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Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd
∗, we can take k = ‖ψ‖Cκ .
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Existence of H-distributions

Theorem. [N.A. & D. Mitrović (2011)] If un −⇀ 0 in Lp(Rd) and
vn

∗−−⇀ v in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences
(un′), (vn′) and a complex valued distribution µ ∈ D′(Rd × Sd−1), such that
for every ϕ1, ϕ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 .

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(Rd), resulting in a distribution µ
of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.
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A particular Nemyckĭı operator

Canonical choice of Lp
′

sequence corresponding to an Lp, p ∈ 〈1,∞〉, sequence
(un) is given by vn = Φp(un), where Φp is an operator from Lp(Rd) to

Lp
′
(Rd) defined by Φp(u) = |u|p−2u.

Φp is a nonlinear Nemytskĭı operator, continuous from Lp(Rd) to Lp
′
(Rd) and

additionally we have the following bound

‖Φp(u)‖Lp′ (Rd) 6 ‖u‖
p/p′

Lp(Rd)
.

It maps bounded sets in Lploc(Rd) topology to bounded sets in Lp
′

loc(Rd)
topology. Hence for an Lp bounded sequence (un), we get that (Φp(un)) is

weakly precompact in Lp
′

loc(Rd).

It is continuous from Lploc(Rd) to Lp
′

loc(Rd).
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Example: concentration

u ∈ Lpc(R
d), and define un(x) = n

d
p u(n(x− z)) for some z ∈ Rd.

Simple change of variables: ‖un‖Lp(Rd) = ‖u‖Lp(Rd) and un −⇀ 0 in Lp(Rd).

Indeed, the sequence is bounded, while for ϕ ∈ Cc(R
d)∫

Rd
un(x)ϕ(x)dx =

∫
Rd

nd/pu(n(x− z))ϕ(x)dx

=

∫
Rd

nd/p−du(y)ϕ(y/n+ z)dy

=
1

nd/p′

∫
Rd

u(y)χsuppu(y)ϕ(y/n+ z)dy

6
(vol(suppu)

nd

)1/p′

‖u‖Lp(Rd) max
Rd
|ϕ|.

Passing to the limit, we get our claim.

Actually, the H-distribution corresponding to sequences (un) and (Φp(un)) is
given by δz � ν, where ν is a distribution on Cκ(Sd−1) defined for
ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫
Rd

u(x)Aψ̄(|u|p−2u)(x)dx.
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Functions of anisotropic smoothness
Let X and Y be open sets in Rd and Rr (or C∞ manifolds), Ω ⊆ X × Y .

By Cl,m(Ω) we denote the space of functions f on Ω, such that for any
α ∈ Nd

0 and β ∈ Nr
0, if |α| 6 l and |β| 6 m,

∂α,βf = ∂α
x ∂

β
y f ∈ C(Ω) .

Cl,m(Ω) becomes a Fréchet space if we define a sequence of seminorms

pl,mKn (f) := max
|α|6l,|β|6m

‖∂α,βf‖L∞(Kn) ,

where Kn ⊆ Ω are compacts, such that Ω = ∪n∈NKn and Kn ⊆ IntKn+1.

For a compact set K ⊆ Ω we define a subspace of Cl,m(Ω)

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
.

This subspace inherits the topology from Cl,m(Ω), which is, when considered
only on the subspace, a norm topology determined by

‖f‖l,m,K := pl,mK (f) ,

and Cl,mK (Ω) is a Banach space (it can be identified with a proper subspace of
Cl,m(K)). However, if m =∞ (or l =∞), then we shall not get a Banach
space, but a Fréchet space. As in the isotropic case, an increasing sequence of
seminorms that makes Cl,∞Kn (Ω) a Fréchet space is given by (pl,kKn), k ∈ N0.
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Cl,m(Ω) becomes a Fréchet space if we define a sequence of seminorms

pl,mKn (f) := max
|α|6l,|β|6m

‖∂α,βf‖L∞(Kn) ,

where Kn ⊆ Ω are compacts, such that Ω = ∪n∈NKn and Kn ⊆ IntKn+1.

