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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem

Multiple state optimal design problem

Q C R open and bounded, f1, ..., fm € L2(£2) given; stationary
diffusion equations with homogenous Dirichlet b. c.:

{ —div (AVu,) = fz i=1

u; € HY(Q) ’ o W
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem

Multiple state optimal design problem

Q C R open and bounded, f1, ..., fm € L2(£2) given; stationary
diffusion equations with homogenous Dirichlet b. c.:

{ —div (AVu,) = fz i=1

u; € HY(Q) ’ o W

where A is a mixture of two isotropic materials with conductivities
O<a<p:
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem

Multiple state optimal design problem

Q C R open and bounded, f1, ..., fm € L2(£2) given; stationary
diffusion equations with homogenous Dirichlet b. c.:

—div (AVuy;) = f; .
{uieH(l)(Q) , t=1,....m (1)

where A is a mixture of two isotropic materials with conductivities
0<a<p:A=xal+ (1—x)BI, where xy € L>°(£;{0,1}),
Jo xdx = gq, forgiven 0 < g < [Q].
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem

Multiple state optimal design problem

Q C R open and bounded, f1, ..., fm € L2(£2) given; stationary
diffusion equations with homogenous Dirichlet b. c.:

{ uidlevl({?(ggl) hoio1m 1)
where A is a mixture of two isotropic materials with conductivities
0<a<p:A=xal+ (1—x)BI, where xy € L>°(£;{0,1}),

Jo xdx = gq, forgiven 0 < g < [Q].

For given €, «, 53, qa, fi, and some given weights u; > 0, we want to find
such material A which minimizes the weighted sum of energies (total
amounts of heat/electrical energy dissipated in 2):
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem

Multiple state optimal design problem

Q C R open and bounded, f1, ..., fm € L2(£2) given; stationary
diffusion equations with homogenous Dirichlet b. c.:

{ uidlevl({?(ggl) hoio1m 1)
where A is a mixture of two isotropic materials with conductivities
0<a<p:A=xal+ (1—x)BI, where xy € L>°(£;{0,1}),

Jo xdx = gq, forgiven 0 < g < [Q].

For given €, «, 53, qa, fi, and some given weights u; > 0, we want to find
such material A which minimizes the weighted sum of energies (total
amounts of heat/electrical energy dissipated in 2):

- Zm/ fuidx — min, x € L¥(0; {0,1})
=1 Y9
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Energy minimization and relaxation
PR Posing the problem
Convex minimization problem Relaxation
Examples are

single state, f = 1, () circle / square

Murat & Tartar Lurie & Cherkaev

theta theta
075 0.75
0.5
025
0o 0
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem
Relaxation

single state, f = 1, () circle / square

Murat & Tartar Lurie & Cherkaev

theta theta

075 075

05 05
025 025
o 0

x € L({0,1})
A = xoIl+ (1—x)pI
classical material
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem
Relaxation

single state, f = 1, () circle / square

Murat & Tartar Lurie & Cherkaev

theta theta

075 075

05 05
025 025
o 0

X ELX(Q:{0,1}) -+ 0 LX(;00,1])
A =xal+ (1—x)pI A€ K(0) ae.on
classical material composite mateiral - relaxation
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Energy minimization and relaxation
Convex minimization problem

Relaxation
Examples

Composite material

Definition

If a sequence of characteristic functions x. € L>°(€2;{0,1}) and
conductivities A° () = xe(z)al + (1 — x(x))PI satisfy x. — 6
weakly x and A® H-converges to A*, then it is said that A* is
homogenised tensor of two-phase composite material with proportions 6 of
first material and microstructure defined by the sequence (x.:).
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Energy minimization and relaxation
Convex minimization problem

Relaxation
Examples

Composite material

Definition

If a sequence of characteristic functions x. € L>°(€2;{0,1}) and
conductivities A° () = xe(z)al + (1 — x(x))PI satisfy x. — 6
weakly x and A% H-converges to A*, then it is said that A* is
homogenised tensor of two-phase composite material with proportions 6 of
first material and microstructure defined by the sequence (x.:).

