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Existence of H-measures

Theorem. If u, — 0 in L2(Q; C"), then there exist a subsequence (u,) and
Wy € Mp(Q x 8471 M, (C)) such that for every 1, @2 € Co(Q) and
Y eC(E™

tin [ @0 (6) @ F (O ((§) dE = (o122 ).

Measure g, we call the H-measure corresponding to the (sub)sequence (us,).
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Theorem. If u, — 0in L2 _(Q; C"), then there exist a subsequence (u,/) and
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The distribution of order zero pj; we call the H-measure corresponding to the
(sub)sequence (uy).

Above we use the notation

Veu= Zviﬂi , (veu)a:=(a-u)v,while (fRg)(x,E&):= f(x)g(&).

Theorem.
L2
loc

Up—— 0 <= puy=0.



Example 1: Oscillation
Take a periodic function v € L2(R%/Z%), extend it to R?, and write

v(x) = Z Be2mHx
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Assume that 99 = 0, and define u,(x) = v(nx) in L3 (R%).
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Example 1: Oscillation
Take a periodic function v € L2(R%/Z%), extend it to R?, and write

v(x) = Z Be2mHx

kezd

Assume that 99 = 0, and define u,(x) = v(nx) in L3 (R%).
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Associated H-measure

pr = > [0 ©OA)

kezd\ {0}



Example 2: Concentration

For U € L*(R?) define

un(z) = n%U(na:) .




Example 2: Concentration

For U € L*(R?) define

Associated H-measure

i = [ 1005 ©0(0)dy
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M. Lazar, D. Mitrovi¢ (2012): velocity averaging



Variants without a characteristic length

N. A., M. Lazar (2007-13): parabolic H-measures

E. Yu. Panov (2009): ultraparabolic H-measures

. Ivec, D. Mitrovi¢ (2011): for fractional scalar conservation laws
M. Lazar, D. Mitrovi¢ (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).

The objects are quadratic in nature, and are suited essentially to linear
problems.



Variants without a characteristic length

N. A., M. Lazar (2007-13): parabolic H-measures

E. Yu. Panov (2009): ultraparabolic H-measures

. Ivec, D. Mitrovi¢ (2011): for fractional scalar conservation laws

M. Lazar, D. Mitrovi¢ (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).

The objects are quadratic in nature, and are suited essentially to linear
problems.

N. A., D. Mitrovi¢ (2011): H-distributions

The objects are no longer measures, but distributions (of finite order in &).



Variants without a characteristic length

N. A., M. Lazar (2007-13): parabolic H-measures

E. Yu. Panov (2009): ultraparabolic H-measures

. Ivec, D. Mitrovi¢ (2011): for fractional scalar conservation laws

M. Lazar, D. Mitrovi¢ (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).

The objects are quadratic in nature, and are suited essentially to linear
problems.

N. A., D. Mitrovi¢ (2011): H-distributions

The objects are no longer measures, but distributions (of finite order in &).
Howevgr, we are no longer limited to considering L? sequences, but pairs of L?
and L” sequences.



Variants without a characteristic length

N. A., M. Lazar (2007-13): parabolic H-measures

E. Yu. Panov (2009): ultraparabolic H-measures

. Ivec, D. Mitrovi¢ (2011): for fractional scalar conservation laws

M. Lazar, D. Mitrovi¢ (2012): velocity averaging

H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).

The objects are quadratic in nature, and are suited essentially to linear
problems.

N. A., D. Mitrovi¢ (2011): H-distributions

The objects are no longer measures, but distributions (of finite order in &).
However, we are no longer limited to considering L? sequences, but pairs of L?
and L”’ sequences.

Applications to compactness by compensation by M. Misur and D. Mitrovié
(submitted), and velocity averaging by M. Lazar and D. Mitrovi¢ (2013).



Variants without a characteristic length

N. A., M. Lazar (2007-13): parabolic H-measures
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H-measures can be tailored to the equations, following the above ideas (and
surmounting technical details, which do appear).

The objects are quadratic in nature, and are suited essentially to linear
problems.