For a compact set K ⊆ Ω we define a subspace of Cl,m(Ω)

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
.

This subspace inherits the topology from Cl,m(Ω), which is, when considered
only on the subspace, a norm topology determined by

‖f‖l,m,K := pl,mK (f) ,

and Cl,mK (Ω) is a Banach space (it can be identified with a proper subspace of
Cl,m(K)). However, if m =∞ (or l =∞), then we shall not get a Banach
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Functions of anisotropic smoothness (cont.)

We can also consider the space

Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω) ,

of all functions with compact support in Cl,m(Ω), and equip it by a stronger
topology than the one induced from Cl,m(Ω): by the topology of strict
inductive limit.

More precisely, it can easily be checked that

Cl,mKn (Ω) ↪→ Cl,mKn+1
(Ω) ,

the inclusion being continuous. Also, the topology induced on Cl,mKn (Ω) by that

of Cl,mKn+1
(Ω) coincides with the original one, and Cl,mKn (Ω) (as a Banach space

in that topology) is a closed subspace of Cl,mKn+1
(Ω). Then we have that the

inductive limit topology on Cl,mc (Ω) induces on each Cl,mKn (Ω) the original

topology, while a subset of Cl,mc (Ω) is bounded if and only if it is contained in
one Cl,mKn (Ω), and bounded there. Cl,mc (Ω) is a barelled space.

Of course, C∞c (Ω) ↪→ Cl,mc (Ω) is a continuous and dense imbedding.
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Distributions of anisotropic order

Definition. A distribution of order l in x and order m in y is any linear
functional on Cl,mc (Ω), continuous in the strict inductive limit topology. We
denote the space of such functionals by D′l,m(Ω).

Clearly, C∞c (Ω) ↪→ Cl,mc (Ω) ↪→ D′(Ω), with continuous and dense imbeddings,
thus Cl,mc (Ω) is a normal space of distributions, hence its dual D′l,m(Ω) forms a
subspace of D′(Ω). If we equip it with a strong topology, it is even
continuously imbedded in D′(Ω).

Lemma. Let X and Y be C∞ manifolds. For a linear functional u on
Cl,mc (X × Y ), the following statements are equivalent

a) u ∈ D′l,m(X × Y ),

b) (∀K ∈ K(X × Y ))(∃C > 0)(∀Ψ ∈ Cl,mK (X × Y )) |〈u,Ψ〉| 6 Cpl,mK (Ψ).

Statement (b) of previous lemma implies:

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∀ϕ ∈ ClK(X))(∀ψ ∈ CmL (Y ))

|〈u, ϕ� ψ〉| 6 CplK(ϕ)pmL (ψ) .

The reverse implication would have significantly greater practical use.
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Tensor product of distributions

In order to better understand the properties of elements of D′l,m(Ω), we shall
relate them to tensor products.
The first step is to consider the algebraic tensor product Clc(X)� Cmc (Y ), the
vector space of all (finite) linear combinations of functions of the form
(φ� ψ)(x,y) := φ(x)ψ(y). This is a vector subspace of Cl,mc (X × Y ).

Theorem. Let X and Y be C∞ manifolds, u ∈ D′l(X) and v ∈ D′m(Y ). Then(
∃!w ∈ D′l,m(X×Y )

)(
∀ϕ ∈ Clc(X)

)(
∀ψ ∈ Cmc (Y )

)
〈w,ϕ�ψ〉 = 〈u, ϕ〉〈v, ψ〉.

Furthermore, for any Φ ∈ Cl,mc (X × Y ), function V : x 7→ 〈v,Φ(x, ·)〉 is in
Clc(X), while U : y 7→ 〈u,Φ(·,y)〉 is in Cmc (Y ), and we have that

〈w,Φ〉 = 〈u, V 〉 = 〈v, U〉.
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Simple operations

Lemma. If u ∈ D′l,m(X × Y ) then, for any ψ ∈ Cl,m(X × Y ), ψu is a well
defined distribution of order at most (l,m).

