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Introduction

Let Ω ⊂ Rd be open and bounded
set.
Two phases each with different
isotropic conductivity: α, β
(0 < α < β).
qα is the prescribed volume of the
first phase α (0 < qα < |Ω|).
χ ∈ L∞(Ω) such that χ(1− χ) = 0.

Conductivity can be expressed as

A(χ) := χαI+(1− χ)β I,

where ∫
Ω

χ(x) dx = qα.

State function u ∈ H1
0(Ω) is a solution of the following boundary value

problem:

(1)

{
−div(A∇u) = f in Ω

u = 0 on ∂Ω,

Energy functional:

J(χ) :=

∫
Ω

f(x)u(x) dx.
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Statement of the problem

Optimal design problem:

(P)


J(χ) =

∫
Ω

fudx→ max

s.t. χ ∈ L∞(Ω, {0, 1}),
∫

Ω

χdx = qα,

u solves (1) with A = χαI+(1− χ)β I .

If solution χ exists for (P) we call it classical solution.

Important: For general optimal design problems the classical solutions
usually does not exist.

Aim of this talk:

• to present examples of classical solutions on annuli.

• solve problem numerically using shape derivative method.
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Relaxed design

For characteristic functions relaxation consists of:

(2) χ ∈ L∞(Ω, {0, 1})  θ ∈ L∞(Ω, [0, 1]),

with ∫
Ω

θ dx := qα.

Notion of H-convergence is introduced for conductivity A.

Effective conductivities:

K(θ) ⊂Md(R) with local fraction θ ∈ [0, 1].

Precisely, A ∈ K(θ) iff there exists sequence of characteristic functions χn
L∞?
−−⇀ θ

An = χnαI+(1− χn)β I
H
−−⇀A.
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Effective conductivities - set K(θ)

K(θ) is given in terms of eigenvalues

λ−θ ≤ λj ≤ λ+
θ j = 1, . . . , d

d∑
j=1

1

λj − α
≤ 1

λ−θ − α
+

d− 1

λ+
θ − α

d∑
j=1

1

β − λj
≤ 1

β − λ−θ
+

d− 1

β − λ+
θ

,

where

λ+
θ = θα+ (1− θ)β

1

λ−θ
=

θ

α
+

1− θ
β

.
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Generalized (convex) problem

Relaxed design:

A =

{
(θ,A) ∈ L∞(Ω, [0, 1]× Symd)

∣∣∣∣∣
∫

Ω
θ dx = qα,

A(x) ∈ K(θ(x)), a.e. x

}
Relaxed problem can be written as:

(A) max
(θ,A)∈A

J(θ,A) = max
(θ,A)∈A

∫
Ω

fudx

Unfortunately, A is not a convex set. To achieve convexity, an enlarged set is
introduced:

B =

{
(θ,A) ∈ L∞(Ω, [0, 1]× Symd)

∣∣∣∣∣
∫

Ω
θ dx = qα,

λ−θ(x) I≤A(x) ≤ λ+
θ(x) I, a.e. x

}
and with it

(B) max
(θ,A)∈B

J(θ,A) = max
(θ,A)∈B

∫
Ω

fudx
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Rewrite B as a max-min problem

Define S :=
{
σ ∈ L2(Ω,Rd), −div(σ) = f

}
One can rewrite functional J in terms of fluxes:

J(θ,A) = min
σ∈S

∫
Ω

A−1 σ · σ

With notation C =
{

(θ,A) | (θ,A−1) ∈ B
}

max
(θ,A)∈B

J(θ,A) = max
(θ,A)∈B

min
σ∈S

∫
Ω

A−1 σ · σ

= max
(θ,B)∈C

min
σ∈S

∫
Ω

Bσ · σ
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Conclusions

Next step is to apply theory of saddle points.
First, one can conclude that σ∗ is unique.
Second, instead of solving convex problem B, one can solve the following
optimization problem:

(I)


I(θ) =

∫
Ω
fudx→ max

s.t. θ ∈ L∞(Ω, [0, 1]),
∫

Ω
θ = qα, where u satisfies

−div(λ−θ ∇u) = f, u ∈ H1
0(Ω)

Define ψ := |σ∗|2.

Lemma
The necessary and sufficient condition of optimality for solution θ∗ of optimal
design problem (I) simplifies to the existence of a Lagrange multiplier c ≥ 0
such that

(3)
ψ > c ⇒ θ∗ = 1 ,
ψ < c ⇒ θ∗ = 0 .
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Spherical symmetry

For spherically symmetric problem such that:

Ω = R(Ω) for any rotation R

f is radial function

it can be proved that there exists radial solution θ∗R of (I).

In particular, it can be shown that

max
(θ,A)∈A

J(θ,A) = I(θ∗R).

Design problems with spherical symmetry were studied for ball:

• Single state equations
Murat & Tartar (1985) Calculus of Variations and Homogenization
- there exists relaxed solution (θ∗,A∗) among simple laminates.

