
Explicit solutions of multiple state
optimal design problems

Joint work with Marko Vrdoljak

[6TH CROATIAN MATHEMATICAL CONGRESS, ZAGREB] June 2016
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem
Relaxation

Multiple state optimal design problem

Ω ⊆ Rd open and bounded, f1, . . . , fm ∈ L2(Ω) given; stationary
diffusion equations with homogenous Dirichlet b. c.:{

−div (A∇ui) = fi
ui ∈ H1

0(Ω)
, i = 1, . . . ,m (1)

where A is a mixture of two isotropic materials with conductivities
0 < α < β: A = χαI + (1− χ)βI, where χ ∈ L∞(Ω; {0, 1}),∫

Ω χdx = qα, for given 0 < qα < |Ω|.
For given Ω, α, β, qα, fi, and some given weights µi > 0, we want to find
such material A which minimizes the weighted sum of energies (total
amounts of heat/electrical energy dissipated in Ω):

I(χ) :=

m∑
i=1

µi

∫
Ω
fiui dx→ min , χ ∈ L∞(Ω; {0, 1})
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem
Relaxation

single state, f ≡ 1, Ω circle / square

Murat & Tartar Lurie & Cherkaev

χ ∈ L∞(Ω; {0, 1}) · · · θ ∈ L∞(Ω; [0, 1])
A = χαI + (1− χ)βI A ∈ K(θ) a.e. on Ω

classical material composite mateiral - relaxation
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem
Relaxation

Composite material
Definition

If a sequence of characteristic functions χε ∈ L∞(Ω; {0, 1}) and
conductivities Aε(x) = χε(x)αI + (1− χε(x))βI satisfy χε ⇀ θ
weakly ∗ and Aε H-converges to A∗, then it is said that A∗ is
homogenised tensor of two-phase composite material with proportions θ of
first material and microstructure defined by the sequence (χε).

Example – simple laminates: if χε depend only on x1, then

A∗ = diag(λ−θ , λ
+
θ , λ

+
θ , . . . , λ

+
θ ) ,

where

λ+
θ = θα+ (1− θ)β , 1

λ−θ
=
θ

α
+

1− θ
β

.

Set of all composites:

A := {(θ,A) ∈ L∞(Ω; [0, 1]×Md(R)) :

∫
Ω
θ dx = qα , A ∈ K(θ) a.e. }
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Energy minimization and relaxation
Convex minimization problem
Examples

Posing the problem
Relaxation

Effective conductivities – set K(θ)

G–closure problem: for given θ find all
possible homogenised (effective)
tensors A∗

K(θ) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev):

λ−θ ≤ λj ≤ λ+
θ j = 1, . . . , d

d∑
j=1

1

λj − α
≤ 1

λ−θ − α
+

d− 1

λ+
θ − α

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d− 1

β − λ+
θ

,

minA J is a proper relaxation of
minL∞(Ω;{0,1}) I

2D:

3D:
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O λ1

λ2

α
θ = 1

α

β
θ = 0

β

λ+
θ

λ+
θ

λ−θ

λ−θ

K(θ)

3D:
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
Spherically symmetric case

How do we find a solution?
Goal: find explicit solution for some simple domains (circle)
Motivation: test examples for robust numerical algorithms

A. Single state equation: [Murat & Tartar]
This problem can be rewritten as a
simpler convex minimization problem.

I(θ) =

∫
Ω
fu dx −→ min

T =
{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω θ = qα

}
θ ∈ T , and u determined uniquely by −div (λ+

θ ∇u) = f

u ∈ H1
0(Ω)

minA J ⇐⇒ minT I

B. Multiple state equations: Simpler
relaxation fails; in spherically symmetric
case or when m < d, it can be done!

I(θ) =

m∑
i=1

µi

∫
Ω
fiui dx −→ min

T =
{
θ ∈ L∞(Ω; [0, 1]) :

∫
Ω θ = qα

}
θ ∈ T , and ui determined uniquely by −div (λ+

θ ∇ui) = fi

ui ∈ H1
0(Ω)

i = 1, . . . ,m

minA J ⇐⇒minB J ⇐⇒ minT I
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
Spherically symmetric case

minB J

A := {(θ,A) ∈ L∞(Ω; [0, 1]×Md(R)) :

∫
Ω
θ dx = qα , A ∈ K(θ) a.e. }

Further relaxation:

B . . .
∫

Ω θ dx = qα

λ−θ ≤ λmin(A) , λmax(A) ≤ λ+
θ

B is convex and compact and J is
continuous on B, so there is a
solution of minB J .

2D:

λ1

λ2

λ−θ

λ+θ

λ−θ λ+θ
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
Spherically symmetric case

minB J ⇐⇒ minT I⇐⇒ minA J if m < d

Theorem

• There is unique u∗ ∈ H1
0(Ω;Rm) which is the state for every

solution of minB J and minT I .

• If (θ∗,A∗) is an optimal design for the problem minB J , then θ∗ is
optimal design for minT I .