Theorem. Let u ∈ D′l,m(X × Y ) and take F ⊆ X × Y relatively compact set
such that suppu ⊆ F . Then there exists unique linear functional ũ on
Q := {ϕ ∈ Cl,m(X × Y ) : F ∩ suppϕ b X × Y } such that

a) (∀ϕ ∈ Cl,mc (X × Y )) 〈ũ, ϕ〉 = 〈u, ϕ〉,
b) (∀ϕ ∈ Cl,m(X × Y )) F ∩ suppϕ = ∅ =⇒ 〈ũ, ϕ〉 = 0.

The domain of ũ is largest for F = suppu.
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First conjecture

Let X,Y be C∞ manifolds and u a linear functional on Cl,mc (X × Y ). If
u ∈ D′(X × Y ) and satisfies

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∀ϕ ∈ C∞K (X))(∀ψ ∈ C∞L (Y ))

|〈u, ϕ� ψ〉| 6 CplK(ϕ)pmL (ψ) ,

then u can be uniquely extended to D′l,m(X × Y ).

If it were true, then the H-distribution µ would belong to D′0,κ(Rd × Sd−1),
i.e. it would be a distribution of order 0 in x and of order not more than κ in ξ.

Indeed, from the proof of the existence theorem, we already have
µ ∈ D′(Rd × Sd−1) and the following bound with ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| 6 C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl (Rd) ,

where C does not depend on ϕ and ψ.
Most likely it is not true!

We need a more complicated result.
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Schwartz kernel theorem

Theorem. Let X and Y be two differentiable manifolds.
a) Let K ∈ D′l,m(X × Y ). Then for each ϕ ∈ Clc(X) the linear form Kϕ, defined

by ψ 7→ 〈K,ϕ� ψ〉, is a distribution of order not more than m on Y .
Furthermore, the mapping ϕ 7→ Kϕ, taking Clc(X) with its inductive limit
topology to D′m(Y ) with weak ∗ topology, is linear and continuous.

b) Let A : Clc(X)→ D′m(Y ) be a continuous linear operator, in the pair of
topologies as above. Then there exists unique distribution K ∈ D′(X × Y )
such that for any ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y )

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉.

Furthermore, K ∈ D′l,d(m+2)(X × Y ).
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Different strategies of proof

◦ regularisation? (Schwartz)

◦ constructive proof? (Simanca, Gask, Ehrenpreis)

◦ nuclear spaces? (Trèves)

◦ structure theorem, on manifolds (Dieudonne)
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From kernel to operator (a)

ϕ ∈ Clc(X); prove the continuity of Kϕ on Cmc (Y ) (it is clearly linear since the
tensor product is bilinear, while K is linear).

i.e. for H ∈ K(Y ), mapping ψ 7→ 〈Kϕ, ψ〉 is a cont. lin. funct. on CmH(Y ).

We can assume X and Y to be open subsets of Rd and Rr.
Indeed, first take an open covering of Y , consisting of chart domains, and a
partition of unity (fα) subordinate to that covering such that∑
α fα(y) = 1,y ∈ H (note that the sum is finite).

Similarly for ϕ, thus limiting ourselves to domains of a pair of charts.

By [Gösser, Kunzinger & al., Chapter 3.1.4], we can identify distributions
localised on chart domains with distributions on subsets of Rd and Rr. Thus,
in what follows we shall assume that X and Y are open subsets of Rd and Rr.

We shall therefore show that there exists a constant C > 0 such that for any
ψ ∈ CmH(Y ) it holds

|〈Kϕ, ψ〉| 6 C max
|β|6m

‖∂βψ‖L∞(H) ,

for m finite, while for m =∞ we should modify the above to

(∃m′ ∈ N)(∃C > 0)(∀ψ ∈ C∞H (Y )) |〈Kϕ, ψ〉| 6 C max
|β|6m′

‖∂βψ‖L∞(H) .
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By [Gösser, Kunzinger & al., Chapter 3.1.4], we can identify distributions
localised on chart domains with distributions on subsets of Rd and Rr. Thus,
in what follows we shall assume that X and Y are open subsets of Rd and Rr.

