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diffusion equations with homogenous Dirichlet b. c.:

—div(AVy) = f;
uj € HB(Q) ’
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Q C RY open and bounded, f, . .., f, € L2(Q) given; stationary
diffusion equations with homogenous Dirichlet b. c.:

—div(AVy) = f;
uj € HB(Q) ’

where A is a mixture of two isotropic materials with conductivities
0<a<f:A=yxal+ (1—x)Bl where y € L>(Q;{0,1}),

Jo X dX = ga, for given 0 < g, < [9Q.

For given €, «, 53, ga, f;, and some given weights w; > 0, we want to find
such material A which minimizes the weighted sum of compliances (total
amounts of heat/electrical energy dissipated in €2):

I(x) :== Z,u,-/Qf,-u,- dx — min, x € L*(Q;{0,1})
i=1
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single state, f = 1, Q) circle / square

Murat & Tartar Lurie & Cherkaev

theta theta
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x € L=(2;{0,1})
A= xal+ (1 —x)pI
classical material
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Composite material ® 9
Definition

If a sequence of characteristic functions x. € L>°(;{0,1}) and
conductivities

A (x) = xe(x)al + (1 = xe(x)) A1

satisfy x. — 0 weakly * and A® H-converges to A*, then it is said that A*
is homogenised tensor of two-phase composite material with proportions 6
of first material and microstructure defined by the sequence (x: ).
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Definition
If a sequence of characteristic functions x. € L>°(;{0,1}) and
conductivities

A (x) = xe(x)al + (1 = xe(x)) A1

satisfy x. — 0 weakly * and A® H-converges to A*, then it is said that A*
is homogenised tensor of two-phase composite material with proportions 6
of first material and microstructure defined by the sequence (x: ).

Example — simple laminates: if x. depend only on x4, then
A" =diag(\y, Ay Ap 00 ) s
1 0 1—0

M =b0a+(1-0)3, —=—+—-.
0 ( ) N, o g

where

Set of all composites:
\ A = {(0,A) € L®(Q; [0, 1]xMg(R)) : / 0dx = qa, A€ K(0)ae.}
Q
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Effective conductivities — set ()

G—closure problem: for given 8 find all
possible homogenised (effective)
tensors A*
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Effective conductivities — set ()

2D:

e K(6)
G—closure problem: for given 8 find all 5
possible homogenised (effective) pys
tensors A* %
K(0) is given in terms of eigenvalues
(Murat & Tartar; Lurie & Cherkaev): “

0 o Y

Ay < N <N j=1,...,d ot s

z": 1 1 d-
— N—a T X\ —a )\j—a

IN

g 1 d—1
) =+
S B—x; T B-N
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Effective conductivities — set ()

2D:
A
G—closure problem: for given € find all )
possible homogenised (effective) A TN o
tensors A* y
K () is given in terms of eigenvalues B N
(Murat & Tartar; Lurie & Cherkaev): v U
Ag <N <A j=1,....d Ay A
dJ 3D:
Z 1 < 1 d—1
L = = + A
/:1 )\] o )\9 )\

1 < 1 n d—1
“B=XN T B=X  B-A
min 4 J is a proper relaxation of

m|nLoo Q; 071 I
® (2:{0,1})
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How do we find a solution?

Goal: find explicit solution for some simple domains (circle)
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Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat & Tartar] B+ Multiple state equations: Simpler
This problem can be rewritten as a relaxation fails, but in spherically
simpler convex minimization problem. symmetric case it can be done!

1(0) = / fudx — min 1(0) = Zu;/ fiu dx — min
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Goal: find explicit solution for some simple domains (circle)

Motivation: test examples for robust numerical algorithms
A. Single state equation: [Murat & Tartar] B+ Multiple state equations: Simpler
This problem can be rewritten as a relaxation fails, but in spherically
simpler convex minimization problem. symmetric case it can be done!

1(0) :/ fu dx — min 1(0) :iu;/ fiu; dx — min
Q =1 /A
T= {9 e L>°(Q;[0,1]) : [0 = Cla} T {9 € L®(Q; [0,1]) : er _ CIa}

0 € T , and u determined uniquely by g < T , and u; determined uniquely by

. + o

—div(\f Vu) = f —div(\fVu)=1f ]
i=1,...,m

u e H)(Q) u € Hy(Q) ’

minAJ — miny | min4 J <= ming J <= ming |
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Minimization problem ming J 9

A= {(0,A) € L>=(Q; [0,1]xM4(R)) : /Qﬁdx =qn, A€ K()ae.}

A2

K(0)
B d
A
Ao
«
o = + A
a2 N Mgl M
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A= {(0,A) € L>=(Q; [0,1]xM4(R)) : /Qﬁdx =qn, A€ K()ae.}

A2

K ()
Further relaxation: 5 ;

)\+
B ... [qfdx=qq ’
— + )\*
)\0 < )\,-(A) < )‘0 0
«

O e
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Minimization problem ming J

A

{(6,A) € L>(£; [0, 1] xMq(R))

Further relaxation:

B fQde:qa

Ay SA(A) <A

BB is convex and compact and J is
continuous on 3, so there is a
solution of ming J.

