On continuity of linear operators on mixed-norm Lebesgue spaces

Ivan Ivec

Faculty of Metallurgy University of Zagreb

International conference on generalized functions Dubrovnik, September 5, 2016.

Joint work with Nenad Antonić

Main theorem

Sketch of the proof

Examples

[Benedek, Panzone (1961)]

 $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

[Benedek, Panzone (1961)]

 $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i = \infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$ is a Banach space.

[Benedek, Panzone (1961)]

 $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i = \infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$ is a Banach space.

$$\mathbf{p}' = (p'_1, \dots, p'_d), \quad \frac{1}{p_i} + \frac{1}{p'_i} = 1$$

[Benedek, Panzone (1961)]

 $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i=\infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $\mathrm{L}^{\mathbf{p}}(\mathbf{R}^d)$ is a Banach space.

$$\mathbf{p}' = (p'_1, \dots, p'_d), \quad \frac{1}{p_i} + \frac{1}{p'_i} = 1$$

Some facts:

- (a) $\mathcal{S} \hookrightarrow L^{\mathbf{p}}(\mathbf{R}^d)$,
- (b) S is dense in $L^{\mathbf{p}}(\mathbf{R}^d)$, for $\mathbf{p} \in [1, \infty)^d$,
- (c) $L^{\mathbf{p}'}(\mathbf{R}^d)$ is topological dual of $L^{\mathbf{p}}(\mathbf{R}^d)$, for $\mathbf{p} \in [1, \infty)^d$,
- (d) $L^{\mathbf{p}}(\mathbf{R}^d) \hookrightarrow \mathcal{S}'$.

Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for $L^{\mathbf{p}}(\mathbf{R}^d)$ spaces, $\mathbf{p} \in [1, \infty)^d$) Let (f_n) be sequence of measurable functions. If $f_n \longrightarrow f$ (ae), and if there exists $G \in L^{\mathbf{p}}(\mathbf{R}^d)$ such that $|f_n| \leq G$ (ae), for $n \in \mathbf{N}$, then $||f_n - f||_{\mathbf{p}} \longrightarrow 0$.

Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for $L^{\mathbf{p}}(\mathbf{R}^d)$ spaces, $\mathbf{p} \in [1, \infty)^d$) Let (f_n) be sequence of measurable functions. If $f_n \longrightarrow f$ (ae), and if there exists $G \in L^{\mathbf{p}}(\mathbf{R}^d)$ such that $|f_n| \leq G$ (ae), for $n \in \mathbf{N}$, then $||f_n - f||_{\mathbf{p}} \longrightarrow 0$.

Theorem 2. (Minkowski ineaquality for integrals) For $\mathbf{p} \in [1,\infty]^{d_1}$ and $f \in \mathrm{L}^{(\mathbf{p},1,\ldots,1)}(\mathbf{R}^{d_1+d_2})$ we have

$$\left\| \int_{\mathbf{R}^{d_2}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \right\|_{\mathbf{p}} \leqslant \int_{\mathbf{R}^{d_2}} \left\| f(\cdot, \mathbf{y}) \right\|_{\mathbf{p}} d\mathbf{y}.$$

Basic results (cont.)

Theorem 3. (Hölder ineaquality) For $\mathbf{p} \in [1, \infty]^d$ we have

$$\left| \int_{\mathbf{R}^d} f(\mathbf{x}) g(\mathbf{x}) \, d\mathbf{x} \right| \leqslant \|f\|_{\mathbf{p}} \|g\|_{\mathbf{p}'}.$$

Basic results (cont.)

