf{k})$$

Conclusion

Presented:

- a method for expressing limits of non-quadratic terms by means of original H-measures,
- application to the small amplitude homogenisation problem for a stationary diffusion equation.

S. GUTIÉRREZ, J. MURA Small amplitude homogenization applied to inverse problems *Comput Mech.* 41 (2008) 699-706.

⁷N. ANTONIĆ, M. VRDOLJAK, Parabolic H-convergence and small-amplitude homogenisation, Appl. Analysis 88 (2009) 1493–1508.

⁸NENAD ANTONIĆ, M. L.: Parabolic H-measures, J. Funct. Anal. **265** (2013) 1190–1239.

⁹Luc Tartar, Multi-scale H-measures, *Discrete Cont. Dyn. S. Ser. S* **8** (2015) 77–90.

¹⁰G. ALLAIRE, A. KELLY, Optimal Design of Low-Contrast Two Phase Structures for the Wave Equation, *Math. Models Methods Appl. Sci.* **21(7)** (2011) 1499–1538.

Conclusion

Presented:

- a method for expressing limits of non-quadratic terms by means of original H-measures,
- application to the small amplitude homogenisation problem for a stationary diffusion equation.

Perspectives:

- ▶ non-stationary diffusion problems ⁷ by means of parabolic H-measures, ⁸
- ightharpoonup coefficients ${f A}^n_i$ oscillating on different scales multiscale H-measures, 9
- optimal design problems conducting so far up to the second expansion term. ¹⁰

S. GUTIÉRREZ, J. MURA Small amplitude homogenization applied to inverse problems *Comput Mech.* 41 (2008) 699-706.

⁷N. Antonić, M. Vrdoljak, Parabolic H-convergence and small-amplitude homogenisation, *Appl. Analysis* **88** (2009) 1493–1508.

⁸Nenad Antonić, M. L.: Parabolic H-measures, J. Funct. Anal. **265** (2013) 1190–1239.

⁹Luc Tartar, Multi-scale H-measures, *Discrete Cont. Dyn. S. Ser. S* **8** (2015) 77–90.

¹⁰G. ALLAIRE, A. KELLY, Optimal Design of Low-Contrast Two Phase Structures for the Wave Equation, Math. Models Methods Appl. Sci. 21(7) (2011) 1499–1538.

Conclusion

Presented:

- a method for expressing limits of non-quadratic terms by means of original H-measures,
- application to the small amplitude homogenisation problem for a stationary diffusion equation.

Perspectives:

- ▶ non-stationary diffusion problems ⁷ by means of parabolic H-measures, ⁸
- ightharpoonup coefficients ${f A}_i^n$ oscillating on different scales multiscale H-measures, 9
- optimal design problems conducting so far up to the second expansion term. ¹⁰

Thanks for your attention!

S. GUTIÉRREZ, J. MURA Small amplitude homogenization applied to inverse problems *Comput Mech.* 41 (2008) 699-706.

 $^{^7\}mathrm{N}$. Antonić, M. Vrdoljak, Parabolic H-convergence and small-amplitude homogenisation, *Appl. Analysis* **88** (2009) 1493–1508.

⁸Nenad Antonić, M. L.: Parabolic H-measures, J. Funct. Anal. **265** (2013) 1190–1239.

⁹Luc Tartar, Multi-scale H-measures, *Discrete Cont. Dyn. S. Ser. S* **8** (2015) 77–90.

¹⁰G. ALLAIRE, A. KELLY, Optimal Design of Low-Contrast Two Phase Structures for the Wave Equation, Math. Models Methods Appl. Sci. 21(7) (2011) 1499–1538.