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What are H-measures?
Mathematical objects introduced by:
◦ Luc Tartar, motivated by intended applications in homogenisation (H),

and

◦ Patrick Gérard, whose motivation were certain problems in kinetic theory
(and who called these objects microlocal defect measures).

Start from un −⇀ 0 in L2(Rd), ϕ ∈ Cc(R
d), and take the Fourier transform:

ϕ̂un(ξ) =

∫
Rd

e−2πix·ξ(ϕun)(x)dx

As ϕun is supported on a fixed compact set K, so |ϕ̂un(ξ)| 6 C.
Furthermore, un −⇀ 0, and from the definition ϕ̂un(ξ) −→ 0 pointwise.
By the Lebesgue dominated convergence theorem on bounded sets, we get
ϕ̂un −→ 0 strong, i.e. strongly in L2

loc(R
d).

On the other hand, by the Plancherel theorem: ‖ϕ̂un‖L2(Rd) = ‖ϕun‖L2(Rd).

If ϕun 6⇀ 0 in L2(Rd), then ϕ̂un 6⇀ 0; some information must go to infinity.

How does it go to infinity in various directions? Take ψ ∈ C(Sd−1), and
consider:

lim
n

∫
Rd

ψ(ξ/|ξ|)|ϕ̂un|2dξ =

∫
Sd−1

ψ(ξ)dνϕ(ξ) .

The limit is a linear functional in ψ, thus an integral over the sphere of some
nonegativne Radon measure (a bounded sequence of Radon measures has an
accumulation point), which depends on ϕ. How does it depent on ϕ?
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H-measures: Rough geometric idea
Take a sequence un −⇀ 0 in L2(R2), and integrate |ϕ̂un|2 along

rays and project onto S1 Heat equation? parabolas and project onto P1

τ

ξ1

T

T0

τ

ξ

T

T0

√
2

1

O

In R2 we have a compact curve (a surface in higher dimensions):

S1 . . . r2(τ, ξ) := τ2 + ξ2 = 1

P1 . . . ρ2(τ, ξ) := (ξ/2)2 +
√

(ξ/2)4 + τ2 = 1

and projection R2
∗ = R2 \ {0} onto the curve (surface):

∂tu− ∂2
xu = 0

p(τ, ξ) :=
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

π(τ, ξ) :=
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
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H-measures: Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) ,

norm equal to ‖b‖L∞(R2).

Fourier multiplier Aa, for a ∈ L∞(R2): Âau = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P1.
We extend it by the projections, p or π: if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

a(τ, ξ) := α
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)

The precise scaling is contained in the projections, not the surface.

Now we can state the main theorem, where we use the notation

v · u :=
∑

viūi , (v ⊗ u)a := (a · u)v ,while (f � g)(x, ξ) := f(x)g(ξ) .
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The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P1.
We extend it by the projections, p or π:

if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)

a(τ, ξ) := α
( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)

The precise scaling is contained in the projections, not the surface.

Now we can state the main theorem, where we use the notation

v · u :=
∑
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Existence of H-measures

Theorem. If un −⇀ 0 in L2(Rd;Cr), then there exists a subsequence and a
complex matrix Radon measure µ on

Rd × Sd−1

Rd × Pd−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and

ψ ∈ C(Sd−1)

ψ ∈ C(Pd−1)

one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ p

π

) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ)

=

∫
Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .

There are some other variants (E. Ju. Panov, D. Mitrović & I. Ivec, M. Erceg &
I. Ivec, . . . ).
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Important lemma

Lemma. (first commutation — Luc Tartar) If b ∈ C0(Rd) and
a ∈ L∞(Rd) satisfy the condition

(∀ ρ, ε ∈ R+)(∃M ∈ R+) |a(ξ)− a(η)| 6 ε (a.e. (ξ,η) ∈ Y (M,ρ)) ,

then C := [Aa,Mb] is a compact operator on L2(Rd).