Theorem 3. (Hölder ineaquality) For $\mathbf{p} \in [1,\infty]^d$ we have

$$\left| \int_{\mathbf{R}^d} f(\mathbf{x}) g(\mathbf{x}) \, d\mathbf{x} \right| \leqslant \|f\|_{\mathbf{p}} \|g\|_{\mathbf{p}'}.$$

 $[\ensuremath{\mathsf{BENEDEK}},\ensuremath{\,\mathsf{PANZONE}}]$ prove a converse of Theorem 3:

Theorem 4. For $\mathbf{p} \in (1, \infty]^d$ it follows

$$\|f\|_{\mathbf{p}} = \sup_{g \in \mathcal{S}_{\mathbf{p}'}} \left| \int \!\! f \bar{g} \, d\mathbf{x} \right| = \sup_{g \in \mathcal{S}_{\mathbf{p}'} \cap \mathcal{S}} \left| \int \!\! f \bar{g} \, d\mathbf{x} \right|,$$

where $S_{\mathbf{p}'}$ is a unit sphere in $L^{\mathbf{p}'}(\mathbf{R}^d)$.

$$\mathbf{x} = (\bar{\mathbf{x}}, \mathbf{x}'), \ \bar{\mathbf{x}} = (x_1, \dots, x_r), \ \mathbf{x}' = (x_{r+1}, \dots, x_d), \ 0 \leqslant r \leqslant d-1,$$
$$\mathbf{L}^{\bar{\mathbf{p}}, p}(\mathbf{R}^d) = \mathbf{L}^{(\bar{\mathbf{p}}, p, \dots, p)}(\mathbf{R}^d), \ \|f\|_{\bar{\mathbf{p}}, p} = \|f\|_{(\bar{\mathbf{p}}, p, \dots, p)}, \ \bar{\mathbf{p}} = (p_1, \dots, p_r).$$

$$\mathbf{x} = (\bar{\mathbf{x}}, \mathbf{x}'), \ \bar{\mathbf{x}} = (x_1, \dots, x_r), \ \mathbf{x}' = (x_{r+1}, \dots, x_d), \ 0 \leqslant r \leqslant d-1,$$

$$\mathbf{L}^{\bar{\mathbf{p}}, p}(\mathbf{R}^d) = \mathbf{L}^{(\bar{\mathbf{p}}, p, \dots, p)}(\mathbf{R}^d), \ \|f\|_{\bar{\mathbf{p}}, p} = \|f\|_{(\bar{\mathbf{p}}, p, \dots, p)}, \ \bar{\mathbf{p}} = (p_1, \dots, p_r).$$
If $r = 0$: $\|f(\cdot, \mathbf{x}')\|_{\bar{\mathbf{p}}} = |f(\mathbf{x}')|, \ \|f\|_{\bar{\mathbf{p}}, p} = \|f\|_{\mathbf{L}^p}.$

$$\mathbf{x} = (\bar{\mathbf{x}}, \mathbf{x}'), \ \bar{\mathbf{x}} = (x_1, \dots, x_r), \ \mathbf{x}' = (x_{r+1}, \dots, x_d), \ 0 \leqslant r \leqslant d-1,$$
$$\mathbf{L}^{\bar{\mathbf{p}}, p}(\mathbf{R}^d) = \mathbf{L}^{(\bar{\mathbf{p}}, p, \dots, p)}(\mathbf{R}^d), \ \|f\|_{\bar{\mathbf{p}}, p} = \|f\|_{(\bar{\mathbf{p}}, p, \dots, p)}, \ \bar{\mathbf{p}} = (p_1, \dots, p_r).$$

If
$$r=0$$
: $\|f(\cdot,\mathbf{x}')\|_{\bar{\mathbf{p}}}=|f(\mathbf{x}')|$, $\|f\|_{\bar{\mathbf{p}},\,p}=\|f\|_{\mathbf{L}^p}$. \mathbf{x}'
Distribution function:
$$\lambda_f(\alpha)=\lambda(f;\alpha)=\mathrm{vol}\{\mathbf{x}\in\mathbf{R}^d:|f(\mathbf{x})|>\alpha\}.$$

$$\lambda_f(\alpha) = \lambda(f; \alpha) = \text{vol}\{\mathbf{x} \in \mathbf{R}^d : |f(\mathbf{x})| > \alpha\}.$$

$$\mathbf{x} = (\bar{\mathbf{x}}, \mathbf{x}'), \ \bar{\mathbf{x}} = (x_1, \dots, x_r), \ \mathbf{x}' = (x_{r+1}, \dots, x_d), \ 0 \leqslant r \leqslant d-1,$$
$$\mathbf{L}^{\bar{\mathbf{p}}, p}(\mathbf{R}^d) = \mathbf{L}^{(\bar{\mathbf{p}}, p, \dots, p)}(\mathbf{R}^d), \ \|f\|_{\bar{\mathbf{p}}, p} = \|f\|_{(\bar{\mathbf{p}}, p, \dots, p)}, \ \bar{\mathbf{p}} = (p_1, \dots, p_r).$$

