Estimates on the mild solution of semilinear Cauchy problems and some notes on damped wave equations

Marko Erceg

Department of Mathematics, Faculty of Science University of Zagreb Joint work with Krešimir Burazin

Chemnitz, 4th July, 2014

Assumptions Main thereom Examples

Generalised damped wave equation

 $(X,\|\cdot\|)$ Banach space, T>0 ,

$$\begin{cases} \mathbf{u}'(t) + A\mathbf{u}(t) = \mathbf{f}(t,\mathbf{u}(t)) & \text{in } \langle 0,T \rangle \\ \mathbf{u}(0) = \mathbf{g} \end{cases}$$

 $(X, \|\cdot\|)$ Banach space, T > 0,

$$\begin{cases} \mathsf{u}'(t) + A\mathsf{u}(t) = \mathsf{f}(t,\mathsf{u}(t)) & \text{in } \langle 0,T \rangle \\ \mathsf{u}(0) = \mathsf{g} \end{cases}$$

• $A:D(A)\subseteq X\longrightarrow X$ generator of a C_0 -semigroup $(T(t))_{t\geqslant 0}$ on X, and $M\geqslant 1,\ \omega\geqslant 0$ such that

$$(\forall t \geqslant 0)$$
 $||T(t)||_{\mathcal{L}(X)} \leqslant Me^{\omega t}$,

- ullet g $\in X$,
- f : $[0,T] \times X \longrightarrow X$ Borel measurable and locally Lipschitz in u: $(\exists \Psi \in \mathrm{L}^\infty_{\mathrm{loc}}(\mathbf{R}))(\forall \, r > 0)(\forall \, \mathsf{w}, \mathsf{z} \in \mathrm{B}_X[\mathsf{0},r])$

$$\|f(t,z) - f(t,w)\| \le \Psi(r)\|z - w\|$$
 (a.e. $t \in [0,T]$),

• $u:[0,T\rangle\longrightarrow X$ is the unknown.

 $(X,\|\cdot\|)$ Banach space, T>0 ,

$$\begin{cases} \mathbf{u}'(t) + A\mathbf{u}(t) = \mathbf{f}(t,\mathbf{u}(t)) & \text{in } \langle 0,T \rangle \\ \mathbf{u}(0) = \mathbf{g} \end{cases}$$

 $(X, \|\cdot\|)$ Banach space, T > 0,

$$\begin{cases} \mathbf{u}'(t) + A\mathbf{u}(t) = \mathbf{f}(t,\mathbf{u}(t)) & \text{in } \langle 0,T \rangle \\ \mathbf{u}(0) = \mathbf{g} \end{cases}$$

 $\mathbf{u} \in \mathrm{C}([0,S\rangle;X)$ is called a mild solution of (ACP) on $[0,S\rangle$ if

(CS)
$$\mathrm{u}(t) = T(t)\mathrm{g} + \int_0^t T(t-s)\mathrm{f}(s,\mathrm{u}(s))ds\,, \quad t \in [0,S\rangle\,.$$

 $(X, \|\cdot\|)$ Banach space, T > 0,

$$\begin{cases} \mathbf{u}'(t) + A\mathbf{u}(t) = \mathbf{f}(t,\mathbf{u}(t)) & \text{in } \langle 0,T \rangle \\ \mathbf{u}(0) = \mathbf{g} \end{cases}$$

 $\mathbf{u} \in \mathrm{C}([0,S\rangle;X)$ is called a mild solution of (ACP) on $[0,S\rangle$ if

(CS)
$$\mathsf{u}(t) = T(t)\mathsf{g} + \int_0^t T(t-s)\mathsf{f}(s,\mathsf{u}(s))ds\,, \quad t \in [0,S].$$

Standard theory [Pazy (1983), Cazenave-Haraux (1998)]: existence and uniqueness of the mild solution

 $(X, \|\cdot\|)$ Banach space, T > 0,

 $u \in C([0,S);X)$ is called a *mild solution* of (ACP) on [0,S) if

(CS)
$$\mathsf{u}(t) = T(t)\mathsf{g} + \int_0^t T(t-s)\mathsf{f}(s,\mathsf{u}(s))ds\,, \quad t \in [0,S] \,.$$