KreSimir Burazin

<2

:/de_qa, AcK(f)ae. }
Q

K(0)

N8

)
09209

[0 « )\0*
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ming J <= miny |

Theorem

<2

> There is unique u* € H}(Q; R™) which is the state for every solution
0

of ming J and ming .
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ming J <— miny / %?)2-

Theorem

» There is unique u* € HJ(Q; R™) which is the state for every solution
of ming J and ming .

> If (0%, A") is an optimal design for the problem ming J, then 6* is
optimal design for min /.
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ming J <= miny | %%

Theorem

» There is unique u* € HJ(Q; R™) which is the state for every solution
of ming J and ming .

> If (6%, K*) is an optimal design for the problem ming J, then 0* is
optimal design for min /.

> Conversely, if 0* is a solution of optimal design problem min |, then
any (0, K*) € B satisfying AV u} = )\éﬁ Vuf almost everywhere
on{Q (e.g. A" = )\(;'; 1) is an optimal design for the problem ming J.

> If m < d, then there exists minimizer (6*, A*) for J on B, such that
(0*,A*) € A, and thus it is also minimizer for J on A.
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Spherical symmetry: miny J <= ming J <= miny / ® 9

Theorem
LetQ) C R be spherically symmetric, and let the right-hand sides
fi=fi(r),r € w,i=1,..., m be radial functions. Then there exists a

minimizer (0, K*) of the optimal design problem min 4 J which is a radial
function.
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Spherical symmetry: miny J <= ming J <= miny / ® 9

Theorem
LetQ) C R be spherically symmetric, and let the right-hand sides
fi=fi(r),r € w,i=1,..., m be radial functions. Then there exists a

minimizer (0, K*) of the optimal design problem min 4 J which is a radial
function. More precisely

a) For any minimizer 6 of functional | over T, let us define a radial
function 6* : 2 — R as the average value over spheres of 0: for

r € w we take
0*(r) ::][ 6ds,
08(0,r)

where S denotes the surface measure on a sphere. Then 0™ is also
minimizer for | over T .
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 0* of | over T, let us define A" as a simple
laminate layered with respect to a radial direction e,, as below, and
local proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:
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Spherical symmetry...cont. 9

Theorem

b) For any radial minimizer 0* of | over T, let us define A" as a simple
laminate layered with respect to a radial direction e,, as below, and
local proportion of the first material 6*. To be specific, we can define
A" : Q — My(R) in the following way:

> Ifx =re; =(r,0,0,...,0), then

A (x) := diag (Ag. (r), \ge (r), A= (1), - -, Mg (r)) -
> For all other x € €2, we take the unique rotation R(x) € SO(d) such
that x = |x|R(x)es, and define
A" (x) := R(x)A"(R" (x)x)R"(x) .

Then (0*, A*) is a radial optimal design for ming J.
Moreover, (6%, A*) € A, and thus it is also a solution for min 4 J.
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Optimality conditions for mins / 9

Lemma

0* € T is a solution minT I if and only if there exists a Lagrange multiplier
¢ > 0 such that

9* Z,U,/‘VU ’2207

0-=0 = Zu,-\Vu7‘|2>c,

m
0 =1 = > wlVyl<c,
or equivalently
m
> Vi >c = 6*=o,

i=1
m

VP <e = 6 =1

i=1
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Ball 2 = B(0,2) C R? with nonconstant right-hand Sld?
In all examples o = 1, 3 = 2, one state equation f(r) =1 —r
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Ball 2 = B(0,2) C R? with nonconstant right-hand sid?

In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

optimality conditions: y := /¢ > 0
-y is uniquely determined by

* qa
0 dx=n:=— €[0,1],
]{Z ni= e o

which is an algebraic equation for +.

5
V4

V3

V2
7

m M2n3 1 n
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Ball 2 = B(0,2) C R? with nonconstant right-hand Sld?
In all examples o = 1, 3 = 2, one state equation f(r) =1 —r

/|
optimality conditions: y := /¢ > 0 g
-y is uniquely determined by
Qa 9
P*dx =n:= — € [0,1
Lorax=n= oo,
which is an algebraic equation for +. ! 2 .
1
v ,
V4 4]
V3 Go g,
V2
7
] 3 E
m M2n3 1 n
o g Py pid 2
12/14
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Two state equations on a ball 2 = B(0, 2)

> f =X, k=1,
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Q Q
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Two state equations on a ball 2 = B(0, 2)

> f =X, k=1,

> u | fiupdx + fouo dX — min
Q Q

A:0<p<1

o 4+
<

C:d<pu<l16 D: 16 < p
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Optimal 0* for case B 9

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0* dx = n.
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corresponding algebraic equation fQ 0* dx = n.

Yo

(o3 / 98

Py 9 9 4 2
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Optimal 0* for case B 9

As before, Lagrange multiplier can be numerically calculated from
corresponding algebraic equation fQ 0* dx = n.

Yo

a / 98

Py 9 9 4 2

Thank you for your attention!

s
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