N. A., D. Mitrovi¢ (2011): H-distributions
The objects are no longer measures, but distributions (of finite order in &).

However, we are no longer limited to considering L? sequences, but pairs of L?
and L”’ sequences.

Applications to compactness by compensation by M. Misur and D. Mitrovié
(submitted), and velocity averaging by M. Lazar and D. Mitrovi¢ (2013).
Other dualities are also possible, like mixed-norm Lebesgue spaces by N.A. and
. Ivec (submitted), and Sobolev spaces by J. Aleksi¢, S. Pilipovi¢ and .
Vojnovié.
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Luc Tartar (1990) constructed a similar object on an example, but Gérard's
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Semiclassical measures

Introduced for problems involving a characteristic length, by Patrick Gérard
(1990).

Luc Tartar (1990) constructed a similar object on an example, but Gérard's
construction was easier; later they jointly simplified it further.

Pierre-Louis Lions and Thierry Paul (1993) constructed the same objects by
using the Wigner transform, and renamed them as Wigner measures.

A sample problem:
consider T >0, Q CR%, U := <0 T) x Q, (up) in H (U),

un e A e W), £, 500, and e, N\, 0

Oy, — endiv(AVuy,) = fr .

What can we say about solutions on the limit n — co?



Existence
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Measure p . we call the semiclassical measure with characteristic length w,
corresponding to the (sub)sequence (uy,).
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Theorem. If u, — 0in L2 _(;C"), wn \. 0, then there exist a subsequence
(unr) and p,, € M(Q x R% M,(C)) such that for every @1, s € Cc(Q) and
¥ € S(RY)

The distribution of the zero order p . we call the semiclassical measure with
characteristic length w,, corresponding to the (sub)sequence (us,).

(un) is (wn)-oscillatory if

(VpeCZ(@) tim tmswp [ (GG (€ dg =0,
Rooe n - Jigz £

Theorem.

L2
Ly, R B =0 & (up)is (wn) — oscillatory .
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Example 1a: Oscillation — one characteristic length
a>0,keZ\ {0}, w, \LO:

12

loc O

u (X) L e27rin°‘k~x
n o

(50(5), lim, n®w, =0
(€), lim, n®w, = c € (0,00)
hmn nawn = 0

o>



Example 1a: Oscillation — one characteristic length

a>0,keZ\ {0}, w, \LO:

2
Lloc O .

w (X) L eQTrinakx
n =

00(8), limp,nw, =0

tse = A(X) K ¢ Sek(€), lim, n®w, = c € (0,00)
0, lim,, n“w, = 0o
n=2
= sin(Ynmz)
= sin(nmz)

2

= sin(n*mx)



Example 1b: Oscillation — two characteristic lengths

0<a<f kseZ\ {0}, w, \,O:

2
2min®k-x Li
Up(x) = ™" 20

2rinfs.x leoc
vn(x) =€ —250.
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0<a<p kseZ\ {0}, w, \,0:

2
2min®k-x Lioc
Up(x) = ™" 20

2rinfs.x leoc
up(X) :=e —=0.

wi (psc) is H-measure (semiclassical measure with characteristic length
wn "\, 0) corresponding to u, + vn.

i = AX) B (6 +02)(€)

Tk] [s]

260(€), lim,, nPw, =0
(8es + 00)(€), limy, nw, = ¢ € (0, 00)

Pse = A(x) B ¢ 5o(), lim,, nw, = oo & lim, n®w, =0
Ocks lim, n%w, = ¢ € (0, o)

0, lim,, n“w, = 0o

10
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advantages of both H-measures and semiclassical measures.
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One-scale H-measures

Introduced by Tartar (2009), they are variant H-measures which have the
advantages of both H-measures and semiclassical measures.

First attempts were already made in " Beyond Young measures” (Tartar, 1995).