Standard theory [Pazy (1983), Cazenave-Haraux (1998)]: existence and uniqueness of the mild solution

Different apporach (based on [Tartar (2008), Burazin (2008)]): estimate on the mild solution and its time of existence

Local bound and ODE

Theorem

The function $\Phi(t,u) := \sup_{\|\mathbf{w}\| \leq u} \|\mathbf{f}(t,\mathbf{w})\|$, $t \in [0,T]$, $u \in \mathbf{R}_0^+$ is (the smallest) local bound for \mathbf{f} :

$$(\forall\, r>0)(\forall\, \mathsf{w}\in \mathcal{B}_X[\mathsf{0},r])\quad \|\mathsf{f}(t,\mathsf{w})\|\leqslant \Phi(t,r)\quad \text{ (a.e. } (t,\mathsf{w})\in [0,T]\times X)\,,$$

and has the following properties:

- $\bullet \Phi \in \mathrm{L}^{\infty}_{\mathrm{loc}}([0,T] \times \mathbf{R}_{0}^{+});$
- ullet $\Phi\geqslant 0$ and $\Phi(t,\cdot)$ is nondecresing, $t\in [0,T]$;
- ullet Φ is locally Lipschitz in u.

Local bound and ODE

Theorem

The function $\Phi(t,u) := \sup_{\|\mathbf{w}\| \leq u} \|\mathbf{f}(t,\mathbf{w})\|$, $t \in [0,T]$, $u \in \mathbf{R}_0^+$ is (the smallest) local bound for f:

$$(\forall\, r>0)(\forall\, \mathsf{w}\in \mathcal{B}_X[\mathsf{0},r])\quad \|\mathsf{f}(t,\mathsf{w})\|\leqslant \Phi(t,r)\quad \text{ (a.e. } (t,\mathsf{w})\in [0,T]\times X)\,,$$

and has the following properties:

- $\Phi \in L^{\infty}_{loc}([0,T] \times \mathbf{R}_0^+);$
- $\Phi \geqslant 0$ and $\Phi(t,\cdot)$ is nondecresing, $t \in [0,T]$;
- ullet Φ is locally Lipschitz in u.

The properties of the function Φ guarantee that the Cauchy problem

$$\begin{cases} v'(t) = e^{-\omega t} \Phi(t, M e^{\omega t} v(t)) \\ v(0) = \|\mathbf{g}\| \end{cases},$$

has the unique maximal solutions $v \in \mathrm{W}^{1,\infty}_{\mathrm{loc}}([0,S\rangle)$, for some S>0 (v is Lipschitz continuous on every $[a,b]\subseteq [0,S\rangle$).

Main theorem

Recall

(CS)
$$u(t) = T(t)g + \int_0^t T(t-s)f(s,u(s))ds, \quad t \in [0,S).$$

Main theorem

Recall

$$({\rm CS}) \qquad \qquad {\rm u}(t) = T(t){\rm g} + \int_0^t T(t-s){\rm f}(s,{\rm u}(s))ds\,, \quad t\in [0,S\rangle\,.$$

Theorem

Let the previous assumptions hold, and assume that $v \in W^{1,\infty}_{loc}([0,S\rangle)$ is the maximal solution of (ODE- Φ) for some $S \in \langle 0,T]$. Then there exists the unique mild solution on $[0,S\rangle$, $\mathbf{u} \in \mathrm{C}([0,S\rangle;X)$, of the problem (ACP). Additionally, \mathbf{u} satisfies the estimate

$$\|\mathbf{u}(t)\| \leqslant Me^{\omega t}v(t) \quad t \in [0, S\rangle.$$

Recall

(CS)
$$u(t) = T(t)g + \int_0^t T(t-s)f(s,u(s))ds, \quad t \in [0,S).$$

Theorem

Let the previous assumptions hold, and assume that $v \in W^{1,\infty}_{loc}([0,S])$ is the maximal solution of (ODE- Φ) for some $S \in (0,T]$. Then there exists the unique mild solution on [0, S), $u \in C([0, S); X)$, of the problem (ACP). Additionally, u satisfies the estimate