Example — simple laminates: if x- depend only on x1, then
A* = diag()\;,)\g,)\g, .. .,)\g),
where
)\j =fa+(1-6)3,
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Energy minimization and relaxation
Convex minimization problem

Relaxation
Examples

Composite material

Definition

If a sequence of characteristic functions x. € L>°(€2;{0,1}) and
conductivities A° () = xe(z)al + (1 — x(x))PI satisfy x. — 6
weakly x and A% H-converges to A*, then it is said that A* is
homogenised tensor of two-phase composite material with proportions 6 of
first material and microstructure defined by the sequence (x.:).

Example — simple laminates: if x- depend only on x1, then
A* = diag()\;,)\g,)\g, .. .,)\g),
where
)\j:9a+(1—9)6, i:aJri.

Set of all composites:

A:={(0,A) € L>(2;[0,1]xM4(R)) : /Qﬁdx =qn, A cK(0)ae.}
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Energy minimization and relaxation
Convex minimization problem

Relaxation
Examples

Effective conductivities — set /C(6)

G—closure problem: for given 6 find all
possible homogenised (effective)
tensors A*
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Energy minimization and relaxation

g::r\:;):es minimization problem Relaxation
Effective conductivities — set K(0)
G—closure problem: for given 6 find all
possible homogenised (effective) 2D: A X(0)
tensors A* 7
KC(0) is given in terms of eigenvalues TR
Ao

(Murat & Tartar; Lurie & Cherkaev):

Ay

IN

Ao <Ay j=1,....d

1 n d—1
Ay —« )\j—a

o a Ay /\;030 At

<

[]=
>
| =
Q

<
Il
-

1 +d—1
B=X, B=X

=
=
[ -
>
|

<
Il
—
<.

Kresimir Burazin Explicit solutions of multiple state optimal design problems 5/14



Energy minimization and relaxation
Convex minimization problem

Relaxation
Examples

Effective conductivities — set K(0)

G—closure problem: for given 6 find all
possible homogenised (effective)
tensors A*
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Energy minimization and relaxation
Convex minimization problem

Relaxation
Examples

Effective conductivities — set K(0)

G—closure problem: for given 6 find all
possible homogenised (effective)
tensors A*

KC(8) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev):

Ay

IN

Ao <Ay j=1,....d
1 d—1 3D:

[]=
>

| =
Q

< — +
Pl Ay —« )\j—a
Zd: 1 - 1, d-1
BN T BN BN

min 4 J is a proper relaxation of
mingee @01} 1

Kresimir Burazin Explicit solutions of multiple state optimal design problems 5/14



Energy minimization and relaxation .
L Simpler problem
Convex minimization problem
Examples

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)

Kresimir Burazin Explicit solutions of multiple state optimal design problems 6/14



Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar]
This problem can be rewritten as a
simpler convex minimization problem.
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar]
This problem can be rewritten as a
simpler convex minimization problem.
1(0) = / fudx — min
Q
T={0eL>[0,1]): [0 =qa}
0 € T , and u determined uniquely by
—div(A\; Vu) = f
u € H(Q)
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Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar]
This problem can be rewritten as a
simpler convex minimization problem.

1(0) = /qudx — min

T = {9 € L*>°(Q;[0,1]) : fQG = qa}
0 € T , and u determined uniquely by
—div(A\; Vu) = f
u € H(Q)

min g4 J == ming [
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] B. Multiple state equations: Simpler
This problem can be rewritten as a relaxation fails; in spherically symmetric
simpler convex minimization problem. case or when m < d, it can be done!

1(0) = /qudx — min

T = {9 € L*>°(Q;[0,1]) : fQG = qa}
0 € T , and u determined uniquely by
—div(A\; Vu) = f
u € H(Q)

min g4 J == ming [
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] B. Multiple state equations: Simpler

This problem can be rewritten as a relaxation fails; in spherically symmetric
simpler convex minimization problem. case or when m < d, it can be done!
m
I(Q)z/fudx—>min I(H)ZZMi/sz‘Uz‘dXHmin
Q i=1

T= {9 € L°(€]0,1]) : fge = Qa} T = {9 € L>(Q;[0,1]) : fQG = qa}
¢ € T, and u determined uniquely by 9 € 7 . and u; determined uniquely by
—div(A\; Vu) = f —div(\f V) = f;
u € H(Q) u; € HY(Q) Z

=1,....m

min g4 J == ming [
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar] B. Multiple state equations: Simpler

