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Abstract

We extend Brenier’s transport collapse scheme on
the Cauchy problem for heterogeneous scalar con-
servation laws. It is based on averaging out the
solution to the corresponding kinetic equation,
and it necessarily converges toward the entropy
admissible solution. We also provide numerical
examples.

Introduction

We deal with is the initial value problem for hetero-
geneous scalar conservation laws. In order to intro-
duce it, let Ω ⊂ Rd be a bounded smooth domain
and R+ = [0,∞). We consider for f ∈ C2(R; Rd)
∂tu + divx f (t, x, u) = 0, (t,x) ∈ R+ × Ω, (1)
u|t=0 = u0(x), (2)

If not stated otherwise, we assume that u0 ∈
L1(Rd)∩BV (Rd). We also assume that a ≤ u0 ≤ b
for some constant a, b > 0.
A typical problem described by (1), (2), arises e.g.
in traffic flow models or fluid dynamics.
Definition 1. A bounded function u is called an
entropy admissible solution to with the initial con-
ditions (2) if for every convex function V ∈ C2(R),
every λ ∈ R and every ϕ ∈ C1

c ([0,∞) × Rd), it
holds∫∫

R+×Rd

[
V (u)∂tϕ+

∫ u

a
f ′λ(t,x, v)V ′(v)dv · ∇ϕ (3)

+
∫ u

a
divx f (t,x, v)V ′′(v)dv ϕ

]
dxdt +

∫
Rd
V (u0(x))ϕ(0,x)dx ≤ 0.

Equivalent and more usual definition of admissible
solution is given by the Kruzhkov entropies V (u) =
|u−λ|, λ ∈ R, and it states that a bounded function
u is called an entropy admissible solution to (1), (2)
if for every λ ∈ R it holds
∂t|u− λ|+ divx[sgn(u− λ)(f (t,x, u)− f (t,x, λ))]

(4)
+ sgn(u− λ) divx f (t,x, λ) ≤ 0

in the sense of distributions on D′(Rd
+), and it holds

esslimt→0
∫
Ω |u(t,x) − u0(x)|dx = 0. By finding

derivative with respect to λ in (4) one reaches to
the kinetic formulation (see e.g. [10, 8] for different
variants).

Kinetic formulation

Theorem. [5] The function u ∈
C([0,∞);L1(Rd)) ∩ L∞loc((0,∞);L∞(Rd)) is
the entropy admissible solution to (1), (2) if and
only if there exists a non-negative Radon measure
m(t,x, λ) such that m((0, T ) × Rd+1) < ∞
for all T > 0 and such that the function

χ(λ, u) =


1, 0 ≤ λ ≤ u

−1, u ≤ λ ≤ 0
0, else

, represents the

distributional solution to
∂tχ + div(x,λ)[F (t,x, λ)χ] = ∂λm(t,x, λ), (t,x) ∈ R+ ×Rd,

(5)
χ(λ, u(t = 0,x)) = χ(λ, u0(x)), (6)

where F = (f ′λ,−
d∑
j=1

∂xjfj).
Remark that through the kinetic concept, one re-
duces the nonlinear equation (1) on the linear (so
called kinetic) equation. However, derivative of a
measure figures in the equation (see the right-hand
side of (5)) and it has one more variable (so called ki-
netic or velocity variable). Due to the former reason,
the kinetic equation is not convenient for numerical
implementation.
Never the less, if we neglect the derivative of the
measure, and then average out the solution to the
obtained linear equation with respect to the kinetic
variable, we can obtain entropy solution to the con-
sidered problem. Such a procedure is proposed in [2]
for equation homogeneous case, interestingly more
than ten years before the kinetic concept was for-
malized in [10]. We aim to extend the transport-
collapse scheme [2] for the initial value problem for
heterogeneous scalar conservation laws.
Let us now state properties of the function χ.
Proposition [2, page 1018] It holds

a)∀u, v ∈ L1(Rd) such that
u ≥ v =⇒ χ(λ, u) ≥ χ(λ, v);

b)∀u ∈ L1(Rd), ∀g ∈ L∞(Rd ×R), it holds∫∫
χ(λ, u)g(x, λ)dxdλ = ∫ (∫ ua g(x, λ)dλ) dx;

In particular, if g = G′λ and G(a) = 0, then∫∫
χ(λ, u)g(x, λ)dxdλ = ∫

G(x, u)dx
c)TV (u) = ∫

TV (χ(λ, ·))dλ.

Transport collapse operator

The idea of the transport collapse scheme for the
initial value problem (1), (2) is to solve problem (5),
(6) when we omit the right-hand side in (5):
∂th + divx,λ[F (t,x, λ)h] = 0, h|t=0 = χ(λ, u0(x)).

(7)
The solution of this equation is obtained via the
method of characteristics. They are given by

ẋ = f ′λ, x|t=0 = x0,

λ̇ = −
d∑
j=1

∂xjfj(t,x, λ), λ|t=0 = λ0.
(8)

The solution to (7) has the form
h(t,x, λ) = χ(λ0(t,x, λ), u0(x0(t,x, λ))). (9)

Definition. The transport collapse operator T (t)
is defined for every u ∈ L1(Rd) by
T (t)u(x) =

∫
χ(λ0(t,x, λ), u(x0(t,x, λ)))dλ.

(10)
It satisfies the following properties which are the
same as the ones from [2, Proposition 1].
Proposition. It holds for every u, v ∈ L1(Rd)

a)u ≤ v a.e. implies T (t)u ≤ T (t)v a.e;
b) ∫

T (t)u(x)dx = ∫
u(x)dx;

c) the operator T (t) is non-expansive
‖T (t)u− T (t)v‖L1(Rd) ≤ ‖u− v‖L1(Rd),

and, in particular, ‖T (t)u‖L1(Rd) ≤ ‖u‖L1(Rd);
d)TV (T (t)u) ≤ (1 + C1t)TV (u) + tC2, where TV

is the total variation and C1 and C2 are
appropriate constants depending on the
C2-bounds of the flux f ;

e)‖T (t)u− u‖L1(Rd) ≤ C2TV (u)t + tC1 for the
constants C1 and C2 from the previous item;

Proposition. For any smooth positive test func-
tion ϕ, any u ∈ L1(R) such that a ≤ u ≤ b, and
convex Lipschitz function V : R → R, we have∫

(V (T (t)u)− V (u))(x)ϕ(x)dx (11)

≤
∫ t

0

∫
BV (t′,x, u(x))∇ϕdxdt′ (12)

+
∫ t

0

∫ ∫ u

a
divx f (t,x, λ)V ′′(λ)dλdt′ + o(t), t→ 0

where BV (t,x, u) = ∫ u
a f
′
λ(t,x, λ)V ′(λ)dλ, and o(t)

depends only on the L∞-bound of u.

Main theorem

Theorem. Denote
Sn(t)u = (1− α)T ( t

n
)ku + αT ( t

n
)k+1u, (13)

where
t = (k + α)

n
, k ∈ N, α ∈ [0, 1). (14)

For each initial value u0 ∈ L1(Rd) such that a ≤ u0 ≤ b, the
unique entropy solution of (1), (2) at time t is given by the
formula

u(t, ·) = L1 − lim
n→∞

Sn(t)u.

Numerical simulations

Figure 1: Cauchy problem with initial condition u0(x) =
Hε(−x) (left) and u0(x) = Hε(x) (right).
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