Further step would be to introduce multi-scale H-measures.
An attempt was made by Tartar (2014).
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Compatification of R%\ {0}

- .'EO
\

Yo = {0% : g, eS8}
Yoo = {o0f0 : £, €871}
Koo (RY) := (R*\ {0}) UD U S

13



Compatification of R?\ {0}

S IR R4
/ N
/ \
/ \
/ \
,I ! E[) = {050 : €0 S Sdil}
Yoo | . ! . s
\ 1% | Yoo :={00™ : §, €57}
\ I
\ ! Kowe(R?):= R\ {0}) U U e
\ )
We have:

a) Co(R%) C C(Ko,oo (RY)).
b) 1 € C(S?1), v o € C(Ko,oo (R?)), where 7(€) = £/|€|.

13



Existence and definition of one-scale H-measures
Theorem. If u, — 0in L?(Q; C"), w, \, 0, then there exist a subsequence
(unr) and p,, € Mp(Q x R%; M, (C)) such that for every ¢1, 2 € Co(2) and
¥ € S(RY)

— -

lim [ (prun)(€) © (p2un)(§)Y(wnr€) d€ = (b, prp2 KY) .

n’ JRrd

Measure . we call the semiclassical measure with characteristic length w,,
corresponding to the (sub)sequence (uy).
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Existence and definition of one-scale H-measures
Theorem. If u, — 0in L2 (€ C"), w, \, 0, then there exist a subsequence
(ups) and prge, € M(Q x Ko,00(R%); M, (C)) such that for every
©1,2 € Ce(Q) and 1 € C(Ko,oo(RY))

—_

Hm [ (pruns)(§) @ (pauns) (€)Y (wnr€) d€ = (px, ., p1P2 W) .

n' Jrd

The distribution of the zero order py _ we call one-scale H-measure with
characteristic length w,, correspondlng to the (sub)sequence (uy).
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Existence and definition of one-scale H-measures
Theorem. If u, — 0in LE (€ C"), w, \, 0, then there exist a subsequence
(uns) and prge, € M(Q ¥ Ko, (R%); M, (C)) such that for every

01,2 € Ce(Q) and 1 € C(Ko,oo(RY))

lim [ (p1un)(€) ® (p2un) ()¢ (wnr€) d€ = (b, ,r 192 DY) -
The distribution of the zero order py  _ we call one-scale H-measure with
characteristic length w,, correspondlng to the (sub)sequence (uy).

Some properties: ~
Theorem. 1,92 € Cc(Q), ¥ € S(RY), ¢ € C(S471).

a) (o o p192BY) = (p,, 0192 BY),
b)  (wky . Pr2Mpom) = (uy,p102 X)),
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Existence and definition of one-scale H-measures
Theorem. If u, — 0in LE (€ C"), w, \, 0, then there exist a subsequence
(u,’) and Bk, o € M(Q x Ko,0o (R?); M, (C)) such that for every
01,2 € Ce(Q) and 1 € C(Ko,oo(RY))

—_—

Hm [ (pruns)(§) @ (pauns) (€)Y (wnr€) d€ = (px, ., p1P2 W) .

n' Jrd

The distribution of the zero order py  _ we call one-scale H-measure with
characteristic length w,, correspondlng to the (sub)sequence (uy).

Some properties: ~
Theorem. 1,92 € Cc(Q), ¥ € S(RY), ¢ € C(S471).

a) (o o p192BY) = (p,, 0192 BY),
b)  (wky . Pr2Mpom) = (uy,p102 X)),

Theorem.
a) Hf{om = My,
L2
b) un—2% 0 = My, .. =0
c) Mg, QX X) =0 <= (un)is (wn) — oscillatory

14



Example 1a revisited

un(x) _ eerin‘ll«x'
pE = A
Hsc = A

lim, n%w, =0
lim, n®w, = ¢ € (0, o)
lim,, n%w, = 0o

15



Example 1a revisited

00(€), limpn®w, =0

Sek(€), lim, n“w, = c € (0, 0)

0, lim,, n%w, = 0o

0 « (&), lim,n%w, =0

) , lim,, n®w, = ¢ € (0, co)
0 1 (&), lim,n®w, =

15



Example 1b revisited

The corresponding measures of u,, + v, for:

’LLn(X) — e27‘rzn°‘k<x , Un (X) _ 627r7,n s-X ,

200(£), lim, n°w, =0
(80 + 6s)(&), lim, nPw, = ¢ € (0, c0)
fse = A(x) X ¢ 6o(&), lim, nPw, = co & lim, n%w, =0

Ok, lim, n%w, = ¢ € (0, co)

0, lim,, n®w, = co



Example 1b revisited

The corresponding measures of u,, + v, for:

. inBs-
’LLn(X) — e27'rzn0¢k<x ’ Un (X) _ 627r7,n sx ,

pr = Ax) & (% + 5§)(5)
200(£), lim, n°w, =0
(80 + 6s)(&), lim, nPw, = ¢ € (0, c0)
fse = A(x) X ¢ 6o(&), lim,, nPw, = 0o & lim, n®w, =0
Ok, lim, n%w, = ¢ € (0, co)
0, lim,, n%w, = 00
s i B =
5oﬁ oﬁ)(g)’ lim, n’w, =0
lim, n®w, = ¢ € (0, 00)

o
=|

PKo oo = A(x) X =€), limp nPw, = 0o & lim, n%w, =0
)(&), lim, n®w, = c € (0, 0)

lim,, n“w, = 0o

o
Z

> ~2)
o
=~ — ‘r
+
-+ + +
S S0
a
8 3
=
o
o~

~ o~~~ o~
<%
I~

(=%
‘r
+3
(s
‘.,.
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Other variants

One-scale parabolic H-measures

A similar construction can be carried out by starting with parabolic H-measures
instead of classical H-measures.

The resulting objects will have two scales: one corresponding to t, and another
to x.
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Other variants

One-scale parabolic H-measures

A similar construction can be carried out by starting with parabolic H-measures
instead of classical H-measures.

The resulting objects will have two scales: one corresponding to t, and another
to x.

One-scale H-distributions

This construction requires much more work. The topological construction is
not enough, as we also have to check the derivatives.

However, the construction is feasible, and we obtain the new objects.

17
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Localisation principle

Most of the known applications of H-measures depend in one way or the other
on the localisation principle, which gives the information on the support of
H-measure.

It is indispensable even for the known applications of the propagation principle.
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Localisation principle

Most of the known applications of H-measures depend in one way or the other
on the localisation principle, which gives the information on the support of
H-measure.

It is indispensable even for the known applications of the propagation principle.
A similar statement holds for semiclassical measures as well.

19



Localisation principle for H-measures (symmetric systems)

d
Zak(Aku) +Bu=f, A" € Cy(Q; M, x,) Hermitian
=1

Assume:
L? .
u,— 0, and defines p g
-1

Hloc
fa—>0.

20



Localisation principle for H-measures (symmetric systems)

d
Zak(Aku) +Bu=f, A" € Cy(Q; M, x,) Hermitian
=1

Assume:
L? .
u,— 0, and defines p g

-t
fn—%0.
Theorem. If u, satisfies:
d
Z@k (A*u™) — 0 inH (2 C),
k=1

then for P(x, &) := ZZ:1 ELAR(x) on Q x S9! one has:
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Z@k (A*u™) — 0 inH (2 C),
k=1

then for P(x, &) := ZZ:1 ELAR(x) on Q x S9! one has:

Thus, the support of H-measure p is contaned in the set
{(x,€) € 2 x S " : det P(x,&) = 0} of points where P is a singular matrix.
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Localisation principle for H-measures (symmetric systems)

d
Zak(Aku) +Bu=f, A" € Cy(Q; M, x,) Hermitian
=1

Assume:
L? .
u,— 0, and defines p g

—1

H
fn—%0.
Theorem. If u, satisfies:
d
Z@k (A*u™) — 0 inH (2 C),
k=1

then for P(x, &) := ZZ:1 ELAR(x) on Q x S9! one has:

Thus, the support of H-measure p is contaned in the set
{(x,€) € 2 x S " : det P(x,&) = 0} of points where P is a singular matrix.

It contains a generalisation of compactness by compensation to variable
coefficients.