$$\|\mathbf{u}(t)\| \leqslant Me^{\omega t}v(t) \quad t \in [0,S\rangle.$$

Sketch of the proof. Uniqueness: $u_1, u_2 \in C([0, S); X)$ two mild solutions,

$$\begin{split} \|\mathbf{u}_{1}(t) - \mathbf{u}_{2}(t)\| & \leq \int_{0}^{t} \|T(t - s)\|_{\mathcal{L}(X)} \|\mathbf{f}(s, \mathbf{u}_{1}(s)) - \mathbf{f}(s, \mathbf{u}_{2}(s))\| \, ds \\ & \leq Me^{\omega t} \int_{0}^{t} \|\mathbf{f}(s, \mathbf{u}_{1}(s)) - \mathbf{f}(s, \mathbf{u}_{2}(s))\| \, ds \\ & \leq Me^{\omega S} \|\Psi\|_{\mathbf{L}^{\infty}(0, S)} \int_{0}^{t} \|\mathbf{u}_{1}(s) - \mathbf{u}_{2}(s)\| \, ds \, . \end{split}$$

Picards's iterations:

Picards's iterations: $\mathbf{u}_0\in\mathrm{C}([0,S];X)$ such that $\|\mathbf{u}_0(t)\|\leqslant Me^{\omega t}v(t)$, $t\in[0,S]$,

(CS_n)
$$u_n(t) := T(t)g + \int_0^t T(t-s)f(s, u_{n-1}(s)) ds, \quad t \in [0, S).$$

Picards's iterations: $\mathbf{u}_0\in\mathrm{C}([0,S];X)$ such that $\|\mathbf{u}_0(t)\|\leqslant Me^{\omega t}v(t)$, $t\in[0,S]$,

(CS_n)
$$u_n(t) := T(t)g + \int_0^t T(t-s)f(s, u_{n-1}(s)) ds, \quad t \in [0, S).$$

We have

$$\|\mathbf{u}_{1}(t)\| \leq \|T(t)\mathbf{g}\| + \int_{0}^{t} \|T(t-s)\mathbf{f}(s,\mathbf{u}_{0}(s))\| \, ds$$

$$\leq Me^{\omega t} \|\mathbf{g}\| + Me^{\omega t} \int_{0}^{t} e^{-\omega s} \|\mathbf{f}(s,\mathbf{u}_{0}(s))\| \, ds$$

$$\leq Me^{\omega t} \left(\|\mathbf{g}\| + \int_{0}^{t} e^{-\omega s} \Phi(s, Me^{\omega s} v(s)) \, ds \right)$$

$$\leq Me^{\omega t} v(t),$$

and inductively we have for every $n \in \mathbf{N}$ the estimate $\|\mathbf{u}_n(t)\| \leq Me^{\omega t}v(t)$, $t \in [0, S)$.

Picards's iterations: $\mathbf{u}_0\in\mathrm{C}([0,S];X)$ such that $\|\mathbf{u}_0(t)\|\leqslant Me^{\omega t}v(t)$, $t\in[0,S]$,

(CS_n)
$$u_n(t) := T(t)g + \int_0^t T(t-s)f(s, u_{n-1}(s)) ds, \quad t \in [0, S).$$

We have

$$\|\mathbf{u}_{1}(t)\| \leq \|T(t)\mathbf{g}\| + \int_{0}^{t} \|T(t-s)\mathbf{f}(s,\mathbf{u}_{0}(s))\| \, ds$$

$$\leq Me^{\omega t} \|\mathbf{g}\| + Me^{\omega t} \int_{0}^{t} e^{-\omega s} \|\mathbf{f}(s,\mathbf{u}_{0}(s))\| \, ds$$

$$\leq Me^{\omega t} \left(\|\mathbf{g}\| + \int_{0}^{t} e^{-\omega s} \Phi(s, Me^{\omega s} v(s)) \, ds \right)$$

$$\leq Me^{\omega t} v(t),$$

and inductively we have for every $n \in \mathbf{N}$ the estimate $\|\mathbf{u}_n(t)\| \leq Me^{\omega t}v(t)$, $t \in [0, S)$.

After passing to the limit as $n \to \infty$ in (CS_n), we get the result.