If
$$r=0$$
: $\|f(\cdot,\mathbf{x}')\|_{\bar{\mathbf{p}}}=|f(\mathbf{x}')|$, $\|f\|_{\bar{\mathbf{p}},\,p}=\|f\|_{\mathbf{L}^p}$.
$$\lambda_f(\alpha)=\lambda(f;\alpha)=\mathrm{vol}\{\mathbf{x}\in\mathbf{R}^d:|f(\mathbf{x})|>\alpha\}.$$

$$\lambda_f(\alpha) = \lambda(f; \alpha) = \text{vol}\{\mathbf{x} \in \mathbf{R}^d : |f(\mathbf{x})| > \alpha\}.$$

- (a) λ_f is non-increasing and right continuous.
- (b) If $|f| \leq |g|$, then $\lambda_f \leq \lambda_g$.
- (c) If $|f_n| \nearrow |f|$, then $\lambda_{f_n} \nearrow \lambda_f$.
- (d) If f = g + h, it follows $\lambda(f; \alpha) \leq \lambda(g; \frac{\alpha}{2}) + \lambda(h; \frac{\alpha}{2})$.

Main theorem (hypotheses)

Theorem 5. Let us assume that linear operators $A, A^* : L_c^{\infty}(\mathbf{R}^d) \to L_{loc}^1(\mathbf{R}^d)$ satisfy

$$(\forall \varphi, \psi \in C_c^{\infty}(\mathbf{R}^d)) \quad \int_{\mathbf{R}^d} (A\varphi)\overline{\psi} = \int_{\mathbf{R}^d} \varphi \overline{A^*\psi}.$$

Furthermore, assume that (for T=A and $T=A^*$) there exist N>1 and $c_1>0$ such that

$$(\forall m \in 0..(d-1))(\forall \mathbf{x}_0' \in \mathbf{R}^{d-m})(\forall t > 0) \int_{|\mathbf{x}' - \mathbf{x}_0'|_{\infty} > Nt} ||Tf(\cdot, \mathbf{x}')||_{\bar{\mathbf{p}}} d\mathbf{x}' \leqslant c_1 ||f||_{\bar{\mathbf{p}}, 1},$$

for an arbitrary $f \in \mathrm{L}^\infty_c(\mathbf{R}^d)$ with properties:

- (a) supp $f \subseteq \mathbf{R}^m \times \{\mathbf{x}' : |\mathbf{x}' \mathbf{x}'_0|_{\infty} \leq t\}$,
- (b) $(\forall \bar{\mathbf{x}} \in \mathbf{R}^m)$ $\int_{\mathbf{R}^{d-m}} f(\bar{\mathbf{x}}, \mathbf{x}') d\mathbf{x}' = 0$.

Main theorem (conclusion)

Theorem 5.

Let A has a continuous extension to $L^q(\mathbf{R}^d)$ with norm c_q for some $q \in \langle 1, \infty \rangle$, then A has a continuous extension also to $L^\mathbf{p}(\mathbf{R}^d)$ for each $\mathbf{p} \in \langle 1, \infty \rangle^d$, with norm

$$||A||_{\mathbf{L}^{\mathbf{p}} \to \mathbf{L}^{\mathbf{p}}} \leqslant \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max(p_{d-j}, (p_{d-j} - 1)^{-1/p_{d-j}}) (c_{1} + c_{q})$$

$$\leqslant c' \prod_{j=0}^{d-1} \max(p_{d-j}, (p_{d-j} - 1)^{-1/p_{d-j}}) (c_{1} + c_{q}),$$

where c and c' depend only on N and d.