Higher derivatives and parabolic variant

Let @ C R? open, m € N, u,, — 0in L .(Q;C"), A* € C(Q; M,(C)) and
Pu, = Y 9a(A%un) — 0in H?(C7).
|a|=m

Then we have
-
p(x, &)NH =0 )
where p(x, &) = Zlalzm &% A (x) is the principle simbol of P.

21



Higher derivatives and parabolic variant

Let @ C R? open, m € N, u,, — 0in L .(Q;C"), A* € C(Q; M,(C)) and
Pu, = Y 9a(A%un) — 0in H?(C7).
|a|=m

Then we have
p(x,€)uy =0,
where p(x, &) = Zlalzm &% A (x) is the principle simbol of P.

In the parabolic case the details become more involved.

One needs anisotropic Sobolev spaces and fractional derivatives in ¢.
However, similar results can be achieved.
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Localisation principle for semiclassical measures

Let e C R% open, m € N, A® € C(g; M,(C)), e, \\ 0, f, — 0in L3 .(&;C")
and consider:
Pou, = Z e 00 (A%up) =f, ine.

lee|<m

Furthermore, assume that u,, — 0 in L _(; C").
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Localisation principle for semiclassical measures

Let e C R% open, m € N, A® € C(g; M,(C)), e, \\ 0, f, — 0in L3 .(&;C")
and consider:
Poup = Z el 90 (A%u,) =f, ine.
lal<m
Furthermore, assume that u,, — 0 in L _(; C").
Then we have
p(x,&)p,. =0,
where p(x,£) = 3|, <, §¥A%(x), and p,, is the semiclassical measure with

characteristic length (&), corresponding to (un).
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Localisation principle for semiclassical measures

Let e C R% open, m € N, A® € C(g; M,(C)), e, \\ 0, f, — 0in L3 .(&;C")
and consider:
Poup = Z el 90 (A%u,) =f, ine.
lal<m
Furthermore, assume that u,, — 0 in L _(; C").
Then we have
p(x,&)p,. =0,
where p(x,£) = 3|, <, §¥A%(x), and p,, is the semiclassical measure with

characteristic length (&), corresponding to (un).

Problem: .. = 0 is not enough for the strong convergence!
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One-scale H-measures

Let u, — 0in LY (,C"), £, \\ 0, A* € C(Q; M,(C))

> e 00 (A%,) =1, inQ,

I<|al<m

where f,, € H " (Q; C") such that

loc

oo gf? . 2 d r
VpeCr(Q) ——2" 0 in LAR%LC)
1+ 300 en s

(Clen))
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One-scale H-measures

Let u, — 0in LY (,C"), £, \\ 0, A* € C(Q; M,(C))

> e 00 (A%,) =1, inQ,

I<|el<m

where f,, € H 7" (Q; C") such that

loc
Phn

VeeCl() —=m o —
1+Zs:15n l|€|s

0 in L*(R%C7)  (Cen))

Lemma.
a) (C(en)) is equivalent to

ofn,

(th S CEO(Q)) 14 |£|l +€?7l|£|m

—0 in L*R%CN).

b) 3k €l.m) f, — 0in H_*(Q;C") = (ek~'f,,) satisfies (C(en)).

loc
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Localisation principle: Tartar's result

> e 0a(A%,) =f, inQ,
I<]al<m
ofn

(Ve € CZ(Q)) Ty e e
s=[ =1

—0 in L*R%CT).  (Clen))

Theorem. [Tartar (2009)] Under previous assumptions and [ = 1, one-scale
H-measure puy _ with characteristic length e, corresponding to (un) satisfies

.
supp (P, ) € 2 x o,

where

X = ] ‘MLAO‘ X).
p( 7€) lglaZKm(Qﬂ-Z) ‘£|+|€‘m ( )
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Localisation principle

Z 90 (A%,) =, in Q,

I|e|sm

¢fn

VeeCl () —=m s —
14+ 200 e gl

0 in L*R%CY).  (Clen))

Theorem. Under previous assumptions, one-scale H-measure p1ic _ with
characteristic length ,, corresponding to (uy) satisfies