• Multiple state equations
Vrdoljak, M. (2016) Classical Optimal Design in Two-Phase Conductivity
Problems. SIAM Journal on Control and Optimization: 2020-2035
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Single state optimal design problem

Ω

r2r1

Ω = K(0, r2) \K(0, r1)

Single state equation:

(4)

{
−div(λ−θ (x)∇u) = 1 in Ω

u = 0 on ∂Ω

where λ−θ (x) =
(
θ(x)
α + 1−θ(x)

β

)−1

.

Optimization problem:
For θ ∈ T :=

{
θ ∈ L∞(Ω, [0, 1]) :

∫
Ω
θ dx = qα

}
I(θ) =

∫
Ω

udx→ max

One can rewrite (4) in polar coordinates :

− 1

rd−1
(rd−1 λ−θ u

′(r)︸ ︷︷ ︸
σ

)′ = 1 in 〈r1, r2〉 , u(r1) = u(r2) = 0.
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σ

c

−c

r+ r−

The necessary and sufficient condition
of optimality for θ∗ states

|σ∗| > c ⇒ θ∗ = 1 ,
|σ∗| < c ⇒ θ∗ = 0 .

There are only three possible
candidates for optimal design:

1) θ∗(r) =

 1, r ∈ [r1, r+〉
0, r ∈ [r+, r−〉
1, r ∈ [r−, r2]

2) θ∗(r) =

{
1, r ∈ [r1, r+〉
0, r ∈ [r+, r2〉

3) θ∗(r) =

{
0, r ∈ [r1, r−〉
1, r ∈ [r−, r2〉
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Simplification to a non-linear system

Necessary and sufficient condition of optimality can also be expressed as a
non-linear system (unknowns γ, c, r+r−):

(5)



Sd

r2∫
r1

θ(ρ)ρd−1 dρ = qα

u(r2) = 0 ⇐⇒ γ

r2∫
r1

(
1

a(ρ)ρd−1

)
dρ =

r2∫
r1

ρ

a(ρ)
dρ

σ(r+) = c, σ(r−) = −c, where c > 0

where

σ(r) =
γ

rd−1
− r

d
, & a(r) =

(
θ(r)

α
+

1− θ(r)
β

)−1

.

With this you can easily calculate the shape of domain.
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Analytical solution:
f = 1, domain Ω is annulus and amount qα is not scarce one can prove that
shape design α− β − α is optimal solution.

Remark:

Problem can be generalized to multi-state problem where functional is
given with J(χ) =

∑m
i=1 µi

∫
Ω
fiui.

Existence of such solutions is important for any numerical method like
shape derivative method.
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Shape derivative

Perturbation of the set Ω is given
with

Ωt = (Id +tψ)Ω

where ψ ∈W k,∞(Rd,Rd)

This allows us to define shape
derivative:

If t is small (i.e. ‖tψ‖Wk,∞ � 1)
mapping Id +tψ is homeomorphism.

Ω
D

Definition (Shape derivative)

Let J = J(Ω) be a shape functional. J is said to be shape differentiable at Ω
in direction ψ if

J ′(Ω, ψ) := lim
t↘0

J(Ωt)− J(Ω)

t

exists and the mapping ψ 7→ J ′(Ω, ψ) is linear and continuous.
J ′(Ω, ψ) is called the shape derivative.
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Single state problem (general f)

For optimal design problem:

(P)


J(χ) =

∫
Ω

fudx→ max

s.t. χ ∈ L∞(Ω, {0, 1}),
∫

Ω

χdx = qα,

u solves (1) with A = χαI+(1− χ)β I .

shape derivative is given with:

J ′(Ω, ψ) =

∫
Ω

A(−div(ψ) +∇ψ +∇ψτ )∇u0 · ∇u0 dx

+

∫
Ω

2(div(ψ)f +∇f · ψ)u0 dx

where u0 is solution of BVP (1) on domain Ω with A.
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Lagrangian method using shape derivative

Choice of vector field ψ:
Vector field ψ ∈ H1

0 (Ω) can be constructed from variational formulation:∫
Ω

∇ψ : ∇ϕ+

∫
Ω

ψ · ϕ = J ′(Ω, ϕ), ∀ϕ ∈ H1
0 (Ω)

With this approach regularity of ψ is higher than usual (L2) which is
particularly good regardless the method.
Observe that thus created ψ is ascent direction for our problem because

J(Ωt) = J(Ω) + tJ ′(Ω, ψ) + o(t)

and
J ′(Ω, ψ) = ‖ψ‖2H1 > 0 (by construction)
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Lagrangian method using shape derivative

It is important to note:

outer boundaries stays the same

only boundary between phases is changing.

This is implemented using movemesh from freefem++.
Remeshing is necessary with this approach.

⇒
one step φt
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Numerical results - simple connected set
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Numerical results

Petar Kunštek (Zagreb) gramchev2017 Feb 1– 3 2017. 19 / 19


	Introduction 
	Design problem
	Relaxed designs

	Shape derivative
	Lagrangian and application in calculating shape derivative

