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Introduction
Multiple state energy minimization
Examples

Energy optimization

Stationary diffusion equation

Q2 C R open and bounded, f € L2(Q2), A € L>(Q; My(R)) given;
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Q2 C R open and bounded, f € L2(Q2), A € L>(Q; My(R)) given;
stationary diffusion equation with homogenous Dirichlet boundary

condition:
—div(AVu) = f
u € H(Q)

Physical interpretations:
e Thermal conductivity; A — (thermal) conductivity of material, f —
external heat density, u — temperature
e Electrical conductivity; A — (electrical) conductivity of material, f —
electric charge density, u — electrical potential

Energy functional (total amount of heat/electrical energy dissipated in 2):
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Stationary diffusion equation

Q2 C R open and bounded, f € L2(Q2), A € L>(Q; My(R)) given;
stationary diffusion equation with homogenous Dirichlet boundary

condition:
—div(AVu) = f
u € H(Q)

Physical interpretations:
e Thermal conductivity; A — (thermal) conductivity of material, f —
external heat density, u — temperature
e Electrical conductivity; A — (electrical) conductivity of material, f —
electric charge density, u — electrical potential

Energy functional (total amount of heat/electrical energy dissipated in 2):

/ F)u(x) dx = /Q AX)Vau(x) - Vu(x) dx
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Optimal design problem (single state)

Composite of two isotropic materials with conductivities 0 < « < 3:
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Multiple state energy minimization
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Energy optimization

Optimal design problem (single state)

Composite of two isotropic materials with conductivities 0 < « < 3:

A = xaIl+ (1 — x)BI, where x € L>(;{0,1}), [, x dx = qq, for
given 0 < g < |Q].

For given €, o, B3, g and f we want to find such material A which
maximizes or minimizes the cost functional:

/ f(x)u(x)dx — max /min,
where v is the solution of the state equation
—div (AVu) = f
u € HY(Q).

Kresimir Burazin Explicit solutions of multiple state optimal design problems 3/21



Introduction
Multiple state energy minimization
Examples

Energy optimization

Optimal design problem (single state)

Composite of two isotropic materials with conductivities 0 < « < 3:

A = xaIl+ (1 — x)BI, where x € L>(;{0,1}), [, x dx = qq, for
given 0 < g < |Q].

For given €, o, B3, g and f we want to find such material A which
maximizes or minimizes the cost functional:

/ f(x)u(x)dx — max /min,
where v is the solution of the state equation
—div (AVu) = f
u € HY(Q).

Interpretations:
e Maximize the amount of heat kept inside body
e Maximize the torsional rigidity of a rod made of two materials
e Maximize the flow rate of two viscous immiscible fluids through pipe
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Introduction
Multiple state energy minimization
Examples

Energy optimization

Maximization, ¢ circle / square, f = 1

Murat and Tartar, 1985 Goodman, R.V. Kohn, L. Reyna, 1986

theta theta
075 075
05 05
025 025
0o 0
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Introduction
Multiple state energy minimization
Examples

Energy optimization

Maximization, ¢ circle / square, f = 1

Murat and Tartar, 1985 Goodman, R.V. Kohn, L. Reyna, 1986

theta theta
075 075
05 05
025 025
0o 0

In general, there might exist no classical optimal design. The relaxation is
needed, by introducing composite materials,...
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Introduction
Multiple state energy minimization
Examples

Energy optimization
Composite materials - relaxation

Energy minimization

Murat and Tartar, 1985 K. Lurie, A. Cherkaev, 1984

theta theta
0.75 0.75
0.5
20.25
5
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Multiple state energy minimization
Examples

Energy minimization

Murat and Tartar, 1985

x € L*(€;{0,1})
A =xal+ (1—-x)pI
classical material

Kre8imir Burazin

Energy optimization

Composite materials - relaxation

K. Lurie, A. Cherkaev, 1984

theta
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Energy minimization

Murat and Tartar, 1985

theta

x € L*(€;{0,1})
A =xal+ (1—-x)pI
classical material
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Energy optimization

Composite materials - relaxation

K. Lurie, A. Cherkaev, 1984

theta

6 € L>°(9;(0,1))
A cK(f) ae.on
composite mateiral - relaxation
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Introduction
Multiple state energy minimization