P, . =0,
where N
3

x,€) = 7177 Ll . S—
p(x,§): Z (2mi) FHENEE

I<lelsm

A% (x).
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Localisation principle: a generalisation

Theorem. ¢, — 0, u, — 0 in LY _(£2; C") and

S e 0a (A% ) = o,

I<|al<m

where A* € C(Q; M, (C)), and f,, € H 7" (Q; C") satisfies (C(en)).
Then for w, — 0 such that lim,, <=

“n — ¢ € [0, 00], the corresponding one-scale
n, .
H-measure puic _ with characteristic length wy, satisfies

-
pl‘LKO,OC = 0 )
where

o

Y=t e AT () : lim,, €=

En =00
s} |a| - . w,
p(x,€) == zlg‘a‘gm(%) e A (x) . lim, 22 = c € (0, 00)

. wn
, lim, £ =0

£ pe
2ja=m e A% (%)
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Sketch of the proof.

Suppose that we have already obtained the result for lim,, ‘:: = c € (0, 00).




Sketch of the proof.

Suppose that we have already obtained the result for lim,,

Wn

In the case lim, ¥* = oo we rewrite equations in the form
n

Z wl;"*laa (B%uy) =fn,

1<]al<m

Wn
En

= c € (0, c0).
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Sketch of the proof.

Suppose that we have already obtained the result for lim,,

Wn

In the case lim, ¥* = oo we rewrite equations in the form
n

Z wl;"*laa (B%uy) =fn,

1<]al<m

lee] =1
for B* := (ﬂ) A“,

Wn

Similary for the case lim, ¥2 = 0 we have
y o

Z wlla‘_laa (B%un) = gn,

I<|a|<m

where B® = (“’—")m_‘alA“, and g, := ("J—")m_lfn.

Wn
En

= c € (0, c0).
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Proof (Step 1: inserting test function)

S et 0a(A%,) =1,

I<|al<m
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Proof (Step 1: inserting test function)

S et 0a(A%,) =1,

I<le|<m

I<le|sm

where (f,,) satisfies (C(en)).
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Proof (Step 1: inserting test function)

S et T0a(A%,) =f, Jp € CT(Q)

I<le|<m

I<le|sm

where (f,,) satisfies (C(en)).

27



Proof (Step 1: inserting test function)

S et T0a(A%,) =f, Jp € CT(Q)

I<le|<m

= D> > lBl( > ‘na‘ilaa—ﬁ((aﬁso)Aaun) = ¢fn

I<|a|<mi<B<La

I<le|sm

where (f,,) satisfies (C(en)).
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I<le|<m

= D> > lBl( > ‘f‘*laa—ﬁ((aﬁs@)Aaun) = ¢fn

I<|a|<mi<B<La

® Ja_p ((Gﬁgo)Ao‘ un) has a compact support

I<le|sm

where (f,,) satisfies (C(en)).
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Proof (Step 1: inserting test function)

S et T0a(A%,) =f, Jp € CT(Q)

I<le|<m

= D> > lBl( > ‘f‘*laa—ﬁ((aﬁs@)Aaun) = ¢fn

I<|a|<mi<B<La
® Ou—p ((Gﬁgo)Ao‘ un) has a compact support

= Oap ((85<p)A°‘un) —xinH (@), 0< B< o

I<le|sm

where (f,,) satisfies (C(en)).
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Proof (Step 1: inserting test function)

S et T0a(A%,) =f, Jp € CT(Q)

I<le|<m

= D> > lBl( > ‘f‘*laa—ﬁ((aﬁs@)Aaun) = ¢fn

I<|a|<mi<B<La

® Ou—p ((Gﬁgo)Ao‘ un) has a compact support

— g ((8g<p)A°‘un) —0in H*(Q;C") (un, = 0), 0< B< o

I<le|sm

where (f,,) satisfies (C(en)).
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Proof (Step 1: inserting test function)

S et T0a(A%,) =f, Jp € CT(Q)