We shall therefore show that there exists a constant C > 0 such that for any
ψ ∈ CmH(Y ) it holds

|〈Kϕ, ψ〉| 6 C max
|β|6m

‖∂βψ‖L∞(H) ,

for m finite, while for m =∞ we should modify the above to

(∃m′ ∈ N)(∃C > 0)(∀ψ ∈ C∞H (Y )) |〈Kϕ, ψ〉| 6 C max
|β|6m′

‖∂βψ‖L∞(H) .

16



From kernel to operator (a)

ϕ ∈ Clc(X); prove the continuity of Kϕ on Cmc (Y ) (it is clearly linear since the
tensor product is bilinear, while K is linear).

i.e. for H ∈ K(Y ), mapping ψ 7→ 〈Kϕ, ψ〉 is a cont. lin. funct. on CmH(Y ).

We can assume X and Y to be open subsets of Rd and Rr.
Indeed, first take an open covering of Y , consisting of chart domains, and a
partition of unity (fα) subordinate to that covering such that∑
α fα(y) = 1,y ∈ H (note that the sum is finite).

Similarly for ϕ, thus limiting ourselves to domains of a pair of charts.
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From kernel to operator (a)(cont.)

K is a distribution of anisotropic order on X × Y :

(∀M ∈ K(X × Y ))(∃C̃ > 0)(∀Ψ ∈ Cl,mc (X × Y ))

supp Ψ ⊆M =⇒ |〈K,Ψ〉| 6 C̃ max
|α|6l,|β|6m

‖∂α,βΨ‖L∞(M) ,

with obvious modifications if either l or m is infinite,

by taking M to be of the form L×H, with L ∈ K(X), and Ψ = ϕ� ψ such
that suppϕ ⊆ L, we have

|〈Kϕ, ψ〉| = |〈K,ϕ� ψ〉| 6 C̃ max
|α|6l,|β|6m

‖∂αϕ� ∂βψ‖L∞(L×H)

6 C̃ max
|α|6l

‖∂αϕ‖L∞(L) max
|β|6m

‖∂βψ‖L∞(H) 6 C max
|β|6m

‖∂βψ‖L∞(H) ,

and therefore Kϕ ∈ D′m(Y ).
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From kernel to operator (a)(cont.)

The linearity of mapping ϕ 7→ Kϕ readily follows from the bilinearity of tensor
product and the linearity of K.

For continuity, take an arbitrary L ∈ K(X) and an arbitrary ψ ∈ Cmc (Y ). We
need to show the existence of C̄ > 0 such that

|〈Kϕ, ψ〉| 6 C̄ max
|α|6l

‖∂αϕ‖L∞(L) .

However, we have already shown that above: just take

C̄ = C̃ max
|β|6m

‖∂βψ‖L∞(H) .

Therefore, the mapping ϕ 7→ Kϕ, from Clc(X) to D′m(Y ) is linear and
continuous.
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From operator to kernel (b): uniqueness and overview

Let us first prove the uniqueness. By formula

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 ,

a continuous functional K on C∞c (X)� C∞c (Y ) is defined. As it is defined on
a dense subset of C∞c (X × Y ), such K is uniquely determined on the whole
C∞c (X × Y ).

The proof of existence will be divided into two steps. In the first step we
assume that X and Y are open subsets of Rd and Rr, and additionally, that
the range of A is C(Y ) ⊆ D′m(Y ) (understood as distributions which can be
identified with continuous functions). This will allow us to write explicitly the
action of Aϕ on a test function ψ ∈ Cmc (Y ), which will finally enable us to
define the kernel K. In the second step, we shall use a partition of unity and
the structure theorem of distributions to reduce the problem to the first step.
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From operator to kernel (b): existence under additional assumptions

Additionally assume that X and Y are open and bounded subsets of euclidean
spaces, and that for each ϕ ∈ Clc(X), Aϕ ∈ C(Y ).

Its action on a test function ψ ∈ Cmc (Y ) is given by

〈Aϕ,ψ〉 =

∫
Y

(Aϕ)(y)ψ(y)dy .

Continuity of A implies that A : Clc(X) −→ C(Y ) is continuous when the
range is equipped with the weak ∗ topology inherited from D′m(Y ).