Composite materials - relaxation
Examples

Homogenised material

Definition
A sequence of matrix functions A€ is said to H-converge to A* if for every
f the sequence of solutions of

—div(A*Vu.) = f
{ e tio

satisfies u. — u in H}(Q), A*Vu. — A*Vu in L2(Q; RY), where u is
the solution of the homogenised equation

{ —div(A*Vu) = f
u € HY(Q).
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Introduction
Multiple state energy minimization

Composite materials - relaxation
Examples

Composite material

Definition

If a sequence of characteristic functions x. € L>°(€2;{0,1}) and
conductivities A° () = xe(z)al + (1 — x(x))PI satisfy x. — 6
weakly x and A® H-converges to A*, then it is said that A* is
homogenised tensor of two-phase composite material with proportions 6 of
first material and microstructure defined by the sequence (x.:).
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Composite materials - relaxation
Examples

Composite material

Definition

If a sequence of characteristic functions x. € L>°(€2;{0,1}) and
conductivities A° () = xe(z)al + (1 — x(x))PI satisfy x. — 6
weakly x and A% H-converges to A*, then it is said that A* is
homogenised tensor of two-phase composite material with proportions 6 of
first material and microstructure defined by the sequence (x.:).

Example — simple laminates: if x- depend only on x1, then
A* = diag()\;,)\g,)\g, .. .,)\g),
where
)\j =fa+(1-6)3,
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Multiple state energy minimization

Composite materials - relaxation
Examples

Composite material

Definition

If a sequence of characteristic functions x. € L>°(€2;{0,1}) and
conductivities A° () = xe(z)al + (1 — x(x))PI satisfy x. — 6
weakly x and A% H-converges to A*, then it is said that A* is
homogenised tensor of two-phase composite material with proportions 6 of
first material and microstructure defined by the sequence (x.:).

Example — simple laminates: if x- depend only on x1, then
A" = diag()\;,)\g,)\g, .. .,)\g),
where
No=0at (1-0)8, —=—f——.
o
Set of all composites:

A:={(0,A) € L>(2;[0,1]xM4(R)) : /Qﬁdx =qn, A cK(0)ae.}
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Multiple state energy minimization

Composite materials - relaxation
Examples

Effective conductivities — set /C(6)

G—closure problem: for given 6 find all
possible homogenised (effective)
tensors A*
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Introduction
Multiple state energy minimization

Composite materials - relaxation
Examples

Effective conductivities — set K(0)

G—closure problem: for given 6 find all
possible homogenised (effective)

tensors A* 2D:
2 K9
KC(0) is given in terms of eigenvalues 5 "
(Murat & Tartar; Lurie & Cherkaev): A
Ay
Ag <N <N d=1,....d )
d
1 1 d—1
— < + R
. = = +

Zd: 1 - 1, d-1
B=X = B-X  B-X\
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G—closure problem: for given @ find all 2D:

possible homogenised (effective)
tensors A*

KC(0) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev):
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Introduction
Multiple state energy minimization
Examples

Multiple states

Multiple state optimal design problem
State equations

—div (AVuZ) = fz
{ u; € Hy(Q)

State function u = (u1, ..., Un)
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Introduction
Multiple state energy minimization
Examples

Multiple states

Multiple state optimal design problem
State equations

—div (AVuZ) = fl
{ u; € Hy(Q)

State function u = (u1, ..., Un)
I(x) = 2212 wi Jg fivi dx — min
u= (u,...,un) state function for A = xaI + (1 — x)p1
ceLE@i0.1), [ xdx =g,
Q

for some given weights p; > 0.
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Introduction
Multiple state energy minimization
Examples

Multiple states

Multiple state optimal design problem
State equations

—div (AVuZ) = fl
{ u; € Hy(Q)

State function u = (ug, ..., Up)

I(x) = >0 mi o fivi dx — min
u= (uy,...,upn,) state function for A = xyaI + (1 — x)SI

Y€ L2(0:{0, 1)), /xdx:qa,
Q

for some given weights p; > 0. Relaxed problem:

J(O,A) = Zui /Q fiu; dx — min on
i=1

A:={(0,A) € L*=°(Q;[0,1] x Myg(R)) : /QHdX =qn, A €K(f)ae.}
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Examples

Multiple states

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
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Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat & Tartar]
This problem can be rewritten as a
simpler convex minimization problem.
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Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms _
A. Single state equation: [Murat & Tartar] B- Multiple state equations: Simpler
This problem can be rewritten as a relaxation fails; in spherically symmetric

simpler convex minimization problem. case or when 1 < d, it can be done!
1(0) = / fudx — min
Q

T={0e€L>®[0,1]): [0 =qa}
0 € T , and u determined uniquely by

—div (A\f Vu) = f

u € Hy(2)

miny J <= ming [

Kresimir Burazin Explicit solutions of multiple state optimal design problems 10/21



Introduction
Multiple state energy minimization
Examples

Multiple states

How do we find a solution?

Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms _
A. Single state equation: [Murat & Tartar] B- Multiple state equations: Simpler
This problem can be rewritten as a relaxation fails; in spherically symmetric

simpler convex minimization problem. case or when 1 < d, it can be done!

I(G):/fudx—>min I(e)ZZMi/fiuidXHmin
Q -1 /0

T={0el®@Q0.1): Jof =da} T={0cLo[0,1]): 0=q.}
¢ € T , and u determined uniquely by ¢ ¢ 7 , and u; determined uniquely by
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Motivation: test examples for robust numerical algorithms _
A. Single state equation: [Murat & Tartar] B- Multiple state equations: Simpler
This problem can be rewritten as a relaxation fails; in spherically symmetric

simpler convex minimization problem. case or when 1 < d, it can be done!

I(G):/fudx—>min I(e)ZZMi/fiuidXHmin
Q -1 /0

T={0el®@Q0.1): Jof =da} T={0cLo[0,1]): 0=q.}
¢ € T , and u determined uniquely by ¢ ¢ 7 , and u; determined uniquely by

—div ()\;’Vu) =f —div (A;Vui) = fi

! t=1,...,m
u € Hy(©2) u; € Hy(Q)
miny J <— ming [ min 4 J <= ming J <= miny [
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Multiple state energy minimization

Convex minimization problem
Examples

ming J

A:={(0,A) € L>(Q; [0, 1]xM4(R)) : /Qﬁdx =qo, A€ K()ae.}

A2

Ay

Ao

o o NN B
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Examples

ming J

A:={(0,A) € L>(Q; [0, 1]xM4(R)) : /Qﬁdx =qo, A€ K()ae.}
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Further relaxation:
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o o NN B
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Introduction
Multiple state energy minimization

Convex minimization problem
Examples

ming J

A:={(0,A) € L>(Q; [0, 1]xM4(R)) : /Qﬁdx =qo, A€ K()ae.}

2D:
A2
Further relaxation: 5 K@
B s Jo0dx = qa A
)\; < )\min(A) ’ Amax(A) < )\g Ao
B is convex and compact and J is @
continuous on B, so there is a o .
. a - [ A
solution of ming J. 021 M N By
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Introduction
Multiple state energy minimization

Convex minimization problem
Examples

Simpler problem mins /

1(0) = ZM /Q fiu; dx — min
i=1

0T ={6ecL®Q;[0,1]): [,0dx =qs}
and u determined uniquely by
—div (\j Vu;) = f;

1=1,...,m,
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Multiple state energy minimization

Convex minimization problem
Examples

Simpler problem mins /

1(0) = ZM /Q fiu; dx — min
i=1

0T ={6ecL®Q;[0,1]): [,0dx =qs}
and u determined uniquely by
—div (\j Vu;) = f;

1=1,...,m,

T is compact and convex and [ is continuous on 7~
min7 I has solution
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Multiple state energy minimization

Convex minimization problem
Examples

ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u™ € Hé(ﬂ; R™) which is the state for every
solution of ming J and miny 1.
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ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u™ € Hé(Q; R™) which is the state for every
solution of ming J and miny 1.

e If (0%, A*) is an optimal design for the problem ming .J, then 0* is
optimal design for miny 1.
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ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u™ € Hé(ﬂ; R™) which is the state for every
solution of ming J and miny 1.

e If (0%, A*) is an optimal design for the problem ming .J, then 0* is
optimal design for miny 1.

e Conversely, if 0* is a solution of optimal design problem miny 1,
then any (6%, A*) € B satisfying A*Vu} = )\;* Vu; almost
everywhere on () (e.g. A" = )\;’* 1) is an optimal design for the
problem ming J.
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Multiple state energy minimization Convex minimization problem
Examples

ming J <= miny [<= miny Jif m < d

Theorem

e There is unique u™ € Hé(ﬂ; R™) which is the state for every
solution of ming J and miny 1.