I<le|<m

= D> > |B|< > La‘flaa—ﬁ((aﬁs@)Aaun) = ¢fn

I<|a|<mi<B<La

® Ou—p ((Gﬁgo)Ao‘ un) has a compact support

— g ((8g<p)A°‘un) —0in H*(Q;C") (un, = 0), 0< B< o

= (-1)" (g) el 90 g ((nga)Aaun) satisfies (C(en))

I<le|sm

where (f,,) satisfies (C(en)).
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Proof (Step 1: inserting test function)

S et T0a(A%,) =f, Jp € CT(Q)

I<le|<m

= D> > |B|< > La‘flaa—ﬁ((aﬁs@)Aaun) = ¢fn

I<|a|<mi<B<La

® Ou—p ((Gﬁgo)Ao‘ un) has a compact support

— g ((8g<p)A°‘un) —0in H*(Q;C") (un, = 0), 0< B< o

= (-1)" (g) el 90 g ((nga)Aaun) satisfies (C(en))

We can rewrite

I<le|sm

where (f,,) satisfies (C(en)).
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Proof (Step 2: Fourier transform)

After applying Fourier transform and multiplying by

S clel el

I<|el<m

1
L€ e g m

&> A/aan fn L2

m—1 - m—l1 —0
L+ g +en g™ 1+ €] +en g™

we get:
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Proof (Step 2: Fourier transform)

After applying Fourier transform and multiplying by m we get:
-1 . £°‘A/“—ga\u f 1.2
> e e e = e e O
L (€] e g™ 1+ €] +en €]

I<|el<m

Lemma. (f,) mesurable (vector valued) on R?, h,, > 0 and
(Vr>0)(3C >0)(VneN)(VE € R \K(0,r)  ha(€) > C,

(un) bounded in L*(R%; C") NL'(R%; C") and {{5— -4, — 0 in L*(RY) .
If (hn?|f,|?) is equiintegrable then

|

i, — 0 in L*(RY).

>

n
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Proof (Step 2: Fourier transform)

. . . . 1 )
After applying Fourier transform and multiplying by e e we get:
_ *Aopu £, 2
S el @iyl £ o - n_____ o
L+ [ +en g™ 1+ [ +en g™

I<]al<m

Lemma. (f,) mesurable (vector valued) on R?, h,, > 0 and

(Vr>0)3C>0)(VneN)(VEecR\K(©O,r)  ha(€) >C,

(un) bounded in L2(R%; C") N L}(R%; C")
If (hp?|f,|?) is equiintegrable then

i, — 0 in L*(RY).

7l

clel= l€a S
= (2mi )lo‘|7 “pu, — 0 in L*R%C")
2 €] + en ' g|m

I<]a|<m

= n — 0 in L*(RY) .

28



Proof (Step 2: Fourier transform)

After applying Fourier transform and multiplying by m we get:
Z clel= gy el £¥A>puy, _ fn 2,
L+ €l +enT'lelm 1+ gl + e gl

I<|el<m

Lemma. (f,) mesurable (vector valued) on R?, h,, > 0 and
(Vr>0)(3C >0)(VneN)(VE € R \K(0,r)  ha(€) > C,
(un) bounded in L*(R% C") NL'(R% C") and {f2— - G, — 0 in L*(R?) .

If (hn?|f,|?) is equiintegrable then !

Zi-ﬂn — 0 in L*RY).

. ené)” o . 2/ nd
= (ZWZ)‘Q‘(iA“goun —0 in L*R%CT
B e (e
The convergence is expressed in L2,
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Proof (Step 3: passing to the limit)

In order to apply the existence theorem, £ —

as a function in variable w,§.

A

&1 remlgm

should be written
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Proof (Step 3: passing to the limit)

e e

el e should be written
En

In order to apply the existence theorem, £ —
as a function in variable w,§.

Then, we need to prove (it is trivial for [ = m)
ST @) o (wn ) AU, — 0 in L2R%CT),
I<|a|<m

C'm7|cx|€a

where 1 (§) := TR defined for € € RZ, can be understood as a
function from C(Ko o0 (R%)).

29



Proof (Step 3: passing to the limit)

|| —1
En ! £

el e should be written
517.