Remarks

- Instead of a function defined on the whole $[0,T] \times X$, we can consider a function $\mathsf{f}:[0,T] \times \mathrm{B}_X(\mathsf{0},b) \longrightarrow X$, for some b>0. v cannot blow-up, but it can quench when v approaches b.
- The mild solution of (ACP) exists at least as long as the solution v of (ODE- Φ).
- The best possible estimate of type (E) will be given by the smallest possible local bound for f, i.e. the function Φ .
- The estimate (E) is not optimal in general!
- The main theorem can be stated also for non-autonomous (evolution) abstract systems

$$\label{eq:eacp} \left\{ \begin{aligned} \mathbf{u}'(t) + A(t)\mathbf{u}(t) &= \mathbf{f}(t,\mathbf{u}(t)) \\ \mathbf{u}(0) &= \mathbf{g} \end{aligned} \right..$$

 $\Omega \subset \mathbf{R}^d$ open, bounded with a Lipschitz boundary; T,b,p>0 ,

$$\text{(nIHE)} \qquad \begin{cases} \partial_t u(t,\mathbf{x}) - \triangle u(t,\mathbf{x}) = \frac{\gamma(\mathbf{x})}{(b-u(t,\mathbf{x}))^p} & \text{in } \langle 0,T \rangle \times \Omega \\ \\ u_{\big|\partial\Omega} = 0 \\ \\ u(0,\cdot) = u_0 \end{cases}$$

$$\gamma, u_0 \in \mathcal{C}_0(\Omega) \text{ and } u : [0, T) \times \Omega \longrightarrow \mathbf{R}.$$

 $\Omega \subset \mathbf{R}^d$ open, bounded with a Lipschitz boundary; T,b,p>0 ,

$$\text{(nIHE)} \qquad \begin{cases} \partial_t u(t,\mathbf{x}) - \triangle u(t,\mathbf{x}) = \frac{\gamma(\mathbf{x})}{(b-u(t,\mathbf{x}))^p} & \text{in } \langle 0,T\rangle \times \Omega \\ \\ u_{|\partial\Omega} = 0 \\ \\ u(0,\cdot) = u_0 \end{cases}$$

 $\gamma, u_0 \in C_0(\Omega)$ and $u: [0, T) \times \Omega \longrightarrow \mathbf{R}$.

- $X := C_0(\Omega), \|\cdot\| := \|\cdot\|_{L^{\infty}(\Omega)}$
- $u(t) := u(t, \cdot), u_0 := u_0(\cdot), \gamma := \gamma(\cdot)$
- $A:=-\triangle$, $D(A)=\{v\in \mathrm{H}^1_0(\Omega)\cap X: \triangle v\in X\}\leq X$, is an infinitesimal generator of a C_0 -semigroup of contractions $(T(t))_{t\geqslant 0}$

 $\Omega \subset \mathbf{R}^d$ open, bounded with a Lipschitz boundary; T,b,p>0 ,

$$\text{(nIHE)} \qquad \begin{cases} \partial_t u(t,\mathbf{x}) - \triangle u(t,\mathbf{x}) = \frac{\gamma(\mathbf{x})}{(b-u(t,\mathbf{x}))^p} & \text{in } \langle 0,T \rangle \times \Omega \\ \\ u_{|\partial\Omega} = 0 \\ \\ u(0,\cdot) = u_0 \end{cases}$$

 $\gamma, u_0 \in \mathcal{C}_0(\Omega)$ and $u: [0, T) \times \Omega \longrightarrow \mathbf{R}$.

- $X := C_0(\Omega), \|\cdot\| := \|\cdot\|_{L^{\infty}(\Omega)}$
- $u(t) := u(t, \cdot), u_0 := u_0(\cdot), \gamma := \gamma(\cdot)$
- $A:=-\triangle$, $D(A)=\{v\in \mathrm{H}^1_0(\Omega)\cap X: \triangle v\in X\}\leq X$, is an infinitesimal generator of a C_0 -semigroup of contractions $(T(t))_{t\geqslant 0}$

(ODE-
$$\Phi$$
)
$$\begin{cases} v'(t) = \Phi(t,v(t)) = \frac{\|\gamma\|}{(b-v(t))^p} \\ v(0) = \|\mathbf{u}_0\| \end{cases}$$