e If (0%, A*) is an optimal design for the problem ming .J, then 0* is
optimal design for miny 1.

e Conversely, if 0* is a solution of optimal design problem miny 1,
then any (6%, A*) € B satisfying A*Vu} = )\;* Vu; almost
everywhere on () (e.g. A" = )\;Z 1) is an optimal design for the
problem ming J. If aditionally m < d, then (0*, A*) € A, and thus
it is also minimizer for J on A.
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Introduction
Multiple state energy minimization

Convex minimization problem
Examples

Spherical symmetry: min 4 J <= ming J <= mins [

Theorem

LetQ C R% be spherically symmetric, and let the right-hand sides
fi=fi(r),r €w,i=1,...,m be radial functions. Then

min 4 J = ming J = miny I, and there exists a minimizer (0*, A*) of
the optimal design problem min 4 J which is a radial function.
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Multiple state energy minimization

Convex minimization problem
Examples

Spherical symmetry: min 4 J <= ming J <= mins [

Theorem

LetQ C R% be spherically symmetric, and let the right-hand sides
fi=fi(r),r €w,i=1,...,m be radial functions. Then
min 4 J = ming J = miny I, and there exists a minimizer (0*, A*) of
the optimal design problem min 4 J which is a radial function.More
precisely,
a) For any minimizer 6 of functional I over T, let us define a radial
function * : Q@ — R as the average value over spheres of 6: for

r € w we take
0*(r) ::][ 6ds,
8B(0,r)

where S denotes the surface measure on a sphere. Then 0* is also
minimizer for I over T .
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Introduction
Multiple state energy minimization

Convex minimization problem
Examples

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on ().
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Convex minimization problem
Examples

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on £).To be specific, we define

A*(x) = diag (NS (%)), A (1K), A (X)), - - A (1x])) -

in spherical basis (e,(X), €4, (X), €4, (X), ..., €4, ,(X)).
Then (0, A*) is a radial optimal design for ming J.
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b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on £).To be specific, we define

A*(x) = diag (NS (%)), A (1K), A (X)), - - A (1x])) -

in spherical basis (e,(X), €4, (X), €4, (X), ..., €4, ,(X)).
Then (0, A*) is a radial optimal design for ming .J.Moreover,
(0%, A*) € A, and thus it is also a solution for min 4 .J.
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Introduction
Multiple state energy minimization

Convex minimization problem
Examples

Spherical symmetry...cont.

Theorem

b) For any radial minimizer 8* of I over T, let us define A* € K(6*) as
a simple laminate with the lamination direction orthogonal to the
radial vector e,., almost everywhere on £).To be specific, we define

Af(x) = diag (. (x]), Age (

x|), Ag- (1x1), -, Ade (1x1)) -

in spherical basis (e,(X), €4, (X), €4, (X), ..., €4, ,(X)).
Then (0, A*) is a radial optimal design for ming .J.Moreover,
(0%, A*) € A, and thus it is also a solution for min 4 .J.

c) If(8,A) € Ais a solution of the relaxed problem min 4 J with
corresponding state function u, then 6 is optimal for miny I, and
(0, A) is also a minimizer of J on 3. Consequently, we have
u=u* and Ae, = A\ (0)e,, almost everywhere.
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Introduction

Multiple state energy minimization S
Convex minimization problem
Examples

Optimality conditions for min /
Lemma

0* € T is a solution miny I if and only if there exists a Lagrange
multiplier c > 0 such that

0* Zﬂz’vu |2:Ca

0*=0 = waﬂ%c,
i=1
m

=1 = ZM|VU§|2

=1

IN
o

or equivalently

m
Zquf\Q >c = 0°=0

=1
m

Zpi|Vuf|2<c = =1
i=1
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Multiple state energy minimization
Examples

Ball 2 = B(0,2) C R? with nonconstant right-hand side

In all examples o = 1, 3 = 2, one state equation f(r) =1 —r
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Multiple state energy minimization
Examples

Ball 2 = B(0,2) C R? with nonconstant right-hand side

In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

1 /
State equation in polar coordinates <r)\9(r) ) =1-r.