In order to apply the existence theorem, £ —
as a function in variable w,§.
Then, we need to prove (it is trivial for [ = m)
ST @) o (wn ) AU, — 0 in L2R%CT),
I<|al<m

C'm7|cx|€a

where 1 (§) := TR defined for € € RZ, can be understood as a
function from C(Ko o0 (R%)).

This requires some calculations . .. (skipped)
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Proof (Step 3: passing to the limit)

Multiplication by 9(e,-)@1un, with 1 € C(Ko o0 (RY)), @1 € CZ(Q),
and integration

T N (Eng)a f\ —
0= hrrln /Rd 1/)(€n€)< Z (27i) WA goun> ® (golun) d¢

I<]al<m

. £ -
= omi)lel —S A« L og R,
(L2 o g g A oo 1 20)
e € CKoo(RY), 1< ol < m.

Taking 1 =1 on supp ¢ and using e~ = p,;O ., We get the result.
’ ‘ Q.E.D.

where we have used £ —
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Localisation principle - final generalisation
Theorem. ¢, — 0, u, — 0 in L . ( C") and

> e Oa (AU =1,

I<|a|<m

where A5 € C(Q; M, (C)), Ay — A uniformly on compact sets, and
fn € H 7' (Q; C") satisfies (C(en)).
Then for w, — 0 such that lim, “6’—: = ¢ € [0, 00], corresponding one-scale

H-measure puy _ with characteristic length w., satisfies

P, . =0,
where
> lal=t mAa (x) , lim,, &2 = o0
POCE) = 4§ Yo (29) " ST AT (0 lim, 22 = c € (0,00)
2al=m mAa(x) , lim, ¢» =0
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Localisation principle - final generalisation
Theorem. ¢, — 0, u, — 0 in L . ( C") and

> e Oa (AU =1,

I<|a|<m

where A5 € C(Q; M, (C)), Ay — A uniformly on compact sets, and
fn € H 7' (Q; C") satisfies (C(en)).
Then for w, — 0 such that lim, “6’—: = ¢ € [0, 00], corresponding one-scale
H-measure i, with characteristic length w, satisfies

P, . =0,
where
S ATl =
p(x,§) = Zlg‘a‘gm(%)lalﬁAa(x) ; limy 2 =c € (0,00)
Z‘a WAO‘( X) , lim, ¢ =

Moreover, if there exists eg > 0 such that g, > €9, n € N, we can take

px,E) = 3 é‘m A% (x).

le|=
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Localisation principle (H-measures)

e Using preceding theorem and py = pg on Q x S9=1 we can obtained
known localisation principle for H-measures:

P(x,&)py =0,

where 1y is an H-measure associated to the sequence (uy,), while the symbol

reads
P(x,&) := Z (2mi)"EX A% (x) .

le|=m
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Localisation principle (semiclassical measures)

Under the assumptions of the preceding theorem, we have

p(x,&)p.. =0,
where

a1 EFA% (%)
p(x,§) := Zlg|a|<m(m)‘a‘£QAa(X)

c

S etm €2 A% (%)

, limn‘;’—":oo
n

, limy 22 = c € (0, 00)

: w
, lim,, = =0
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Proof (only the case lim,, 2> = c € (0, o0))

veSMRY) = & (€' + €DV () € C(Koo(RY)
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Proof (only the case lim,, ¥z = ¢ € (0, 00))

En

veSMRY) = & (€' + €DV () € C(Koo(RY)

0=( ¥ (Bt An g, L0 B (] +1E))

e ) e
= (i 3 () oameny)
I<|al<m
e Y () Meammemy) = (Y (D) eranppomu),
I<lal<m I<lal<m

where we have used £€*¢) € S(R?) and that My, o, and p,. coincide on S(RY).
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Summary

H-measures do not catch frequency
In some cases, semiclassical measures do not catch direction

e One-scale H-measures are a generalisation of H-measures and semiclassical
measures and do not have the above anomalies

Localisation principle for one-scale H-measures is obtained
Localisation principles for H-measures and semiclassical measures is reproven
via localisation principle for one-scale H-measures
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