H-distributions, distributions of anisotropic order and Schwartz kernel theorem

Marin Mišur

email: mmisur@math.hr University of Zagreb

joint work with Nenad Antonić and Marko Erceg, University of Zagreb

31. kolovoza 2016.

What are H-measures?

Mathematical objects introduced (1989/90) by:

- Luc Tartar¹, who was motivated by possible applications in homogenisation, and independently by
- Patrick Gérard², whose motivation were problems in kinetic theory.

Theorem 1. If $u_n \rightarrow 0$ and $v_n \rightarrow 0$ in $L^2(\mathbf{R}^d)$, then there exist their subsequences and a complex valued Radon measure μ on $\mathbf{R}^d \times S^{d-1}$, such that for any $\varphi_1, \varphi_2 \in C_0(\mathbf{R}^d)$ and $\psi \in C(S^{d-1})$ one has

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}} \overline{\widehat{\varphi_2 v_{n'}}} (\psi \circ \pi) d\boldsymbol{\xi} = \langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle,$$

where $\pi : \mathbf{R}^d \setminus \{\mathbf{0}\} \longrightarrow S^{d-1}$ is the projection along rays.

¹L. Tartar, *H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,* Proc. Roy. Soc. Edinburgh **115A** (1990) 193–230.

²P. Gérard, *Microlocal defect measures*, Comm. Partial Diff. Eq. 16 (1991) 1761–1794.

Question: How to replace L^2 with L^p ?

Notice: if we denote by \mathcal{A}_{ψ} the Fourier multiplier operator with symbol $\psi \in L^{\infty}(\mathbf{R}^d)$:

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee},$$

we can rewrite the equality from the theorem as

$$\langle \mu, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle = \lim_{n'} \int_{\mathbf{R}^d} \varphi_1 u_{n'}(\mathbf{x}) \overline{\mathcal{A}_{\psi \circ \pi}(\varphi_2 u_{n'})(\mathbf{x})} d\mathbf{x} .$$

Hörmander-Mihlin Theorem

Theorem 2. Let $\psi \in L^{\infty}(\mathbb{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [d/2] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \quad |\boldsymbol{\alpha}| \le \kappa \Longrightarrow \int_{r/2 \le |\boldsymbol{\xi}| \le r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \le k^2 r^{d-2|\boldsymbol{\alpha}|},$$

then for any $p \in \langle 1, \infty \rangle$ and the associated multiplier operator A_{ψ} there exists a constant C_d such that

$$\|\mathcal{A}_{\psi}\|_{\mathbf{L}^{p}\to\mathbf{L}^{p}} \leq C_{d} \max\{p, 1/(p-1)\}(k+\|\psi\|_{\mathbf{L}^{\infty}(\mathbf{R}^{d})}).$$

For $\psi \in C^{\kappa}(S^{d-1})$, extended by homogeneity to $\mathbf{R}^d \setminus \{\mathbf{0}\}$, we can take $k = \|\psi\|_{C^{\kappa}(S^{d-1})}$.

Y. Heo, F. Nazarov, A. Seeger, *Radial Fourier multipliers in high dimensions*, Acta Mathematica **206** (2011) 55-92.

Introduction H-measures

H-distributions Existence Conjecture

Schwartz kernel theorem

H-distributions

H-distributions were introduced by N. Antonić and D. Mitrović³ as an extension of H-measures to the $L^p - L^q$ context.

Existing applications are related to the velocity averaging⁴ and $L^p - L^q$ compactness by compensation⁵.

 $^{^3}$ N. Antonić, D. Mitrović, H-distributions: An Extension of H-Measures to an ${\rm L}^p-{\rm L}^q$ Setting, Abs. Appl. Analysis Volume 2011, Article ID 901084, 12 pages.

⁴M. Lazar, D. Mitrović, On an extension of a bilinear functional on $L^{p}(\mathbf{R}^{d}) \times E$ to Bochner spaces with an application to velocity averaging, C. R. Math. Acad. Sci. paris **351** (2013) 261–264.

⁵M. Mišur, D. Mitrović, On a generalization of compensated compactness in the $L^p - L^q$ setting, Journal of Functional Analysis **268** (2015) 1904–1927.

Existence of H-distributions

Theorem 3. If $u_n \longrightarrow 0$ in $L^p_{loc}(\mathbf{R}^d)$ and $v_n \xrightarrow{*} v$ in $L^q_{loc}(\mathbf{R}^d)$ for some $p \in \langle 1, \infty \rangle$ and $q \ge p'$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times \mathbf{S}^{d-1})$, such that, for every $\varphi_1, \varphi_2 \in \mathbf{C}^\infty_c(\mathbf{R}^d)$ and $\psi \in \mathbf{C}^\kappa(\mathbf{S}^{d-1})$, for $\kappa = [d/2] + 1$, one has:

$$\lim_{n' \to \infty} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} = \lim_{n' \to \infty} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x}$$
$$= \langle \mu, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle,$$

where $\mathcal{A}_{\psi} : L^{p}(\mathbf{R}^{d}) \longrightarrow L^{p}(\mathbf{R}^{d})$ is the Fourier multiplier operator with symbol $\psi \in C^{\kappa}(S^{d-1}).$