As the latter is a Hausdorff space, that operator has a closed graph, but this
remains true even when we replace the topology on C(Y ) by its standard
Fréchet topology [Narici & Beckenstein, Exercise 14.101(a)], which is stronger.

Now we can apply the Closed graph theorem [Narici & Beckenstein, Theorem
14.3.4(b)], as Clc(X) is barreled, as a strict inductive limit of barreled spaces,
to conclude that A : Clc(X) −→ C(Y ) is continuous with usual strong
topologies on its domain and range.
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(b): existence under additional assumptions (cont.)

For y ∈ Y consider a linear functional Fy : Clc(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and continuous as a
composition of continuous mappings, thus a distribution in D′l(X).

Take a test function Ψ ∈ Cl,0c (X × Y ), and fix its second variable (get a
function from Clc(X)) and apply Fy; we are interested in the properties of this
mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the
projection πY (supp Ψ). Furthermore, we have:∣∣∣Fy(Ψ(·,y))

∣∣∣ =
∣∣∣(AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)‖L∞(πY (supp Ψ))

6 C‖Ψ(·,y)‖Cl
πY (supp Ψ)

(X) 6 C‖Ψ‖Cl,0supp Ψ(X×Y )
.

21



(b): existence under additional assumptions (cont.)

For y ∈ Y consider a linear functional Fy : Clc(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and continuous as a
composition of continuous mappings, thus a distribution in D′l(X).

Take a test function Ψ ∈ Cl,0c (X × Y ), and fix its second variable (get a
function from Clc(X)) and apply Fy; we are interested in the properties of this
mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the
projection πY (supp Ψ). Furthermore, we have:∣∣∣Fy(Ψ(·,y))

∣∣∣ =
∣∣∣(AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)‖L∞(πY (supp Ψ))

6 C‖Ψ(·,y)‖Cl
πY (supp Ψ)

(X) 6 C‖Ψ‖Cl,0supp Ψ(X×Y )
.

21



(b): existence under additional assumptions (cont.)

For y ∈ Y consider a linear functional Fy : Clc(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and continuous as a
composition of continuous mappings, thus a distribution in D′l(X).

Take a test function Ψ ∈ Cl,0c (X × Y ), and fix its second variable (get a
function from Clc(X)) and apply Fy; we are interested in the properties of this
mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the
projection πY (supp Ψ). Furthermore, we have:∣∣∣Fy(Ψ(·,y))

∣∣∣ =
∣∣∣(AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)‖L∞(πY (supp Ψ))

6 C‖Ψ(·,y)‖Cl
πY (supp Ψ)

(X) 6 C‖Ψ‖Cl,0supp Ψ(X×Y )
.

21



(b): existence under additional assumptions (cont.)

For y ∈ Y consider a linear functional Fy : Clc(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and continuous as a
composition of continuous mappings, thus a distribution in D′l(X).

Take a test function Ψ ∈ Cl,0c (X × Y ), and fix its second variable (get a
function from Clc(X)) and apply Fy; we are interested in the properties of this
mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the
projection πY (supp Ψ). Furthermore, we have:∣∣∣Fy(Ψ(·,y))

∣∣∣ =
∣∣∣(AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)‖L∞(πY (supp Ψ))

6 C‖Ψ(·,y)‖Cl
πY (supp Ψ)

(X) 6 C‖Ψ‖Cl,0supp Ψ(X×Y )
.

21



(b): existence under additional assumptions (cont.)

We show sequential continuity: take a sequence yn → y in Y . Denote
H = πX(supp Ψ) and let L ⊆ Y be a compact such that yn,y ∈ L; Ψ is
uniformly continuous on compact H × L.

This is also valid for ∂α
x Ψ, where |α| 6 l, thus Ψ(·,yn) −→ Ψ(·,y) in Clc(X).

As A is continuous, the convergence is carried to C(Y ), i.e. to uniform
convergence on compacts of a sequence of functions AΨ(·,yn) to AΨ(·,y).
In particular,(AΨ(·,yn))(ȳ)− (AΨ(·,y))(ȳ) is arbitrary small independently of
ȳ ∈ L, for large enough n.