 $\Omega \subset \mathbf{R}^d$ open, bounded with a Lipschitz boundary; T, b, p > 0,

$$\text{(nIHE)} \qquad \begin{cases} \partial_t u(t,\mathbf{x}) - \triangle u(t,\mathbf{x}) = \frac{\gamma(\mathbf{x})}{(b-u(t,\mathbf{x}))^p} & \text{in } \langle 0,T \rangle \times \Omega \\ \\ u_{\big|\partial\Omega} = 0 \\ \\ u(0,\cdot) = u_0 \end{cases}$$

 $\gamma, u_0 \in C_0(\Omega)$ and $u: [0, T) \times \Omega \longrightarrow \mathbf{R}$.

- $X := C_0(\Omega), \|\cdot\| := \|\cdot\|_{L^{\infty}(\Omega)}$
- $u(t) := u(t, \cdot), u_0 := u_0(\cdot), \gamma := \gamma(\cdot)$
- $A := -\triangle$, $D(A) = \{v \in H_0^1(\Omega) \cap X : \triangle v \in X\} \leq X$, is an infinitesimal generator of a C_0 -semigroup of contractions $(T(t))_{t\geq 0}$

$$\begin{cases} v'(t) = \Phi(t, v(t)) = \frac{\|\boldsymbol{\gamma}\|}{(b - v(t))^p} \\ v(0) = \|\mathbf{u}_0\| \end{cases}$$

$$\Rightarrow \quad v(t) = b - \left((b - \|\mathbf{u}_0\|)^{p+1} - (p+1)\|\boldsymbol{\gamma}\|t \right)^{\frac{1}{p+1}},$$

exists until time $T_1=\frac{(b-\|\mathbf{u}_0\|)^{p+1}}{(p+1)\|\gamma\|}$ when it quenches

Nonlinear Schrödinger equation $(d \le 3)$ 1/2

$$\begin{cases} \partial_t u(t, \mathbf{x}) - i \triangle u(t, \mathbf{x}) = -\gamma(t) u(t, \mathbf{x}) - g(t) |u(t, \mathbf{x})|^2 u(t, \mathbf{x}) & \text{in } \langle 0, T \rangle \times \mathbf{R}^d \\ u(0, \cdot) = u_0 & \end{cases},$$

 $\gamma, g \in \mathcal{C}([0,T]; \mathbf{C}), u_0 \in \mathcal{L}^2(\mathbf{R}^d; \mathbf{C}).$

Nonlinear Schrödinger equation $(d \leqslant 3)$ 1/2

$$\begin{cases} \partial_t u(t, \mathbf{x}) - i \triangle u(t, \mathbf{x}) = -\gamma(t) u(t, \mathbf{x}) - g(t) |u(t, \mathbf{x})|^2 u(t, \mathbf{x}) & \text{in } \langle 0, T \rangle \times \mathbf{R}^d \\ u(0, \cdot) = u_0 \end{cases},$$

$$\gamma, g \in \mathrm{C}([0,T]; \mathbf{C}), u_0 \in \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}).$$

- $u(t) := u(t, \cdot), u_0 := u_0(\cdot)$
- $A:=-i\triangle$ is an infinitesimal generator of a C_0 -semigroup of unitary operators $(T(t))_{t\geqslant 0}$ on $\mathrm{L}^2(\mathbf{R}^d;\mathbf{C})$ with the domain $D(A)=\mathrm{H}^2(\mathbf{R}^d;\mathbf{C})$

Nonlinear Schrödinger equation $(d \leqslant 3)$ 1/2

$$\begin{cases} \partial_t u(t, \mathbf{x}) - i \triangle u(t, \mathbf{x}) = -\gamma(t) u(t, \mathbf{x}) - g(t) |u(t, \mathbf{x})|^2 u(t, \mathbf{x}) & \text{in } \langle 0, T \rangle \times \mathbf{R}^d \\ u(0, \cdot) = u_0 \end{cases}$$

$$\gamma, g \in \mathcal{C}([0,T]; \mathbf{C}), u_0 \in \mathcal{L}^2(\mathbf{R}^d; \mathbf{C}).$$

- $u(t) := u(t, \cdot), u_0 := u_0(\cdot)$
- $A:=-i\triangle$ is an infinitesimal generator of a C_0 -semigroup of unitary operators $(T(t))_{t\geqslant 0}$ on $\mathrm{L}^2(\mathbf{R}^d;\mathbf{C})$ with the domain $D(A)=\mathrm{H}^2(\mathbf{R}^d;\mathbf{C})$

Problem: the right hand side is not locally Lipshitz in u on $L^2(\mathbf{R}^d)$!