Distributions of anisotropic order

Let X and Y be open sets in \mathbf{R}^d and \mathbf{R}^r (or \mathbf{C}^{∞} manifolds of dimenions d and r) and $\Omega \subseteq X \times Y$ an open set. By $\mathbf{C}^{l,m}(\Omega)$ we denote the space of functions f on Ω , such that for any $\boldsymbol{\alpha} \in \mathbf{N}_0^d$ and $\boldsymbol{\beta} \in \mathbf{N}_0^r$, if $|\boldsymbol{\alpha}| \leq l$ and $|\boldsymbol{\beta}| \leq m$, $\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f = \partial^{\boldsymbol{\alpha}}_{\mathbf{x}} \partial^{\boldsymbol{\beta}}_{\mathbf{y}} f \in \mathbf{C}(\Omega)$.

 $\mathrm{C}^{l,m}(\Omega)$ becomes a Fréchet space if we define a sequence of seminorms

$$p_{K_n}^{l,m}(f) := \max_{|\boldsymbol{\alpha}| \le l, |\boldsymbol{\beta}| \le m} \|\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f\|_{\mathcal{L}^{\infty}(K_n)} ,$$

where $K_n \subseteq \Omega$ are compacts, such that $\Omega = \bigcup_{n \in \mathbf{N}} K_n$ and $K_n \subseteq Int K_{n+1}$, Consider the space

$$\mathcal{C}^{l,m}_c(\Omega) := \bigcup_{n \in \mathbf{N}} \mathcal{C}^{l,m}_{K_n}(\Omega) ,$$

and equip it by the topology of strict inductive limit.

Conjecture

Definition. A distribution of order l in \mathbf{x} and order m in \mathbf{y} is any linear functional on $C_c^{l,m}(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $\mathcal{D}'_{l,m}(\Omega)$.

Conjecture. Let X, Y be C^{∞} manifolds and let u be a linear functional on $C_c^{l,m}(X \times Y)$. If $u \in \mathcal{D}'(X \times Y)$ and satisfies $(\forall K \in \mathcal{K}(X))(\forall L \in \mathcal{K}(Y)(\exists C > 0)(\forall \varphi \in C_K^{\infty}(X))(\forall \psi \in C_L^{\infty}(Y))$

 $|\langle u, \varphi \boxtimes \psi \rangle| \le C p_K^l(\varphi) p_L^m(\psi),$

then u can be uniquely extended to a continuous functional on $C_c^{l,m}(X \times Y)$ (i.e. it can be considered as an element of $\mathcal{D}'_{l,m}(X \times Y)$). If the conjecture were true, then the H-distribution μ from the preceeding theorem belongs to the space $\mathcal{D}'_{0,\kappa}(\mathbf{R}^d \times S^{d-1})$, i.e. it is a distribution of order 0 in \mathbf{x} and of order not more than κ in $\boldsymbol{\xi}$.

Indeed, from the proof of the existence theorem, we already have $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$ and the following bound with $\varphi := \varphi_1 \overline{\varphi_2}$:

$$|\langle \mu, \varphi \boxtimes \psi \rangle| \le C \|\psi\|_{\mathcal{C}^{\kappa}(\mathcal{S}^{d-1})} \|\varphi\|_{\mathcal{C}_{K_{I}}(\mathbf{R}^{d})},$$

where C does not depend on φ and ψ .

Schwartz kernel theorem

Let X and Y be two C^{∞} manifolds. Then the following statements hold:

- a) Let $K \in \mathcal{D}'(X \times Y)$. Then for every $\varphi \in \mathcal{D}(X)$, the linear form K_{φ} defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $\mathcal{D}(X)$ to $\mathcal{D}'(Y)$ is linear and continuous.
- b) Let $A: \mathcal{D}(X) \to \mathcal{D}'(Y)$ be a continous linear operator. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in \mathcal{D}(X)$ and $\psi \in \mathcal{D}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Schwartz kernel theorem for anisotropic distributions

Let X and Y be two ${\rm C}^\infty$ manifolds of dimensions d and r, respectively. Then the following statements hold:

- a) Let $K \in \mathcal{D}'_{l,m}(X \times Y)$. Then for every $\varphi \in C^l_c(X)$, the linear form K_{φ} defined as $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$ is a distribution on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $C^l_c(X)$ to $\mathcal{D}'_m(Y)$ is linear and continuous.
- b) Let $A : C_c^l(X) \to \mathcal{D}'_m(Y)$ be a continous linear operator. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in \mathcal{D}(X)$ and $\psi \in \mathcal{D}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Furthermore, $K \in \mathcal{D}'_{l,d(m+2)}(X \times Y)$.

How to prove it?

Attempts:

- regularisation? (Schwartz)
- constructive proof? (Simanca, Gask, Ehrenpreis)
- nuclear spaces? (Treves)

o structure theorem of distributions (Dieudonne)

Two steps:

Step I: assume the range of A is C(Y)**Step II:** use structure theorem and go back to Step I

Consequence: H-distributions are of order 0 in ${\bf x}$ and of finite order not greater than $d(\kappa+2)$ with respect to ${\pmb\xi}.$

• N. Antonić, M. Erceg, M. Mišur, *Distributions of anisotropic order and applications*, in preparation, 24 pages