We will show that a Fourier multiplier with a symbol $a \in S^0$ is bounded.

Example.

Let $L = [-\pi, \pi]$. We have

$$\int_{-\pi}^{\pi} |\hat{f}(\xi)|^2 \, d\xi = \int_{-\pi}^{\pi} \left| \sum_{n \in \mathbb{Z}} a(n) e^{in\xi} \right|^2 \, d\xi$$

in some applications, when a flow occurs in the highly heterogeneous porous media (e.g. in the GOs (14) equation problems [?]), we can shift coefficients and then in the resulting model.

Preliminaries from matrix analysis

Clearly, it is a regular change of variables and it holds

$$\eta = (\eta_1, \eta_2, \ldots, \eta_k)$$

in inverse is given by

$$\lambda = \left(\lambda_1 + \eta_1, \lambda_2 + \eta_2, \ldots, \lambda_k + \eta_k \right).$$

Since A is only assumed to be non-negative definite, we can not obtain the bound of $|\lambda|^2$ only terms of A. For matrix M one easily gets $\|M\| \leq \max \{|A_{ij}|\}$ and $|\lambda|$. The case where A depends continuously only one parameter, we get that the corresponding norms depend continuously on a as well.

Preliminaries from matrix analysis II

Fourier multipliers I

Let $a \in \mathbb{R}^3$ be a non-negative definite matrix. Let

$$\gamma = (\gamma_1, \gamma_2, \gamma_3) \in R^3$$

By [11], a problem of type (11) was considered, but with that and diffusion independent of x and u. Hence the geometry of the flux allows the separation of coefficients from the unknown u, by applying the Fourier transform. In our work (in progress) we consider the arbitrary, non-linear terms.

In [1], a problem of type (11) was considered, but with that and diffusion independent of x and u. Hence the geometry of the flux allows the separation of coefficients from the unknown u, by applying the Fourier transform. In our work (in progress) we consider the arbitrary, non-linear terms.

H-measures

Theroem. If $\{u_n\} \subset L^2(\Omega \times [0, T])$ is a bounded sequence of solutions to the Cauchy problem (12) with $\mathbb{C} \subset \mathbb{R}$, then $u_n \rightharpoonup u$ in $L^2(\Omega \times [0, T])$ and u is a solution of (12) in the sense of the limit passage.

H-measures are not only derivatives of the same highest order. For example, we can change the scaling and put $\chi \frac{\partial}{\partial t} (u_{\frac{\cdot}{\cdot}}) \frac{\partial}{\partial x} (u_{\frac{\cdot}{\cdot}})$ instead of $\chi \frac{\partial}{\partial t} u$, but such H-measures will be able to see the first order derivatives with respect to (x_1, \ldots, x_n) and second order derivatives with respect to (x_1, \ldots, x_n).

In other words, no change of the highest order of the equation is permitted. We overcome this situation by considering multiple multiplier operators with symbols of the form

$$\left(\sum_{\alpha \in \mathbb{N}_0^n} a_{\alpha}(x) \frac{\partial^\alpha}{\partial x^\alpha} \right) u$$

where the matrix A represents the diffusion matrix in the degenerate parabolic equation.

Marzickiewicz multiplier theorem

Corollary. Suppose that $A \in \mathbb{C}^{n \times n}$ is a bounded matrix such that for some constant $C > 0$ it holds

$$\|A\| \leq C.$$

For every multi-index $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}_0^n$, such that $|\alpha| = \alpha_1 + \ldots + \alpha_n$, we assume that the function u is an L^2-multiplier for $|\xi|^2$, and the operator norm of A is bounded. Specifically, $A \in C^{\infty}$, where C^{∞} denotes only on A and α.

Lemma. B is a symbol of a multiplier bounded in $L^2(\mathbb{R}^n)$, then the definition is extended by $\chi(x, \xi) u \in L^2(\mathbb{R}^n)$, where $(\xi, \eta) \in \mathbb{R}^n$. The definition of multipliers bounded on L^2 with the same operator norm as A.

H-measures II

Corollary. Let $u \in L^2(\Omega \times [0, T])$ be the function defined in the previous Corollary. Let $\tilde{E} \subset \Omega \times [0, T]$ be a radial compact support of the function F. If $\tilde{E} \subset \Omega \times [0, T]$ is such that for some $r \in (0, T)$ we have $r^2 \leq \tilde{E}$, then

$$\|u\|_{L^2(\Omega \times [0, T])} \leq C.$$

H-measures

Corollary. Let $u \in L^2(\Omega \times [0, T])$ be the function defined in the previous Corollary. Let $\tilde{E} \subset \Omega \times [0, T]$ be a radial compact support of the function F. If $\tilde{E} \subset \Omega \times [0, T]$ is such that for some $r \in (0, T)$ we have $r^2 \leq \tilde{E}$, then

$$\|u\|_{L^2(\Omega \times [0, T])} \leq C.$$

H-measures

Corollary. Let $u \in L^2(\Omega \times [0, T])$ be the function defined in the previous Corollary. Let $\tilde{E} \subset \Omega \times [0, T]$ be a radial compact support of the function F. If $\tilde{E} \subset \Omega \times [0, T]$ is such that for some $r \in (0, T)$ we have $r^2 \leq \tilde{E}$, then

$$\|u\|_{L^2(\Omega \times [0, T])} \leq C.$$