• Conversely, if θ∗ is a solution of optimal design problem minT I , then
any (θ∗,A∗) ∈ B satisfying A∗∇u∗i = λ+

θ∗∇u
∗
i almost everywhere

on Ω (e.g. A∗ = λ+
θ∗I) is an optimal design for the problem minB J .

• If aditionally m < d, then above is valid for minA J instead minB J
and optimal design can be realized as a simple laminate.
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
Spherically symmetric case

Spherical symmetry: minA J ⇐⇒ minB J ⇐⇒ minT I

Theorem

Let Ω ⊆ Rd be spherically symmetric, and let the right-hand sides
fi = fi(r), r ∈ ω, i = 1, . . . ,m be radial functions. Then
minA J = minB J = minT I , and there exists a minimizer (θ∗,A∗) of
the optimal design problem minA J which is a radial function. More
precisely,

a) For any minimizer θ of functional I over T , let us define a radial
function θ∗ : Ω −→ R as the average value over spheres of θ: for
r ∈ ω we take

θ∗(r) := −
∫
∂B(0,r)

θ dS ,

where S denotes the surface measure on a sphere. Then θ∗ is also
minimizer for I over T .
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
Spherically symmetric case

Spherical symmetry. . . cont.

Theorem

b) For any radial minimizer θ∗ of I over T , let us define A∗ ∈ K(θ∗) as
a simple laminate with the lamination direction orthogonal to the
radial vector er, almost everywhere on Ω.To be specific, we define

A∗(x) := diag
(
λ+
θ∗(|x|), λ

−
θ∗(|x|), λ

+
θ∗(|x|), . . . , λ

+
θ∗(|x|)

)
.

in spherical basis (er(x), eφ1(x), eφ2(x), . . . , eφd−1
(x)).

Then (θ∗,A∗) is an optimal design for minB J . Moreover,
(θ∗,A∗) ∈ A, and thus it is also a solution for minA J .

c) If (θ̃, Ã) ∈ A is a solution of the relaxed problem minA J with
corresponding state function ũ, then θ̃ is optimal for minT I , and
(θ̃, Ã) is also a minimizer of J on B. Consequently, we have
ũ = u∗, and Ãer = λ+(θ̃)er, almost everywhere.
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(θ̃, Ã) is also a minimizer of J on B. Consequently, we have
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Energy minimization and relaxation
Convex minimization problem
Examples

Simpler problem
Spherically symmetric case

Optimality conditions for minT I

Lemma
θ∗ ∈ T is a solution minT I if and only if there exists a Lagrange
multiplier c ≥ 0 such that

θ∗ ∈ 〈0, 1〉 ⇒
m∑
i=1

µi|∇u∗i |2 = c ,

θ∗ = 0 ⇒
m∑
i=1

µi|∇u∗i |2 ≥ c ,

θ∗ = 1 ⇒
m∑
i=1

µi|∇u∗i |2 ≤ c ,

or equivalently
m∑
i=1

µi|∇u∗i |2 > c ⇒ θ∗ = 0 ,

m∑
i=1

µi|∇u∗i |2 < c ⇒ θ∗ = 1 .
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Energy minimization and relaxation
Convex minimization problem
Examples

One state
Multiple states

Ball Ω = B(0, 2) ⊆ R2 with nonconstant right-hand side
In all examples α = 1, β = 2, one state equation f(r) = 1− r

optimality conditions: γ :=
√
c > 0

γ is uniquely determined by

−
∫

Ω
θ∗ dx = η :=

qα
|Ω|
∈ [0, 1] ,

which is an algebraic equation for γ.
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Krešimir Burazin Explicit solutions of multiple state optimal design problems 12/14



Energy minimization and relaxation
Convex minimization problem
Examples

One state
Multiple states

Ball Ω = B(0, 2) ⊆ R2 with nonconstant right-hand side
In all examples α = 1, β = 2, one state equation f(r) = 1− r

optimality conditions: γ :=
√
c > 0

γ is uniquely determined by

−
∫

Ω
θ∗ dx = η :=

qα
|Ω|
∈ [0, 1] ,

which is an algebraic equation for γ.

η1 η2 η3 10 η

γ

γ1

γ2

γ3

γ4

3
4

2

0

r

|u′|

γ1

γ2

gβ
γ3

γ4
gα
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Energy minimization and relaxation
Convex minimization problem
Examples

One state
Multiple states

Two state equations on a ball Ω = B(0, 2)

• f1 = χB(0,1) , f2 ≡ 1 ,

• µ
∫

Ω
f1u1 dx +

∫
Ω
f2u2 dx→ min
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20 r

c

gβ
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A: 0 < µ ≤ 1
20 r

c
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√
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B: 1 < µ ≤ 4
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µ
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C: 4 < µ ≤ 16
20 r

c

gβ
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D: 16 < µ
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Energy minimization and relaxation
Convex minimization problem
Examples

One state
Multiple states

Optimal θ∗ for case B

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation −

∫
Ω θ
∗ dx = η.

Thank you for your attention!
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