On the other hand, AΨ(·,y) is uniformly continuous, thus
(AΨ(·,y))(ȳ)− (AΨ(·,y))(y) is small for large n, independetly of ȳ ∈ L. In
other terms, we have the required convergence

Fyn(Ψ(·,yn)) −→ Fy(Ψ(·,y)) .

A continuous function with compact support is summable, so we can define K
on Cl,0c (X × Y ):

〈K,Ψ〉 =

∫
Y

Fy(Ψ(·,y)) dy ,

which is obviously linear in Ψ, as Fy is.
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ȳ ∈ L, for large enough n.

On the other hand, AΨ(·,y) is uniformly continuous, thus
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(b): existence under additional assumptions (cont.)

For continuity of K, we cannot follow [Dieudonne, 23.9.2], as our spaces are
not Montel.

However, we can check that K is continuous at zero (modifications for l =∞):

(∀H ∈ K(X))(∀L ∈ K(Y ))(∃C > 0)(∀Ψ ∈ Cl,0c (X × Y ))

supp Ψ ⊆ H × L =⇒ |〈K,Ψ〉| 6 C‖Ψ‖
C
l,0
K×L(X×Y )

.

The continuity of A : Clc(X) −→ C(Y ), for Ψ supported in H ×L and the fact
that the support of AΨ(·,y) is contained in L gives us the estimate∣∣∣∣∫

Y

Fy(Ψ(·,y)) dy

∣∣∣∣ 6 (volL)C‖Ψ‖
C
l,0
K×L(X×Y )

,

as needed.

Finally, it is easy to check that for ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y ), we have:

〈K,ϕ� ψ〉 =

∫
Y

Fy(ϕ� ψ(y))dy =

∫
Y

Fy(ϕ)ψ(y)dy

=

∫
Y

(Aϕ)(y)ψ(y)dy = 〈Aϕ,ψ〉 .
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(b): existence under additional assumptions (cont.)
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(b) existence in general: reduction to charts

Let (Uα) and (Vβ) be covers consisting of relatively compact open sets.

It is sufficient to show existence of distributions Kαβ on Uα × Vβ , which satisfy

〈Aϕ,ψ〉 = 〈Kαβ , ϕ� ψ〉 , ϕ ∈ C∞c (Uα), ψ ∈ C∞c (Vβ) .

Indeed, the uniqueness of K ∈ D′(X × Y ) then follows from the fact that two
distributions Kαβ and Kγδ will coincide on open sets (Uα ∩Uγ)× (Vβ ∩ Vδ) of
X × Y , while the existence of K will be a result of the localisation theorem
[Dieudonne, 17.4.2].

Furthermore, if we assume that Uα and Vβ lie within domains of some charts of
X and Y , in the light of results of [Gösser, Kunzinger & al., Chapter 3.1.4], we
can identify the distributions localised to these chart domains with distributions
on open subsets of Rd. Thus, without loss of generality, we assume that U and
V are relatively compact open subsets of Rd.
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(b) existence in general: the structure theorem
Consider Ã : Clc(U)→ D′m(V ) defined by: for ϕ ∈ Clc(U) and ψ ∈ Cmc (V )

〈Ãϕ, ψ〉 = 〈Aϕ,ψ〉 .

Ã is well-defined, and by the assumptions continuous.

Take a relatively compact open neighbourhood W of ClV in Y and pick a
smooth cut-off function ρ being one on ClV and supported in W .

For ϕ ∈ Clc(U), ρÃϕ ∈ D′m(W ) and has a compact support. Next we use the
Structure theorem for distributions: from its proof [Friedlander & Joshi,
Theorem 5.4.1], we can write

ρÃϕ =
(
∂m+2

1 . . . ∂m+2
d

) (
Em+2 ∗ (ρÃϕ)

)
,

where Em+2 is the fundamental solution of ∂m+2
1 . . . ∂m+2

d (derivatives in y),
i.e. it satisfies the equation

(
∂m+2

1 . . . ∂m+2
d

)
Em+2 = δ0 (explicit formula for

Em+2 in loc.cit.), and Em+2 ∗ (ρÃϕ) is a continuous function.