For given M,ρ ∈ R+ denote the set

Y = Y (M,ρ) = {(ξ,η) ∈ R2d : |ξ|, |η| >M & |ξ − η| 6 ρ} .
η

ξ

%

Y
M

In both cases discussed above, this lemma can also be proven directly, based on
elementary inequalities.
Similar results were obtained and used earlier in the theory of pseudodifferential
operators.
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Localisation principle for classical H-measures

d∑
k=1

∂k(Aku

n

)+Bu

n

= f

n

, Ak ∈ Cb(R
d; Ml×r)

Assume:

un
L2

−−⇀ 0 , and defines µ

fn
H−1

loc−−→ 0 .

Theorem. (localisation principle) If un satisfies:

d∑
k=1

∂k
(
Akun

)
−→ 0 in H−1

loc(Rd;Cr) ,

then for p(x, ξ) :=
∑d
k=1 ξkA

k(x) on Ω× Sd−1 one has:

p(x, ξ)µ> = 0 .

Thus, if l = r, the support of H-measure µ is contaned in the set{
(x, ξ) ∈ Ω× Sd−1 : detp(x, ξ) = 0

}
of points where p is a singular matrix.

The localisation principle is behind most of the known applications (e.g. to the
small-amplitude homogenisation). It contains a generalisation of compactness
by compensation to variable coefficients.
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Localisation principle for parabolic H-measures
In the parabolic case the details become more involved.

Anisotropic Sobolev spaces (s ∈ R; kp(τ, ξ) := 4
√

1 + (2πτ)2 + (2π|ξ|)4)

H
s
2
,s(R1+d) :=

{
u ∈ S ′ : kspû ∈ L2(R1+d)

}
.

Theorem. (localisation principle) Let un −⇀ 0 in L2(R1+d;Cr), uniformly
compactly supported in t, satisfy (s ∈ N)

√
∂t
s
(A0un) +

∑
|α|=s

∂α
x (Aαun) −→ 0 strongly in H

− s
2
,−s

loc (R1+d) ,

where A0,Aα ∈ Cb(R
1+d; Ml×r(C)), for some l ∈ N, while

√
∂t is a

pseudodifferential operator with symbol
√

2πiτ , i.e.

√
∂tu = F

(√
2πiτ û(τ)

)
.

Then for a parabolic H-measure µ associated to (a sub)sequence (of) (un) one
has (

(
√

2πiτ)sA0 +
∑
|α|=s

(2πiξ)αAα

)
µ> = 0.
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Good bounds in the Lp case: the Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd
∗, we can take k = ‖ψ‖Cκ .
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The main theorem

Theorem. [N.A. & D. Mitrović (2011)] If un −⇀ 0 in Lp(Rd) and
vn

∗−−⇀ v in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences
(un′), (vn′) and a complex valued distribution µ ∈ D′(Rd × Sd−1) of order not
more than κ = [d/2] + 1 in ξ, such that for every ϕ1, ϕ2 ∈ C∞c (Rd) and
ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 .

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(R
d), resulting in a distribution µ

of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.
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The proof is based on First commutation lemma

ψ ∈ Cκ(Sd−1) satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, Aψ and Mϕ are bounded operators on Lp(Rd), for any p ∈ 〈1,∞〉.
We are interested in the properties of their commutator, C = AψMϕ −MϕAψ.

Lemma. Let (vn) be bounded in both L2(Rd) and Lr(Rd), for some
r ∈ 〈2,∞], and let vn ⇀ 0 in D′. Then the sequence (Cvn) strongly converges
to zero in Lq(Rd), for any q ∈ [2, r] \ {∞}.

If q < r, we can apply the classical interpolation inequality:

‖Cvn‖q 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/q = α/2 + (1− α)/r. As C is compact on L2(Rd)
by Tartar’s First commutation lemma, while it is bounded on Lr(Rd), we get
the claim.

For the most interesting case, where q = r, we need a better result: the
Krasnosel’skij theorem (a variant of Riesz-Thorin theorem).

We still need a lemma on compactness of uniformly bounded bilinear forms,
and an application of the Schwartz kernel theorem.
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Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

13



Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

13



Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

In order to prove the theorem, we need a particular multiplier, the so called
(Marcel) Riesz potential I1 := A|2πξ|−1 , and the Riesz transforms Rj := A ξj

i|ξ|
.

