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Optimal design problem (single state) ® 9

Q C RY open and bounded, f € L?(Q) given; stationary diffusion
equation with homogenous Dirichlet b. c.:

—div (AVu) = f ]
veHYQ) ()
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Optimal design problem (single state) ® 9

Q C RY open and bounded, f € 1.2(2) given; stationary diffusion
equation with homogenous Dirichlet b. c.:

—div (AVu) = f ]
veHYQ) ()

where A is a mixture of two isotropic materials with conductivities
o< a<p:
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Q C RY open and bounded, f € 1.2(2) given; stationary diffusion
equation with homogenous Dirichlet b. c.:

—div (AVu) = f ]
veHYQ) ()

where A is a mixture of two isotropic materials with conductivities
0<a<f:A=xal+ (1— x)Bl where y € L>(£;{0,1}),
Jo X dx = qq, for given 0 < g < Q.
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Optimal design problem (single state) ® 9

Q C RY open and bounded, f € 1.2(2) given; stationary diffusion
equation with homogenous Dirichlet b. c.:

—div (AVu) = f ]
veHYQ) ()

where A is a mixture of two isotropic materials with conductivities

0<a<f:A=xal+ (1— x)Bl where y € L>(£;{0,1}),

Jo X dx = qq, for given 0 < g < Q.

For given Q, «, 3, g, and f we want to find such material A which

minimizes the compliance functional (total amount of heat/electrical energy
dissipated in €2):

J(x) = /Q f(x)u(x)dx = / A(x)Vu(x) - Vu(x) dx — min,

Q

Wwhere u is the solution of the state equation (1).
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Q circle / square, f = 1

Murat and Tartar, 1985

x € L=(2;{0,1})
A= xal+ (1 —x)pI
classical material
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Q circle / square, f = 1

Murat and Tartar, 1985

x € L=(2;{0,1})
A= xal+ (1 —x)pI
classical material
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Composite material ® 9
Definition

If a sequence of characteristic functions x. € L>°(;{0,1}) and
conductivities

A (x) = xe(x)al + (1 = xe(x)) A1

satisfy x. — 0 weakly * and A® H-converges to A*, then it is said that A*
is homogenised tensor of two-phase composite material with proportions 6
of first material and microstructure defined by the sequence (x: ).
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Composite material ® 9
Definition

If a sequence of characteristic functions x. € L>°(;{0,1}) and
conductivities

A (x) = xe(x)al + (1 = xe(x)) A1

satisfy x. — 0 weakly * and A® H-converges to A*, then it is said that A*
is homogenised tensor of two-phase composite material with proportions 6
of first material and microstructure defined by the sequence (x: ).

Example — simple laminates: if x. depend only on x4, then
A" =diag(\y, Ay Ap 00 ) s
1 0 1—0

M =0a+(1-0)3, —=—+
o ( ) N, o g

where
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Composite material 9

Definition
If a sequence of characteristic functions x. € L>°(;{0,1}) and
conductivities

A (x) = xe(x)al + (1 = xe(x)) A1

satisfy x. — 0 weakly * and A® H-converges to A*, then it is said that A*
is homogenised tensor of two-phase composite material with proportions 6
of first material and microstructure defined by the sequence (x: ).

Example — simple laminates: if x. depend only on x4, then
A" =diag(\y, Ay Ap 00 ) s
1 0 1—0

M =b0a+(1-0)3, —=—+—-.
0 ( ) N, o g

where

Set of all composites:
\ A = {(0,A) € L®(Q; [0, 1]xMg(R)) : / 0dx = qa, A€ K(0)ae.}
Q

. Kresimir Burazin Opatija, September 2015 5/19




University of Osijek - Department of Mathematics

Effective conductivities — set ()

G—closure problem: for given 8 find all
possible homogenised (effective)
tensors A*
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Effective conductivities — set ()

2D:

e K(6)
G—closure problem: for given 8 find all 5
possible homogenised (effective) pys
tensors A* %
K(0) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev): “

0 o Y

Ay < N <N j=1,...,d ot s

z": 1 1 d-
“AN—a T\ —a N —a

IN

g 1 d—1
) =+
S B—x; T B-N
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Effective conductivities — set ()

2D:
A
G—closure problem: for given € find all )
possible homogenised (effective) Ay N A
tensors A* \
IC(0) is given in terms of eigenvalues S
(Murat & Tartar; Lurie & Cherkaev): v U
AN <N <A j=1,....d Ao Ay M
z": 1 1 d-
T = 5= +
j:1/\, a Ap —a Ay —«

IN

g 1 d—1
) s
BN = B-x  B-N
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Effective conductivities — set ()

