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Introduction

Let © C R? be open and bounded Conductivity can be expressed as
set.

Two phases each with different A(x) == xaI+(1-x)B1L,
isotropic conductivity: «, 8

0<a<p). where

Qo is the prescribed volume of the

first phase o (0 < go < Q). /Qx(w) dz = ga.

x € L () such that x(1 —x) =0.

State function u € Hj(R) is a solution of the following boundary value
problem:

(1) { —div(AVu)=f inQ

u=20 on 0,

Energy functional:

J(x) = / f(@)u(e) de.
Q
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Statement of the problem

Optimal design problem:

J(x) = | fudz — max
Q

(P) st xe L@ o), [ xde =g
Q
u solves (1) with A = xyaI+(1 — x)BI.

If solution x exists for (P) we call it classical solution.

Important: For general optimal design problems the classical solutions
usually does not exist.
Aim of this talk:

e to present examples of classical solutions on annuli.

e solve problem numerically using shape derivative method.
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Relaxed design

For characteristic functions relaxation consists of:

(2) x € L=(Q,{0,1})  ~ 0 L=(2,[0,1]),

with
/ Odx := q,.
Q

Notion of H-convergence is introduced for conductivity A.
Effective conductivities:

K(0) € My(R) with local fraction 6 € [0, 1].
Precisely, A € K(0) iff there exists sequence of characteristic functions

L%

Xn ;0
H
A" =y, al+(1 — x,) I —A.
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Effective conductivities - set (0)

K(0) is given in terms of eigenvalues re K@)
B :
N <N <SS j=1,....d Y
d
Z 1 < 1 d—1 Ay
SAN-a T N -a N —a |
Zd: R S
jzlﬁ_)‘j OB BN R P Y-
where Ao \
Ny = Oa+(1-0)8 ( »
10 1-94 \
Ao @ B
by
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Generalized (convex) problem

Relaxed design:

A= {(Q,A) € L=(,10,1] x Symy) A(z) € K(0(x)), ae. x

fo0dz = qa, }

Relaxed problem can be written as:

(A) max J(0,A) = max / fudx
(0,A)eA (9,A)cA

Unfortunately, A is not a convex set. To achieve convexity, an enlarged set is
introduced:

B= {(e,A) € L=(,[0,1] x Sym,)

e )IgA( )<)\( yLoae @

Job0dx = qq, }

and with it

(B) max J(0,A) = max fudx
(0,A)eB (8,A)eB Jqo
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Rewrite B as a max-min problem

Define S := {o € L*(Q,R?), —div(e) = f}

One can rewrite functional J in terms of fluxes:
mm/ A~lg. .o
oceS

With notation C = {(0,A)| (6,A™") € B}

max J(0,A) = max min/A_lcr-a
(0.A)eB (0,A)eBo€S Jq

= max min | Bo - o
(0.B)eCo€S Jo
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Conclusions

Next step is to apply theory of saddle points.

First, one can conclude that o* is unique.

Second, instead of solving convex problem B, one can solve the following
optimization problem:

1(0) = [, fudz — max
(I) st. 0eL>(Q,0,1]), [0 = qa, where u satisfies
—div(\, Vu) = f, ueH(Q)

The necessary and sufficient condition of optimality for solution 0* of optimal
design problem (I) simplifies to the existence of a Lagrange multiplier ¢ > 0
such that

Yv>c = 0*=1,
(3) b<c = 6°=0.
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Spherical symmetry

For spherically symmetric problem such that:
o = R(Q) for any rotation R
e f is radial function

it can be proved that there exists radial solution 6% of (I).

In particular, it can be shown that

A) = I1(6%).
(0{1&?&'](9, ) =1(0%)

Design problems with spherical symmetry were studied for ball:

e Single state equations
Murat & Tartar (1985) Calculus of Variations and Homogenization
- there exists relaxed solution (6*, A*) among simple laminates.

e Multiple state equations

Vrdoljak, M. (2016) Classical Optimal Design in Two-Phase Conductivity
Problems. SIAM Journal on Control and Optimization: 2020-2035
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Single state optimal design problem
Single state equation:

g (ot e

[e3

1
where A\, (z) = (M + %(1)) .

Optimization problem:
For 0 € T := {0 € L>*(0,[0,1]): [,0dz =qa}

Q=K(0,r2)\ K(0,71) I(G):/udm%max
Q

One can rewrite (4) in polar coordinates :

(Td—1 w)/ =1in <’I“1,T‘2> , U(T1> - u(’l"g) —0.

o

rd—1
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The necessary and sufficient condition
of optimality for 6* states

lo*| >c = 6*=1
lo*| <e = 6*=0
There are only three possible
candidates for optimal design:

1, re [7"1,7'+>

1) 67(r)

) [ ,7“2]

0,

1

. 1
2)9(7")—{0 e

0,

1,
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Simplification to a non-linear system

Necessary and sufficient condition of optimality can also be expressed as a
non-linear system (unknowns 7, ¢, ryr_):

T2

Sd/(’(p)pd’ldp = qa

1

(5) 0 T Ny [y
RRIR R P 1
? ap)p1) LT ] ap)
T1 1
olry)=c¢, olr_)=—c¢, where ¢ > 0
where

o(r)= = -2, & G(T)Z(eg)‘*‘l_;m)_l'

With this you can easily calculate the shape of domain.
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Analytical solution:
f =1, domain (2 is annulus and amount ¢, is not scarce one can prove that
shape design a — 8 — « is optimal solution.

Remark:
e Problem can be generalized to multi-state problem where functional is
given with J(x) = Y7 pi [o fitti-
e Existence of such solutions is important for any numerical method like
shape derivative method.
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Shape derivative

If ¢ is small (i.e. ||t)]pye.c0 < 1)

Perturbation of the set Q is given mapping Id +#4 is homeomorphism.

with

Q = (Id +ty)Q2
where 1) € W (R4 R?)

This allows us to define shape
derivative:

Definition (Shape derivative)

Let J = J(Q) be a shape functional. J is said to be shape differentiable at 2
in direction ) if

exists and the mapping ¢ — J'(, ) is linear and continuous.
J'(92,1) is called the shape derivative.

W
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Single state problem (general f)

For optimal design problem:

J(x) = /qud:c — max

(P) st. xe€ Loo(Qv {07 1})7 / xde = ¢a,
Q
u solves (1) with A = xyaI+(1— x)BI.

shape derivative is given with:
J () = / A(=div(y) + Vi + VY™ )Vug - Vg de
Q
+ / 2(div(e) f + V f - )ug de
Q

where wg is solution of BVP (1) on domain  with A.
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Lagrangian method using shape derivative

Choice of vector field :
Vector field 1 € Hg(£2) can be constructed from variational formulation:

/Vw:VsoJr/w-so:J’(Q,w% Vo € Hy(Q)
Q Q

With this approach regularity of 1 is higher than usual (L?) which is
particularly good regardless the method.

Observe that thus created v is ascent direction for our problem because

J() = J(Q) + tJ'(Q,9) + o(t)

and

J'(Q,7) = ||9]|3: > 0 (by construction)
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Lagrangian method using shape derivative

It is important to note:
@ outer boundaries stays the same
e only boundary between phases is changing.

This is implemented using movemesh from freefem++.
Remeshing is necessary with this approach.
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Numerical results - simple connected set
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Numerical results
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