Note that ∫
I1(φ)∂jg =

∫
(Rjφ)g, g ∈ S(Rd).

Using the density argument and that Rj is bounded from Lp(Rd) to itself, we
conclude ∂jI1(φ) = −Rj(φ), for φ ∈ Lp(Rd).
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in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

(an application suggested by Darko Mitrović) For scalar conservation law
with discontinuous flux, the most up to date existence result for the equation

ut + div f(t,x, u) = 0

is obtained under the assumptions

max
λ∈R
|f(t,x, λ)| ∈ L2+ε(Rd

+) .

Using the H-distributions, it is poossible to prove an existence result for the
given equation under the assumption

max
λ∈R
|f(t,x, λ)| ∈ L1+ε(Rd

+) .
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Further variants

N.A. & I. Ivec: extension to Lebesgue spaces with mixed norm

M. Lazar & D. Mitrović: applications to velocity averaging

M. Mǐsur & D. Mitrović: a form of compactness by compensation

J. Aleksić, S. Pilipović, I. Vojnović (preprint): in S − S ′ setting

F. Rindler (ARMA, 2015): microlocal compactness forms
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Semiclassical measures

Theorem. If un ⇀ 0 in L2(Ω;Cr), ωn → 0+, then there exist a subsequence
(un′) and µ(ωn)

sc ∈Mb(Ω×Rd; Mr(C)) such that for any ϕ1, ϕ2 ∈ C∞c (Ω)
and ψ ∈ S(Rd)

lim
n′

∫
Rd

(
ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)

)
ψ(ωn′ξ) dξ =

〈
µ(ωn)
sc , ϕ1ϕ̄2 � ψ

〉
.

Measure µ(ωn)
sc we call the semiclassical measure with characteristic length

(ωn) corresponding to the (sub)sequence (un).

Definition (un) is (ωn)-oscillatory if
(∀ϕ ∈ C∞c (Ω)) limR→∞ lim supn

∫
|ξ|> R

ωn

|ϕ̂un(ξ)|2 dξ = 0 .

Theorem.

un
L2
loc−→ 0 ⇐⇒ µ(ωn)

sc = 0 & (un) is (ωn)− oscillatory .
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Localisation principle for semiclassical measures

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and

Pnun :=
∑
|α|6m

ε|α|n ∂α(Aαun) = fn in Ω ,

where
• εn → 0+

• Aα ∈ C(Ω; Mr(C))
• fn −→ 0 in L2

loc(Ω;Cr).
Then we have

pµ>sc = 0 ,

where p(x, ξ) =
∑
|α|6m ξαAα(x), and µsc is semiclassical measure with

characteristic length (εn), corresponding to (un).

Problem: µsc = 0 is not enough for the strong convergence!
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Compatification of Rd \ {0}

∞e

e0e

Rd

Σ∞

Σ0

Σ0 := {0e : e ∈ Sd−1}

Σ∞ := {∞e : e ∈ Sd−1}

K0,∞(Rd) := Rd \ {0} ∪ Σ0 ∪ Σ∞

Corollary. a) C0(Rd) ⊆ C(K0,∞(Rd)).
b) ψ ∈ C(Sd−1), ψ ◦ π ∈ C(K0,∞(Rd)), where π(ξ) = ξ/|ξ|.
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One-scale H-measures

Theorem. If un ⇀ 0 in L2(Ω;Cr), ωn → 0+, then there exists a
subsequence (un′) and µ(ωn)

sc ∈Mb(Ω×Rd; Mr(C)) such that for any
ϕ1, ϕ2 ∈ C∞c (Ω) and ψ ∈ S(Rd)

lim
n′

∫
Rd

(
̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)

)
ψ(ωn′ξ) dξ =

〈
µsc, ϕ1ϕ̄2 � ψ

〉
.

Measure µ(ωn)
sc is called the semiclassical measure with characteristic length

(ωn) corresponding to the (sub)sequence (un).