2D:
A

G—closure problem: for given € find all )
possible homogenised (effective) A TN o
tensors A* y
K () is given in terms of eigenvalues B N
(Murat & Tartar; Lurie & Cherkaev): v U
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dJ 3D:
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Effective conductivities — set ()

2D:
A
G—closure problem: for given € find all )
possible homogenised (effective) A TN o
tensors A* y
K () is given in terms of eigenvalues B N
(Murat & Tartar; Lurie & Cherkaev): v U
Ag <N <A j=1,....d Ay A
dJ 3D:
Z 1 < 1 d—1
L = = + A
/:1 )\] o )\9 )\

1 < 1 n d—1
“B=XN T B=X  B-A
min 4 J is a proper relaxation of

m|nLoo Q; 071 I
® (2:{0,1})
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Multiple state optimal design problem

State equations

—div (AVy;) = f;
uj € Hg)(Q)

State function u = (uy, . .., Un)
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Multiple state optimal design problem

State equations

—div (AVy;) = f;
uj € Hg)(Q)

State function u = (uy, . .., Un)
I(x) = D01, i Jq fiuj dx — min
u=(u1,...,un) state function for A = xad + (1 — x)pI
x € L>(Q;{0,1}), / X dX = Qa,
Q

for some given weights p; > 0.
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Multiple state optimal design problem

State equations

—div (AVy;) = f;
uj € Hg)(Q)

State function u = (uy, . .., Un)

I(x) = Z,m:1 Wi fQ f,ui dx — min

u=(u1,...,un) state function for A = xad + (1 — x)pI
x € L*(;{0,1}), /de:qa,
Q

for some given weights p; > 0. Proper relaxation:
m

J(O,A) = Z,u,-/ fiuj dx — min on
; Q
i=1

A= {(6,A) € L™(2: [0, 1] x My(R)) ; /Qedx = qu, A K(0)ae.}
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How do we find a solution?

A. Single state equation: [Murat & Tartar,
1985] This problem can be rewritten as a
simpler convex minimization problem.
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How do we find a solution?

A. Single state equation: [Murat & Tartar,
1985] This problem can be rewritten as a
simpler convex minimization problem.

1(0) = / fu dx — min
Q
T={0eL>([0,1]): [0 =0.}
0 € T , and u determined uniquely by
—div (A Vu) = f
u e HY(Q)
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How do we find a solution? 9

B. Multiple state equations: Simpler
relaxation fails, but in spherically
symmetric case it can be done!

A. Single state equation: [Murat & Tartar,
1985] This problem can be rewritten as a
simpler convex minimization problem.

1(0) = / fu dx — min
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How do we find a solution? 9

B. Multiple state equations: Simpler
relaxation fails, but in spherically
symmetric case it can be done!

A. Single state equation: [Murat & Tartar,
1985] This problem can be rewritten as a
simpler convex minimization problem.

1(0) = / fudx — min 1(0) = Z,u,-/ fiuj dx — min
Q — Ja

T={0el2Q0.1]): Jof =} T={pecL=0.1]): o0 =0ga}
¢ € T , and u determined uniquely by g < 7 . and u; determined uniquely by
—div(A\j Vu) = f —div(\f V) = 1
u & Ho(Q) u € HY(Q)

i=1,...,m,

min4 J < minT |
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How do we find a solution? 9

B. Multiple state equations: Simpler
relaxation fails, but in spherically
symmetric case it can be done!

A. Single state equation: [Murat & Tartar,
1985] This problem can be rewritten as a
simpler convex minimization problem.

1(0) :/ fu dx — min 1(0) :i,u,-/ﬂf,-u,- dx — min
Q i=1
T= {9 € L>*(Q;[0,1]) : fQQ = qa} T {9 e L>(Q; [0,1]) : er _ Qa}

0 € T , and u determined uniquely by g < T , and u; determined uniquely by

L _
—div (A Vu) = f —div(\jVu) =1 ;
| = g ooy m,
u e HY(Q) u € Hy(Q)
min_4 J — ming [ min 4 J <= ming J <= miny |
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Minimization problem ming J 9

A= {(0,A) € L¥(Q; [0, 1] x My(R)) : /Qﬂdx = Go, A€ K(0)ae.}

= K(0)

B

A

Ay

o a oM BN
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Minimization problem ming J 9

A= {(0,A) € L¥(Q; [0, 1] x My(R)) : /Qﬂdx = Go, A€ K(0)ae.}

Az K(9)
Further relaxation: s ;
)\+
B ... [q0dx=qq ’
_ + Ay
Ay < M(A) <\ 9

o a NN By
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Minimization problem ming J

A= {(0,A) € L¥(Q; [0, 1] x My(R))

Further relaxation:

B ... [qfdx=qq
Ay < A(A) <A

B is convex and compact and J is
continuous on B, so there is a
solution of ming J.