This problem can be rewritten as a relaxation fails; in spherically symmetric
simpler convex minimization problem. case or when m < d, it can be done!
m
I(Q)z/fudx—>min I(H)ZZMi/sz‘Uz‘dXHmin
Q i=1

T=10eL2(®%0,1): [of=d} T={0eLo([0,1]): [0 =g}
¢ € T, and u determined uniquely by 9 € 7 . and u; determined uniquely by

—div(\j Vu) = f div(\ V) = fi
i=1,...,m

u € Hy() u; € H(Q)

miny J — miny [ min 4 J <= ming J <= miny [
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

ming J

A:={(0,A) € L=°(Q;[0,1]xMyz(R)) : /Qﬁdx =qa, AEK(f)ae.}

2D:
A2
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

ming J

A:={(0,A) € L=°(Q;[0,1]xMyz(R)) : /Qﬁdx =qa, AEK(f)ae.}

2D:
A2a
Further relaxation:
)\;———1——777*""7
B [ 0dx = o A
g < Amin(A) ) Amax(A) € Af Q.
Ay b |
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

ming J

A:={(0,A) € L=°(Q;[0,1]xMyz(R)) : /Qﬁdx =qa, AEK(f)ae.}

2D:
A2y
Further relaxation:

)\+ Fr—~-" """~
0 A :
B s Jo0dx = qa i o
g < Amin(A) ) Amax(A) € Af Q.
T |
BB is convex and compact and J is Tl 1

. . - +
continuous on B, so there is a Ag A9
solution of ming J.
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u* € H}(Q; R™) which is the state for every
solution of ming J and miny I.
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ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u* € H}(Q; R™) which is the state for every
solution of ming J and miny I.

e If (0%, A*) is an optimal design for the problem ming .J, then 0* is
optimal design for miny I.

Kresimir Burazin Explicit solutions of multiple state optimal design problems

8/14
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Convex minimization problem
Examples

Simpler problem

ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u* € H}(Q; R™) which is the state for every
solution of ming J and miny I.

e If (0%, A*) is an optimal design for the problem ming .J, then 0* is
optimal design for miny I.

e Conversely, if 0* is a solution of optimal design problem miny I, then
any (0%, A*) € B satistying A*Vu} = \j. Vu! almost everywhere
on{) (e.g. A* = )\3; 1) is an optimal design for the problem ming J.
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem

ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u* € H}(Q; R™) which is the state for every
solution of ming J and miny I.

e If (0%, A*) is an optimal design for the problem ming .J, then 0* is
optimal design for miny I.

e Conversely, if 0* is a solution of optimal design problem miny I, then
any (0%, A*) € B satistying A*Vu} = \j. Vu! almost everywhere
on{) (e.g. A* = )\3; 1) is an optimal design for the problem ming J.

e [f aditionally m < d, then above is valid for min 4 .J instead ming .J
and optimal design can be realized as a simple laminate.
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Energy minimization and relaxation
Convex minimization problem

Examples Spherically symmetric case

Spherical symmetry: min 4 J <= ming J <= mins [

Theorem

LetQ C R% be spherically symmetric, and let the right-hand sides
fi=fi(r),r €w,i=1,...,m be radial functions. Then

min 4 J = ming J = miny I, and there exists a minimizer (0*, A*) of
the optimal design problem min 4 J which is a radial function.
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Energy minimization and relaxation
Convex minimization problem

hericall
Examples Spherically symmetric case

Spherical symmetry: min 4 J <= ming J <= mins [

Theorem

LetQ C R% be spherically symmetric, and let the right-hand sides
fi=fi(r),r €w,i=1,...,m be radial functions. Then
min 4 J = ming J = miny I, and there exists a minimizer (6*, A*) of
the optimal design problem min 4 J which is a radial function. More
precisely,
a) For any minimizer 6 of functional I over T, let us define a radial
function 0* : @ — R as the average value over spheres of 6: for

r € w we take
0*(r) ::][ 6ds,
8B(0,r)

where S denotes the surface measure on a sphere. Then 0* is also
minimizer for I over T .
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Energy minimization and relaxation
Convex minimization problem

Examples Spherically symmetric case

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on ().
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Energy minimization and relaxation
Convex minimization problem

Examples Spherically symmetric case

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on £).To be specific, we define