Luc Tartar: The general theory of homogenization: A personalized
introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems, S 8 (2015) 77–90.
N. A., Marko Erceg, Martin Lazar: Localisation principle for one-scale
H-measures, submitted (arXiv).
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Idea of the proof

Tartar’s approach:

• vn(x, xd+1) := un(x)e
2πixd+1

ωn ⇀ 0 in L2
loc(Ω×R;Cr)

• νH ∈M(Ω×R× Sd; Mr(C))

• µ
(ωn)
K0,∞

is obtained from νH (suitable projection in xd+1 and ξd+1)

Our approach:
• First commutation lemma:

Lemma. Let ψ ∈ C(K0,∞(Rd)), ϕ ∈ C0(Rd), ωn → 0+, and denote
ψn(ξ) := ψ(ωnξ). Then the commutator can be expressed as a sum

Cn := [Bϕ,Aψn ] = C̃n +K ,

where K is a compact operator on L2(Rd), while C̃n −→ 0 in the operator
norm on L(L2(Rd)).

• standard procedure: (a variant of) the kernel theorem, separability, . . .
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Some properties of µK0,∞

Theorem.

a) µ∗K0,∞ = µK0,∞ , µK0,∞ > 0

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) trµK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ C0(Rd), ψ̃ ∈ C(Sd−1), ωn → 0+,

a) 〈µ(ωn)
K0,∞

, ϕ1ϕ̄2 � ψ〉 = 〈µ(ωn)
sc , ϕ1ϕ̄2 � ψ〉 ,

b) 〈µ(ωn)
K0,∞

, ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 ,

where π(ξ) = ξ/|ξ|.
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Localisation principle

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

where
• l ∈ 0..m
• εn → 0+

• Aα ∈ C(Ω; Mr(C))
• fn ∈ H−mloc (Ω;Cr) such that

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) (C(εn))

Lemma. a) (C(εn)) is equivalent to

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 + |ξ|l + εm−ln |ξ|m
−→ 0 in L2(Rd;Cr) .

b) (∃ k ∈ l..m) fn −→ 0 in H−kloc (Ω;Cr) =⇒ (εk−ln fn) satisfies (C(εn)).
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Localisation principle

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

where
• l ∈ 0..m
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Localisation principle

∑
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) . (C(εn))

Theorem. [Tartar (2009)] Under previous assumptions and l = 1, one-scale
H-measure µK0,∞ with characteristic length (εn) corresponding to (un) satisfies

supp (pµ>K0,∞) ⊆ Ω× Σ0 ,

where

p(x, ξ) :=
∑

16|α|6m

(2πi)|α|
ξα

|ξ|+ |ξ|mAα(x) .
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Localisation principle

∑
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) . (C(εn))

Theorem. [N.A., Erceg, Lazar (2015)] Under previous assumptions,
one-scale H-measure µK0,∞ with characteristic length (εn) corresponding to

(un) satisfies
pµ>K0,∞ = 0 ,

where

p(x, ξ) :=
∑

l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAα(x) .
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Localisation principle - final generalisation

Theorem. Take εn > 0 bounded, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aα
n un) = fn ,

where Aα
n ∈ C(Ω; Mr(C)), Aα

n −→ Aα uniformly on compact sets, and
fn ∈ H−mloc (Ω;Cr) satisfies (C(εn)).
Then for ωn → 0+ such that c := limn

εn
ωn
∈ [0,∞], the corresponding

one-scale H-measure µK0,∞ with characteristic length (ωn) satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=


∑
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , c = 0∑
l6|α|6m(2πic)|α| ξα

|ξ|l+|ξ|mAα(x) , c ∈ 〈0,∞〉∑
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , c =∞
Moreover, if there exists ε0 > 0 such that εn > ε0, n ∈ N, we can take

p(x, ξ) :=
∑
|α|=m

ξα

|ξ|mAα(x) .

As a corollary from the previous theorem we can derive localisation principles
for H-measures and semiclassical measures.
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Thank you for your attention.
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