Main step in the proof

The proof is inductive by using the following lemma.

Lemma 1. Assume that linear operators $A, A^* : L_c^{\infty}(\mathbf{R}^d) \to L_{loc}^1(\mathbf{R}^d)$ satisfy assumptions of Theorem 5.

If A extends continuously to $\mathbf{L}^{\bar{\mathbf{p}},\,q}(\mathbf{R}^d)$ with norm c_q , for some $\bar{\mathbf{p}} \in \langle 1, \infty \rangle^m$ and $q \in \langle 1, \infty \rangle$, then A also extends continuously to $\mathbf{L}^{\bar{\mathbf{p}},\,p}(\mathbf{R}^d)$ for each $p \in \langle 1, \infty \rangle$, with norm

$$||A|| \le c \cdot \max(p, (p-1)^{-1/p})(c_1 + c_q),$$

where c depends only on N and d.

Generalization of Marcinkiewicz interpolation theorem

Lemma 2. Assume that for linear operator $T: L_c^{\infty}(\mathbf{R}^d) \to L_{loc}^1(\mathbf{R}^d)$, and some $\bar{\mathbf{p}} \in \langle 1, \infty \rangle^m$ and $q \in \langle 1, \infty \rangle$ there exist $c_1, c_q > 0$ such that for arbitrary $\alpha > 0$ and $f \in L_c^{\infty}(\mathbf{R}^d)$ we have:

$$\lambda(\|Tf\|_{\bar{\mathbf{p}}}; \alpha) \leqslant c_1 \alpha^{-1} \|f\|_{\bar{\mathbf{p}}, 1},$$

$$\|Tf\|_{\bar{\mathbf{p}}, q} \leqslant c_q \|f\|_{\bar{\mathbf{p}}, q}.$$

Then for arbitrary $p \in \langle 1, q \rangle$ and $f \in C_c^{\infty}(\mathbf{R}^d)$ it follows

$$||Tf||_{\bar{\mathbf{p}}, p} \leq 8(p-1)^{-\frac{1}{p}} (c_1 + c_q) ||f||_{\bar{\mathbf{p}}, p}.$$

Example 1 - Fourier multipliers

Theorem 6. Let $m \in L^{\infty}(\mathbf{R}^d \setminus \{0\})$ be such that for some A > 0, and each $|\alpha| \leq \left[\frac{d}{2}\right] + 1$ we have either

(a) Mihlin condition

$$|\partial_{\pmb{\xi}}^{\pmb{\alpha}} m(\pmb{\xi})| \leqslant A |\pmb{\xi}|^{-|\pmb{\alpha}|} \quad , \text{ or } \quad$$

(b) Hörmander condition

$$\sup_{R>0} R^{-d+2|\alpha|} \int_{R<|\boldsymbol{\xi}|<2R} \left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right|^2 d\boldsymbol{\xi} \leqslant \boldsymbol{A}^2 < \infty \; .$$

Example 1 - Fourier multipliers

Theorem 6. Let $m \in L^{\infty}(\mathbf{R}^d \setminus \{0\})$ be such that for some A > 0, and each $|\alpha| \leq \left[\frac{d}{2}\right] + 1$ we have either

(a) Mihlin condition

$$|\partial_{\pmb{\xi}}^{\pmb{\alpha}} m(\pmb{\xi})| \leqslant A |\pmb{\xi}|^{-|\pmb{\alpha}|} \quad , \ \, \text{or} \quad \, \,$$

(b) Hörmander condition

$$\sup_{R>0} R^{-d+2|\alpha|} \int_{R<|\xi|<2R} \left|\partial_{\xi}^{\alpha} m(\xi)\right|^2 d\xi \leqslant A^2 < \infty.$$

Then m belongs to $\mathcal{M}_{\mathbf{p}}$, for each $\mathbf{p} \in \langle 1, \infty \rangle^d$, and we have

$$||m||_{\mathcal{M}_{\mathbf{p}}} \leq \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max(p_{d-j}, (p_{d-j} - 1)^{-1/p_{d-j}}) (A + ||m||_{L^{\infty}})$$

$$\leq c' \prod_{j=0}^{d-1} \max(p_{d-j}, (p_{d-j} - 1)^{-1/p_{d-j}}) (A + ||m||_{L^{\infty}}),$$

where c and c' depends only on d.