A*(x) = diag (NS (%)), A (1K), A (X)), - - A (1x])) -

in spherical basis (e,(X), €4, (X), €4, (X), ..., €4, ,(X)).
Then (0, A*) is an optimal design for ming J.
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Energy minimization and relaxation
Convex minimization problem

Examples Spherically symmetric case

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on £).To be specific, we define

Af(x) = diag (. (x]), Age (

x|), Ag- (1x1), -, Ade (1x1)) -

in spherical basis (e,(X), €4, (X), €4, (X), ..., €4, ,(X)).
Then (0, A*) is an optimal design for ming .J. Moreover,
(0*, A*) € A, and thus it is also a solution for min 4 .J.
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Energy minimization and relaxation
Convex minimization problem

Examples Spherically symmetric case

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on £).To be specific, we define

Af(x) = diag (. (x]), Age (

x|), Ag- (1x1), -, Ade (1x1)) -

in spherical basis (e,(X), €4, (X), €4, (X), ..., €4, ,(X)).
Then (0, A*) is an optimal design for ming .J. Moreover,
(0*, A*) € A, and thus it is also a solution for min 4 .J.

c) If(8,A) € Ais a solution of the relaxed problem min 4 J with
corresponding state function u, then 6 is optimal for miny I, and
(0, A) is also a minimizer of J on 3. Consequently, we have
u=u* and Ae, = A\ (0)e,, almost everywhere.
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Energy minimization and relaxation
Convex minimization problem X

Spherically symmetric case
Examples

Optimality conditions for min /
Lemma

0* € T is a solution miny I if and only if there exists a Lagrange
multiplier c > 0 such that

0* Zﬂz’vu |2:Ca

0*=0 = waﬂ%c,
i=1
m

0 =1 = > wlVuil®

=1

IN
o

or equivalently

m
ZuiWuf\Q >c = 0°=0

=1
m

Zpi|Vuf|2<c = =1
i=1
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Energy minimization and relaxation
Convex minimization problem
Examples

One state

Ball 2 = B(0,2) C R? with nonconstant right-hand side
In all examples o = 1, 3 = 2, one state equation f(r) =1 —r
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Energy minimization and relaxation
Convex minimization problem
Examples

Ball 2 = B(0,2) C R? with nonconstant right-hand side
In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

One state
Multiple states

optimality conditions: v := /¢ > 0
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Energy minimization and relaxation

PR One state
Convex minimization problem Multiole states
Examples Vultiple states

Ball 2 = B(0,2) C R? with nonconstant right-hand side
In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

optimality conditions: v := /¢ > 0

-y is uniquely determined by

* o
0Fdx=n:=—-— €][0,1],
f e

which is an algebraic equation for +.

v
V4

V3

V2
7

0 m N2ms 1 n
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Energy minimization and relaxation
Convex minimization problem
Examples

One state
Multiple states

Ball 2 = B(0,2) C R? with nonconstant right-hand side
In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

optimality conditions: v := /¢ > 0

-y is uniquely determined by

* o
0Fdx=n:=—-— €][0,1],
1, o €11

which is an algebraic equation for +.

alw
o
<

,
v /|
V4
o g
V3
72
n  fov ; = -
0 m Mzl q ‘
0 p @ 4 Py pia3 2
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Energy minimization and relaxation
Convex minimization problem Multiple states
Examples

Two state equations on a ball 2 = B(0, 2)

* f1i=XxBo, 2=1,
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Energy minimization and relaxation
Convex minimization problem

Examples Multiple states

Two state equations on a ball 2 = B(0, 2)
* fi=XxBo1), 2=1,
° u/ fluldx—i—/ fouo dx — min
Q Q
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Energy minimization and relaxation
PR One state
Convex minimization problem
Multiple states
Examples

Two state equations on a ball 2 = B(0, 2)
* f1i=XxBo, 2=1,
° M/ fluldx—i-/ fous dx — min
Q Q
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Energy minimization and relaxation
Convex minimization problem

Examples Multiple states

Optimal 0* for case B

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0* dx = n.
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Energy minimization and relaxation
Convex minimization problem

Examples Multiple states

Optimal 0* for case B

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0* dx = n.

c
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Energy minimization and relaxation
Convex minimization problem

Examples Multiple states

Optimal 0* for case B

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0* dx = n.

c

c

P a G a3

Thank you for your attention!
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