. Kresimir Burazin
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:/de:qa, AcK(f)ae.}
Q

A2
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B :
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ming J <= miny |

Theorem

<2

> There is unique u* € H}(2; R™) which is the state for every solution
0

ofming J and miny /.
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ming J <— miny / %?)2-

Theorem

» There is unique u* € H(Q; R™) which is the state for every solution
ofming J and miny /.

> If (6%, K*) is an optimal design for the problem ming J, then 0* is
optimal design for min .
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ming J <= miny | %?

Theorem

» There is unique u* € H(Q; R™) which is the state for every solution
ofming J and miny /.

> If (6%, K*) is an optimal design for the problem ming J, then 0* is
optimal design for min .

> Conversely, if 8* is a solution of optimal design problem miny I, then
any (0%, A*) € B satistying 'V u} = \}. Vu} almost everywhere
on (e.g. A" = )\;L 1) is an optimal design for the problem ming J.
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ming J <= miny | %%

Theorem

» There is unique u* € H(Q; R™) which is the state for every solution
ofming J and miny /.

> If (6%, K*) is an optimal design for the problem ming J, then 0* is
optimal design for min .

> Conversely, if 8* is a solution of optimal design problem miny I, then
any (0%, A*) € B satisfying A"V u} = A;L Vu! almost everywhere
on (e.g. A" = )\;L 1) is an optimal design for the problem ming J.

» If m < d, then there exists minimizer (6*, A*) for J on 3, such that
(0%, K*) € A, and thus it is also minimizer for J on A.
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Spherical symmetry: miny J <= ming J <= miny / ® 9

Theorem
Let Q) C RY be spherically symmetric, and let the right-hand sides
fi=f(r),r € w,i=1,..., mbe radial functions. Then there exists a

minimizer (6*, K*) of the optimal design problem min_4 J which is a radial
function.
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Spherical symmetry: miny J <= ming J <= miny / ® 9

Theorem
Let Q) C RY be spherically symmetric, and let the right-hand sides
fi=f(r),r € w,i=1,..., mbe radial functions. Then there exists a

minimizer (6*, K*) of the optimal design problem min_4 J which is a radial
function. More precisely

a) For any minimizer 6 of functional | over T, let us define a radial
function 6* : 2 — R as the average value over spheres of 0 for

r € w we take
0*(r) ::][ 6ds,
oB(0,r)

where S denotes the surface measure on a sphere. Then 6% is also
minimizer for | over T .
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 8* of | over T, let us define A" as a simple
laminate with layers orthogonal to a radial direction e, and local
proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 0* of | over T, let us define A" as a simple
laminate with layers orthogonal to a radial direction e, and local
proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:

> Ifx =re; =(r,0,0,...,0), then

A (x) := diag (Ag. (r), \ge (r), A= (1), - -, Mg (r)) -
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 0* of | over T, let us define A" as a simple
laminate with layers orthogonal to a radial direction e, and local
proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:

> Ifx =re; =(r,0,0,...,0), then

A (x) := diag (Ag. (r), \ge (r), A= (1), - -, Mg (r)) -
> For all other x € €2, we take the unique rotation R(x) € SO(d) such
that x = |x|R(x)es, and define

A" (x) := R(x)A"(R" (x)x)R"(x) .
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 0* of | over T, let us define A" as a simple
laminate with layers orthogonal to a radial direction e, and local
proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:

> Ifx =re; =(r,0,0,...,0), then

A (x) := diag (Ag. (r), \ge (r), A= (1), - -, Mg (r)) -

> For all other x € €2, we take the unique rotation R(x) € SO(d) such
that x = |x|R(x)es, and define

A" (x) := R(x)A"(R" (x)x)R"(x) .

Then (0*, A*) is a radial optimal design for ming J.
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 0* of | over T, let us define A" as a simple
laminate with layers orthogonal to a radial direction e, and local
proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:

> Ifx =re; =(r,0,0,...,0), then

A (x) := diag (Ag. (r), \ge (r), A= (1), - -, Mg (r)) -
> For all other x € €2, we take the unique rotation R(x) € SO(d) such
that x = |x|R(x)es, and define
A" (x) := R(x)A"(R" (x)x)R"(x) .

Then (0*, A*) is a radial optimal design for ming J.
Moreover, (6%, A*) € A, and thus it is also a solution for min 4 J.
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Optimality conditions for mins / 9

Lemma

0* € T is a solution minT I if and only if there exists a Lagrange multiplier
¢ > 0 such that

9* Z,U,/‘VU ’2207

0-=0 = Zu,-\Vu7‘|2>c,

m
0 =1 = > wlVyl<c,
or equivalently
m
> Vi >c = 6*=o,

i=1
m

VP <e = 6 =1

i=1
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Ball with nonconstant right-hand side

In all examples a = 1, § = 2.