 $a(\mathbf{x}, \boldsymbol{\xi}) \in C^{\infty}(\mathbf{R}^d \times \mathbf{R}^d)$ is Hörmander symbol of order $m \ (a \in S^m_{1,\delta})$ if:

$$(\forall \mathbf{x} \in \mathbf{R}^d) \ (\forall \boldsymbol{\xi} \in \mathbf{R}^d) \ |\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi})| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} (1 + 4\pi^2 |\boldsymbol{\xi}|^2)^{\frac{m - |\boldsymbol{\beta}| + \delta |\boldsymbol{\alpha}|}{2}},$$

 $\partial_{\alpha}\partial^{\beta}a(\mathbf{x},\boldsymbol{\xi}):=\partial_{\mathbf{x}}^{\alpha}\partial_{\boldsymbol{\xi}}^{\beta}a(\mathbf{x},\boldsymbol{\xi}),\ C_{\alpha,\beta}\ \text{is constant depending only on }\alpha\ \text{and}\ \beta.$

 $a(\mathbf{x}, \pmb{\xi}) \in \mathrm{C}^{\infty}(\mathbf{R}^d \times \mathbf{R}^d)$ is Hörmander symbol of order $m \ (a \in S^m_{1,\delta})$ if:

$$(\forall \mathbf{x} \in \mathbf{R}^d) (\forall \boldsymbol{\xi} \in \mathbf{R}^d) \quad |\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi})| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} (1 + 4\pi^2 |\boldsymbol{\xi}|^2)^{\frac{m - |\boldsymbol{\beta}| + \delta |\boldsymbol{\alpha}|}{2}},$$

 $\partial_{\alpha}\partial^{\beta}a(\mathbf{x},\boldsymbol{\xi}):=\partial_{\mathbf{x}}^{\alpha}\partial_{\boldsymbol{\xi}}^{\beta}a(\mathbf{x},\boldsymbol{\xi}),\ C_{\alpha,\beta}$ is constant depending only on α and β .

We definy $a(\cdot,D):\mathcal{S}\longrightarrow\mathcal{S}$ by

$$(a(\mathbf{x}, D)\varphi)(\mathbf{x}) = \int_{\mathbf{R}^d} e^{2\pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d\boldsymbol{\xi}.$$

 $a(\mathbf{x}, \boldsymbol{\xi}) \in \mathrm{C}^{\infty}(\mathbf{R}^d \times \mathbf{R}^d)$ is Hörmander symbol of order $m \ (a \in S^m_{1,\delta})$ if:

$$(\forall \mathbf{x} \in \mathbf{R}^d) \ (\forall \boldsymbol{\xi} \in \mathbf{R}^d) \ |\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi})| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} (1 + 4\pi^2 |\boldsymbol{\xi}|^2)^{\frac{m - |\boldsymbol{\beta}| + \delta|\boldsymbol{\alpha}|}{2}},$$

 $\partial_{\alpha}\partial^{\beta}a(\mathbf{x},\boldsymbol{\xi}):=\partial_{\mathbf{x}}^{\alpha}\partial_{\boldsymbol{\xi}}^{\beta}a(\mathbf{x},\boldsymbol{\xi}),\ C_{\alpha,\beta}\ \text{is constant depending only on }\alpha\ \text{and}\ \beta.$

We definy $a(\cdot,D):\mathcal{S}\longrightarrow\mathcal{S}$ by

$$(a(\mathbf{x}, D)\varphi)(\mathbf{x}) = \int_{\mathbf{R}^d} e^{2\pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d\boldsymbol{\xi}.$$