Integration gives  |u/(r)| = WM ,  where ¢)(r) = |2r26%3r‘ .
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In all examples o = 1, 5 = 2, one state equation f(r) =1 —r

1
State equation in polar coordinates —— <r)\(j'(T)u’> =1—-r.
T

Integration gives  |u/(r)| = W&L‘W)) , where () = |2r26%3r‘ ‘

Conditions of optimality: there exists a constant y := /¢ > 0 such that
for optimal 8* we have:

W) >y = 0(r)=0

Wi)l<y = o) =1
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In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

1 ’
State equation in polar coordinates —— <r)\;r(7,)u’> =1-r.
r
2
Integration gives |u/(1)| = W&L‘W)) ,  where ¢(r) = p%%?’r‘ .

Conditions of optimality: there exists a constant y := /¢ > 0 such that
for optimal 8* we have:

W' (r)| >~y = 6*(r)=0
=

W (r) <~y = 0 (r)=1
= Ya 5 <7
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Integration gives  |u/(r)| = W&w ,  where ¢)(r) = M .
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In all examples o = 1, 3 = 2, one state equation f(r) =1 —r
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State equation in polar coordinates —— (r)\;rmu’> =1—-r.
r
2_
Integration gives  |u/(r)| = W&w ,  where ¢)(r) = M .

Conditions of optimality: there exists a constant y := /¢ > 0 such that
for optimal 8* we have:
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In all examples o = 1, 3 = 2, one state equation f(r) =1 —r
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State equation in polar coordinates —— (r)\;rmu’> =1—-r.
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Integration gives  |u/(r)| = W&w ,  where ¢)(r) = M .

Conditions of optimality: there exists a constant y := /¢ > 0 such that
for optimal 8* we have:
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=

W (r) <~y = 0 (r)=1
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Multiple state energy minimization
Examples

Ball with nonconstant right-hand side

Lagrange multiplier -y is uniquely determined by the constraint
fo 0 dx =n:= {6 € [0, 1], which is alegraic equation for .
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Multiple state energy minimization
Examples

Multiple (two) states on a ball {2 = B(0, 2)

® leXB(O,l)a fQEla
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Multiple (two) states on a ball {2 = B(0, 2)

® fl = XB(0,1) » f2 =1,
—div (AgVui) = fz

° M/Qfluldx—i—/QfQUde—)min

i=1,2
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Multiple state energy minimization
Examples

Multiple (two) states on a ball {2 = B(0, 2)

* fi=XxB,), f2=1,

. —div (A Vuz) fi
{ u; € Hé(Q)

° M/Qfluldx—i—/QfQUde—)min

Solving state equation

i=1,2

! o %(7‘)
) = g ra—emng
with
——, 0<r<1,
Yi(r) = 12 and a(r) = —g.
] S r S 27
2r
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Examples

Multiple (two) states on a ball {2 = B(0, 2)

* fi=XxB,), f2=1,

. —div (A Vuz) fi
{ u; € Hé(Q)

° M/Qfluldx—i—/QfQUde—)min

Solving state equation

i=1,2

/ %(7‘)
u) = gmar a—eanE | 2
with
——, 0<r<1,
nr)={ 2 and s (r) =
_i ) S r S 27
2r

¥

Similarly as in the first example: ¥ 1= p? + 13, go = 3. 98"
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Multiple state energy minimization
Examples

Geometric interpretation of optimality conditions
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Introduction
Multiple state energy minimization
Examples

Geometric interpretation of optimality conditions

B:l<pu<4

9p

V2 70 2
C:d<pu<16 D: 16 < p

T

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0* dx = .
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Optimal 0* for case B
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c
Jo
_/ "
‘ 5 ]
0 i @ @6 2
In region: -
1
1 ¥(r)
0*(r) = —— -
N =5-ap-V"
0 c

P qf 45 g5 2

Kresimir Burazin Explicit solutions of multiple state optimal design problems 21/21



Introduction
Multiple state energy minimization
Examples

Optimal 0* for case B

c
Jo
_/ "
‘ 5 ]
0 i @ @6 2
In region: -
1
1 ¥(r)
0*(r) = —— -
N =5-ap-V"
0 c

i 9 45 g5 2

Kresimir Burazin Explicit solutions of multiple state optimal design problems 21/21



	Introduction
	Energy optimization
	Composite materials - relaxation

	Multiple state energy minimization
	Multiple states
	Convex minimization problem 

	Examples