Nonlinear Schrödinger equation $(d \leqslant 3)$ 1/2

$$\begin{cases} \partial_t u(t, \mathbf{x}) - i \triangle u(t, \mathbf{x}) = -\gamma(t) u(t, \mathbf{x}) - g(t) |u(t, \mathbf{x})|^2 u(t, \mathbf{x}) & \text{in } \langle 0, T \rangle \times \mathbf{R}^d \\ u(0, \cdot) = u_0 \end{cases}$$

$$\gamma, g \in \mathcal{C}([0,T]; \mathbf{C}), u_0 \in \mathcal{L}^2(\mathbf{R}^d; \mathbf{C}).$$

- $u(t) := u(t, \cdot), u_0 := u_0(\cdot)$
- $A:=-i\Delta$ is an infinitesimal generator of a C_0 -semigroup of unitary operators $(T(t))_{t\geqslant 0}$ on $\mathrm{L}^2(\mathbf{R}^d;\mathbf{C})$ with the domain $D(A)=\mathrm{H}^2(\mathbf{R}^d;\mathbf{C})$

Problem: the right hand side is not locally Lipshitz in u on $L^2(\mathbf{R}^d)$!

- $X := D(A) = H^2(\mathbf{R}^d; \mathbf{C})$
- $\bullet \ A_{\big|_X}:D(A_{\big|_X})\subseteq X\longrightarrow X$, $A_{\big|_X}{\bf u}:=A{\bf u}$ on the domain

$$D(A_{\big|X}):=\{\mathbf{u}\in D(A)\cap X\ :\ A\mathbf{u}\in X\}\leqslant X\,.$$

is an infinitesimal generator of a C_0 -semigroup of unitary operators $(T(t)_{|_X})_{t\geqslant 0}$ on X.

Nonlinear Schrödinger equation $(d \le 3)$ 2/2

Sobolev emmbeding theorem implies that $\mathsf{w}\mapsto |\mathsf{w}|^2\mathsf{w}$ is locally Lipschitz in X. Under a stronger assumption on the inital data, $\mathsf{u}_0\in X=\mathrm{H}^2(\mathbf{R}^d;\mathbf{C})$, we can apply the main theorem:

Nonlinear Schrödinger equation $(d \leqslant 3)$ 2/2

Sobolev emmbeding theorem implies that $\mathbf{w}\mapsto |\mathbf{w}|^2\mathbf{w}$ is locally Lipschitz in X. Under a stronger assumption on the inital data, $\mathbf{u}_0\in X=\mathrm{H}^2(\mathbf{R}^d;\mathbf{C})$, we can apply the main theorem:

(ODE-
$$\Phi$$
)
$$\begin{cases} v'(t) = \Phi(t, v(t)) = |\gamma(t)|v(t) + |g(t)|v(t)^3 \\ v(0) = \|\mathbf{u}_0\| \end{cases}$$

$$\implies \quad v(t) = \left(e^{-2\int_0^t |\gamma(\tau)|\,d\tau} \left(-2\int_0^t |g(s)| e^{2\int_0^s |\gamma(\tau)|\,d\tau}\,ds + \|\mathbf{u}_0\|^{-2}\right)\right)^{-\frac{1}{2}},$$

that has a blow-up in finite time T_1 .