Q = B(0,2) C R?, one state equation, f(r)
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Ball with nonconstant right-hand side

In all examples a = 1, § = 2.

Q = B(0,2) C R?, one state equation, f(r) =1 —r

. . . 1 + I /
State equation in polar coordinates — (r)\e(r) ) =1—-r.
Integration gives  |/(r)| = % where 1(r) = WFG%:”\
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Ball with nonconstant right-hand side ® 9

In all examples a = 1, § = 2.

Q = B(0,2) C R?, one state equation, f(r) =1 —r

. . . 1 + I /
State equation in polar coordinates —— (r)\e(r) ) =1-—r.

Integration gives  |u/(r)| = % where Y(r) = 2 6 =

Conditions of optimality: there exists a constant y := /c > 0 such that
for optimal 8* we have:

|(r)| >y = 6*(r)=0
=
| <y = 6%r)=1
= goi= 5 <7
0* € (0,1) = |J/(n)] =7~
=

. Kresimir Burazin Opatija, September 2015 14/19
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Ball with nonconstant right-hand side ® 9

In all examples a = 1, § = 2.

Q = B(0,2) C R?, one state equation, f(r) =1 —r

o . 1 +
State equation in polar coordinates —— (r)\ oY ) =1—-r.

Integration gives |/ (r)| = % where 1(r) = 2 6 =3

Conditions of optimality: there exists a constant y := /c > 0 such that
for optimal 0* we have:

| >y = 6*(r)=0
=

| <y = 6%r)=1
= goi= Y <y

0* € (0,1) = |J/(n)] =7~
=
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Ball with nonconstant right-hand side

Lagrange multiplier ~y is uniquely determined by the constraint
fo 0 dx=1n:= ﬁ € [0, 1], which is algebraic equation for ~.
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Ball with nonconstant right-hand side

Lagrange multiplier ~y is uniquely determined by the constraint
fo 0 dx=1n:= ﬁ € [0, 1], which is algebraic equation for ~.

V4

V3

V2
04l
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Ball with nonconstant right-hand side

Lagrange multiplier ~y is uniquely determined by the constraint
fo 0 dx=1n:= ﬁ € [0, 1], which is algebraic equation for ~.

[v'|
A
zy
Y4
Yo 98

73
72 5 el el
T B 8

0 ~ 7 v :
0 m M3 1 n o q @ 3 pia 2
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Multiple states

Two state equations on a ball Q2 = B(0, 2)
> i = XBo,1); =1,
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Multiple states

Two state equations on a ball Q2 = B(0, 2)
> i = XBo,1); =1,
{ —div (A V) = f;

ur € H(Q) =12
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Multiple states

Two state equations on a ball Q2 = B(0, 2)
> i = XBo,1); =1,
—div (A V) = f;
> 1
uj € HO(Q)

> u/f1u1 dx+/f2u2dx—>min
Q Q

i=1,2
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Multiple states

Two state equations on a ball Q2 = B(0, 2)
> i = XBo,1); =1,
—di tvu) = f
. dlv()1\9Vu,)—f, =12
uj € HO(Q)

> /L/ fy Uy dX+/ fous dX — min
Q Q
Solving state equation

4(1) G
O(ra+ (1 —0(r))p
with
—, 0<r<1, r
Pi(r) = 1 and p(r) = 5
——, 1<r<2,
2r
imilarly as in the first example: v := p2 + 3, g, == % gs = %
. Kresimir Burazin

Opatija, September 2015
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Geometric interpretation of optimality conditions

B:l<pu<4

o4+
<

D: 16 < p
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Geometric interpretation of optimality conditions

Ja

9p

vR2 0 2
C:id<pu<16 D:16 < p

9p

T

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0*dx = .

Kresimir Burazin Opatija, September 2015 17/19




University of Osijek - Department of Mathematics

Optimal 0* for case B

Yo

a / 98

Py @ 45 ds 2
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Optimal 0* for case B

c
o
o .
c 3 3
0 P @ @ s 2
In region: 0*
1
1 ¥(r)
0*(r) = YA
() =5—2 15"
o —

Py @ 4 a4 2 5
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Optimal 0* for case B

o
a / 98
c 3
0 P @ @ s 2
In region: 0*
1
1 ¥(r)
05 (r)= —— | B—/ =2
() =5—2 15"
o -

. Kresimir Burazin

c
p1

a4

\Application: test examples for numerical algorithms...

Opatija, September 2015
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as

WeConMApp

Thank you for your attention!

a

WeConMApp
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