Adjoint operator $a^*(\cdot, D)$, with symbol

$$a^*(\mathbf{x}, \boldsymbol{\xi}) = \int_{\mathbf{R}^d} \int_{\mathbf{R}^d} e^{-2\pi i \mathbf{y} \cdot \boldsymbol{\eta}} \, \bar{a}(\mathbf{x} - \mathbf{y}, \boldsymbol{\xi} - \boldsymbol{\eta}) \, d\mathbf{y} \, d\boldsymbol{\eta},$$

 $a(\mathbf{x},\pmb{\xi})\in \mathrm{C}^\infty(\mathbf{R}^d\times\mathbf{R}^d)$ is Hörmander symbol of order $m\ (a\in S^m_{1,\delta})$ if:

$$(\forall \mathbf{x} \in \mathbf{R}^d) \ (\forall \boldsymbol{\xi} \in \mathbf{R}^d) \quad |\partial_{\boldsymbol{\alpha}} \partial^{\boldsymbol{\beta}} a(\mathbf{x}, \boldsymbol{\xi})| \leqslant C_{\boldsymbol{\alpha}, \boldsymbol{\beta}} (1 + 4\pi^2 |\boldsymbol{\xi}|^2)^{\frac{m - |\boldsymbol{\beta}| + \delta |\boldsymbol{\alpha}|}{2}},$$

 $\partial_{\alpha}\partial^{\beta}a(\mathbf{x},\boldsymbol{\xi}):=\partial_{\mathbf{x}}^{\alpha}\partial_{\boldsymbol{\xi}}^{\beta}a(\mathbf{x},\boldsymbol{\xi}),\ C_{\alpha,\beta}$ is constant depending only on α and β .

We definy $a(\cdot, D): \mathcal{S} \longrightarrow \mathcal{S}$ by

$$(a(\mathbf{x}, D)\varphi)(\mathbf{x}) = \int_{\mathbf{R}^d} e^{2\pi i \mathbf{x} \cdot \boldsymbol{\xi}} a(\mathbf{x}, \boldsymbol{\xi}) \hat{\varphi}(\boldsymbol{\xi}) d\boldsymbol{\xi}.$$

Adjoint operator $a^*(\cdot,D)$, with symbol

$$a^*(\mathbf{x}, \boldsymbol{\xi}) = \int_{\mathbf{R}^d} \int_{\mathbf{R}^d} e^{-2\pi i \mathbf{y} \cdot \boldsymbol{\eta}} \, \bar{a}(\mathbf{x} - \mathbf{y}, \boldsymbol{\xi} - \boldsymbol{\eta}) \, d\mathbf{y} \, d\boldsymbol{\eta},$$

defines an extension $a(\cdot,D):\mathcal{S}'\longrightarrow\mathcal{S}'$, a pseudodifferential operator of order m, by formula

$$\langle a(\cdot, D)u, \varphi \rangle = \langle u, a^*(\cdot, D)\varphi \rangle.$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \, d\mathbf{y}$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$ (Schur):

$$(\exists\, C>0) \int_{\mathbf{R}^d} |K(\mathbf{x},\mathbf{y})| \, d\mathbf{x} < C \text{ (ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x},\mathbf{y})| \, d\mathbf{y} < C \text{ (ae } \mathbf{x}).$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$ (Schur):

$$(\exists C > 0) \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{x} < C \text{ (ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{y} < C \text{ (ae } \mathbf{x}).$$

Sufficient condition for continuity on $L^{\mathbf{p}}(\mathbf{R}^d)$:

$$\int_{\mathbf{R}^d} \|K(\cdot, \cdot - \mathbf{z})\|_{\mathbf{L}^{\infty}} \, d\mathbf{z} < \infty.$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$ (Schur):

$$(\exists \, C > 0) \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| \, d\mathbf{x} < C \text{ (ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| \, d\mathbf{y} < C \text{ (ae } \mathbf{x}).$$

Sufficient condition for continuity on $L^{\mathbf{p}}(\mathbf{R}^d)$:

$$\int_{\mathbf{R}^d} \|K(\cdot, \cdot - \mathbf{z})\|_{\mathbf{L}^{\infty}} \, d\mathbf{z} < \infty.$$

Connection between those conditions=?