Denoting by Ẽm+2∗ the transpose of Em+2∗, for ϕ ∈ Clc(U) and ψ ∈ Cmc (W )〈
Em+2 ∗ (ρÃϕ), ψ

〉
=
〈
Ãϕ, ρẼm+2 ∗ ψ

〉
,

concluding that ϕ 7→ Em+2 ∗ (ρÃϕ) is continuous from Clc(U) to D′m(W ).
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)
,

where Em+2 is the fundamental solution of ∂m+2
1 . . . ∂m+2

d (derivatives in y),
i.e. it satisfies the equation

(
∂m+2

1 . . . ∂m+2
d

)
Em+2 = δ0 (explicit formula for

Em+2 in loc.cit.), and Em+2 ∗ (ρÃϕ) is a continuous function.
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ρÃϕ =
(
∂m+2

1 . . . ∂m+2
d

) (
Em+2 ∗ (ρÃϕ)
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(b) existence in general: reduction to special case

Now we can find R ∈ D′l,0(U ×W ) such that for all ϕ ∈ C∞c (U) and
ψ ∈ C∞c (W ) it holds 〈

Em+2 ∗ (ρÃϕ), ψ
〉

= 〈R,ϕ� ψ〉 .

Taking ϕ ∈ C∞c (U) and ψ ∈ C∞c (V ), we have〈
R,ϕ�

(
∂m+2

1 . . . ∂m+2
d

)
ψ
〉

=
〈
Em+2 ∗ (ρÃϕ),

(
∂m+2

1 . . . ∂m+2
d

)
ψ
〉

= (−1)d(m+2)
〈(
∂m+2

1 . . . ∂m+2
d

) (
Em+2 ∗ (ρÃϕ)

)
, ψ
〉

= (−1)d(m+2)
〈
ρÃϕ, ψ

〉
= (−1)d(m+2)

〈
Ãϕ, ρψ

〉
= (−1)d(m+2)〈Aϕ,ψ〉,

which gives 〈Aϕ,ψ〉 = (−1)d(m+2)
〈(
∂m+2

1 . . . ∂m+2
d

)
R,ϕ� ψ

〉
, where the

derivatives are taken with respect to the variable y. Since R was an element of
D′l,0(U ×W ), we conclude that A ∈ D′l,d(m+2)(U × V ).
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Remarks

Note that in part (b) we did not get K ∈ D′l,m(X × Y ), as one would expect.
The order with respect to x variable remained the same, but the order with
respect to y increased from m to d(m+ 2). Interchanging the roles of X and
Y , the same proof gives K ∈ D′d(l+2),m(X × Y ), where order with respect to y
remained the same, but order with respect to the x variable increased from l to
d(l+ 2). Since uniqueness of K ∈ D′(X × Y ) has already been determined, we
conclude that K ∈ D′l,d(m+2)(X × Y ) ∩ D′d(l+2),m(X × Y ). It might be
interesting to see some additional properties of that intersection.

If one used a more constructive proof of the Schwartz kernel theorem, for
example [Simanca, Theorem 1.3.4], one would end up increasing the order with
respect to both variables x and y. This occurs naturally, because one needs to
secure the integrability of the function which is used to define the kernel
function.

One interesting approach to the kernel theorem is given in [Trèves, Chapter
51]. This approach is based on deep results of functional analysis on tensor
products of nuclear spaces of Alexander Grothendieck. This approach might
result in further improvements of the preceeding theorem. This is a subject of
our current ongoing research.
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Consequence for H-distributions

By the previous theorem the H-distribution µ mentioned at the beginning
belongs to the space D′0,d(κ+2)(R

d × Sd−1), i.e. it is a distribution of order 0 in
x and of order not more than d(κ+ 2) in ξ.

Indeed, we already have µ ∈ D′(Rd × Sd−1) and the following bound with
ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| 6 C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl (Rd) ,

where C does not depend on ϕ and ψ.

Now we just need to apply the Schwartz kernel theorem given above to
conclude that µ is a continuous linear functional on C

0,d(κ+2)
c (Rd × Sd−1).
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Thank you for your attention.
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