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Mixed-norm Lebesgue spaces

[BENEDEK, PANZONE (1961)]

LP(R%), p € [1,00)? is space of measurable complex functions f on R,

11, = (/ (/(/f I pldxl)zfdm)gg.“dmdy’ld -

If p; = oo, analogously. || - ||, is a norm and LP(R?) is a Banach space.
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Some facts:
(a) S — LP(RY),
(b) S is dense in LP(R?), for p € [1,00)¢,
(c) Lp/(Rd) is topological dual of LP(R?), for p € [1,00)?,
(d) LP(RY) — &'.



Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for LP(R?) spaces, p € [1,00)?) Let
(fn) be sequence of measurable functions. If f, — f (ae), and if there exists

G € LP(RY) such that |f,| < G (ae), forn € N, then || fn — fll, —0. .



Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for LP(R?) spaces, p € [1,00)?) Let
(fn) be sequence of measurable functions. If f, — f (ae), and if there exists
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Theorem 2. (Minkowski ineaquality for integrals) For p € [1,00]** and
feL®lD(RAH2) we have

|, teewas] < [ ey,



Basic results (cont.)

Theorem 3. (Holder ineaquality) For p € [1,00]% we have
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Basic results (cont.)

Theorem 3. (Holder ineaquality) For p € [1,00]% we have

[ 16g0ax] < 17, gl
R4

[BENEDEK, PANZONE] prove a converse of Theorem 3:

Theorem 4. For p € (1,00]% it follows

/fgdx): sup ‘/fgdx
9€SLINS

where Sy is a unit sphere in LP (RY).
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Notation

(a)
(b)

(d)

x=(x,x), x=(z1,..., %), X = (Try1,...,7q), 0<r < d—1,

LPPRY) = L@ PR, | fllg = 1fll g, p.pys P = (P15 20)-

Ifr=0: [[f(-x)p =G 1flls, = IfllLe- x
Distribution function:

Ar(a) = A(f; @) = vol{x € R? : |f(x)| > a}.

Ay is non-increasing and right continuous.
If | f] < |gl, then Ay < Ag.

If [ful 7 |f], then Ag, 7 Ap.
If f=g+h, it follows A(f; ) < A(g; §) + A(h; 5).



Main theorem (hypotheses)

Theorem 5. Let us assume that linear operators A, A* : L°(R?%) — Li,.(R?)
satisfy

(Vovec®) [ (oi= [ ca.

Furthermore, assume that (for T = A and T = A ) there exist N > 1 and
c1 > 0 such that

(Vm € 0..(d=1))(Vxp € RT™)(Vt > 0) / ITFCx)pdx" <ellfllg 0
\x’—x()\oo>Nt

for an arbitrary f € L (R%) with properties:
(a) supp f € R™ x {x: |x' — x0|ec <1},
(b) (VxeR™) [gam f(X,X)dx'=0.



Main theorem (conclusion)

Theorem 5.
Let A has a continuous extension to LY(R?) with norm c, for some

€ (1,00), then A has a continuous extension also to LP(R?) for each
p € (1,00)¢, with norm

d k—1
[AllLe e < Z [ max(pa—s, (pa—s = 1)7/743)(e1 + ¢4)
=1 j=0

d—1
H max(pa—j, (pa—; — 1)~ /P49)(e1 + ),

where ¢ and ¢’ depend only on N and d.



Main step in the proof

The proof is inductive by using the following lemma.

Lemma 1. Assume that linear operators A, A* : L= (R?) — LL_(R?) satisfy
assumptions of Theorem 5.

If A extends continuously to LP (R%) with norm c,, for some p € (1, 00)™
and q € (1,00), then A also extends continuously to LP'P(R®) for each

p € (1,00), with norm

IA]l < ¢ max(p, (p = 1)) (c1 + ¢,),

where ¢ depends only on N and d.



Generalization of Marcinkiewicz interpolation theorem

Lemma 2. Assume that for linear operator T : L°(R?) — L .(R%), and
some p € (1,00)™ and q € (1,00) there exist c1,cq > 0 such that for arbitrary
a>0 and f € L®(R%) we have:

MITfllgie) < ecra HIfllg, s
ITfllp,q < callfllp,q -

Then for arbitrary p € (1,q) and f € C°(R?) it follows

_1
ITfllp,, <8(p—1)"7(cr +ca)llfll, -



Example 1 - Fourier multipliers

Theorem 6. Let m € 1L°°(R¥\{0}) be such that for some A > 0, and each
la| < [4] 4+ 1 we have either
(a) Mihlin condition

08 m(&)| < Algl™*, or

(b) Hérmander condition

sup R ~42lel / |0Em(€)]* dé < A* < o0 .
R>0 R<|¢|<2R



Example 1 - Fourier multipliers

Theorem 6. Let m € 1L°°(R¥\{0}) be such that for some A > 0, and each
la| < [4] 4+ 1 we have either
(a) Mihlin condition
08 m(&)| < Algl™*, or
(b) Hérmander condition

sup R ~42lel / |0Em(€)]* dé < A* < o0 .
R>0 R<|¢|<2R

Then m belongs to My, for each p € (1,00)%, and we have

d —
] ey, < Z H max(pa—s, (pa—y — 1)7/P49) (A + [[m]l o)
k=1  j=0

d—1
¢ T[ max(pa—s, (pa—y — 1)"/74=3) (A + [ml| )

Jj=0

where ¢ and ¢’ depends only on d.



Example 2 - pseudodifferential operators

a(x,§) € C* (R x R%) is Hormander symbol of order m (a € S%) if:

m—|B|+5|e|
2

(Vx€R?) (VEER) [0ad”a(x,€)| < Cap(l+47°(E) ;

DedPa(x, €) == 8,‘:8§a(x, &), Ca g is constant depending only on a and 3.
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Example 2 - pseudodifferential operators

a(x,§) € C* (R x R%) is Hormander symbol of order m (a € S%) if:

m—|B|+5|e|
2

(Yx €R") (V€ €RY) |0a0”a(x,£)| < Cap(l +47°|€) :
DedPa(x, €) == 8,‘:8§a(x, &), Ca g is constant depending only on a and 3.
We definy a(-,D) : S — S by

(b D)) = [ e Salx, )5(6) de.
R L
Adjoint operator a*(-, D), with symbol
&= [ [ e ra—y.g - mydyan,
Rd JRd
defines an extension a(-, D) : & — &', a pseudodifferential operator of order

m, by formula
<a('7D)ua 90> = <u7 a*(~7D)<p>.



Example 3 - integral operators

700 = [ KGxy)iv)dy
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Example 3 - integral operators

Tf(x)= K(x,y)f(y)dy

R4

Continuity on L?(R?) (Schur):

(HC>0)/

R4

|K(x,y)|dx < C (ae y), /Rd |K(x,y)|dy < C (ae x).

Sufficient condition for continuity on LP(R?):

/Rd K (-, — 2)||; w dz < .

Connection between those conditions="?
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