Nonlinear Schrödinger equation $(d \leqslant 3)$ 2/2

Sobolev emmbeding theorem implies that $\mathsf{w}\mapsto |\mathsf{w}|^2\mathsf{w}$ is locally Lipschitz in X. Under a stronger assumption on the inital data, $\mathsf{u}_0\in X=\mathrm{H}^2(\mathbf{R}^d;\mathbf{C})$, we can apply the main theorem:

(ODE-
$$\Phi$$
)
$$\begin{cases} v'(t) = \Phi(t, v(t)) = |\gamma(t)|v(t) + |g(t)|v(t)^3 \\ v(0) = \|\mathbf{u}_0\| \end{cases}$$

$$\implies v(t) = \left(e^{-2\int_0^t |\gamma(\tau)| \, d\tau} \left(-2\int_0^t |g(s)| e^{2\int_0^s |\gamma(\tau)| \, d\tau} \, ds + \|\mathbf{u}_0\|^{-2}\right)\right)^{-\frac{1}{2}},$$

that has a blow-up in finite time T_1 .

Finally, for $u_0 \in H^2(\mathbf{R}^d; \mathbf{C})$ we have the existence of the unique mild solution $u \in C([0, T_1); H^2(\mathbf{R}^d; \mathbf{C}))$.

Assumptions Main thereom Examples

Generalised damped wave equation

In [K. Veselić, (2006)] this problem has been observed:

$$\rho(x)u_{tt} + \gamma(x)u_t - (d(x)u_{tx})_x - (k(x)u_x)_x = 0 \quad \text{in } \langle 0, \infty \rangle \times \langle a, b \rangle,$$

 ho, γ, d, k non-negative and "smooth enough" and $u: \langle 0, \infty \rangle \times \langle a, b \rangle \longrightarrow \mathbf{C}$.

In [K. Veselić, (2006)] this problem has been observed:

$$\rho(x)u_{tt} + \gamma(x)u_t - (d(x)u_{tx})_x - (k(x)u_x)_x = 0 \quad \text{in } \langle 0, \infty \rangle \times \langle a, b \rangle \,,$$

 ho,γ,d,k non-negative and "smooth enough" and $u:\langle 0,\infty \rangle \times \langle a,b \rangle \longrightarrow {\bf C}.$ Additionally

- $\rho, \gamma \in L^{\infty}(\langle a, b \rangle)$
- $k(x) > k_0 > 0$
- $\bullet \ \sup_{x \in \langle a,b \rangle} \frac{d(x)}{k(x)} < \infty \ \text{and} \ d(b) = 0$

In [K. Veselić, (2006)] this problem has been observed:

$$\rho(x)u_{tt} + \gamma(x)u_t - (d(x)u_{tx})_x - (k(x)u_x)_x = 0 \quad \text{in } \langle 0, \infty \rangle \times \langle a, b \rangle \,,$$

 ho,γ,d,k non-negative and "smooth enough" and $u:\langle 0,\infty \rangle \times \langle a,b \rangle \longrightarrow {\bf C}.$ Additionally

- $\rho, \gamma \in L^{\infty}(\langle a, b \rangle)$
- $k(x) > k_0 > 0$
- $\sup_{x \in \langle a,b \rangle} \frac{d(x)}{k(x)} < \infty$ and d(b) = 0

Boundary conditions: u(t,a) = 0, $u_x(t,b) + \zeta u_t(t,b) = 0$ ($\zeta \ge 0$)

In [K. Veselić, (2006)] this problem has been observed:

$$\rho(x)u_{tt} + \gamma(x)u_t - (d(x)u_{tx})_x - (k(x)u_x)_x = 0 \quad \text{in } \langle 0, \infty \rangle \times \langle a, b \rangle \,,$$

 ho,γ,d,k non-negative and "smooth enough" and $u:\langle 0,\infty \rangle \times \langle a,b \rangle \longrightarrow {\bf C}.$ Additionally

- $\rho, \gamma \in L^{\infty}(\langle a, b \rangle)$
- $k(x) > k_0 > 0$
- $\sup_{x \in \langle a,b \rangle} \frac{d(x)}{k(x)} < \infty$ and d(b) = 0

Boundary conditions: u(t,a)=0, $u_x(t,b)+\zeta u_t(t,b)=0$ ($\zeta\geqslant 0$)

Assume $u \in Y_0 := \{w \in \mathrm{C}^2(\langle a,b \rangle) \cap \mathrm{C}([a,b]) : w(a) = 0\}$. After multiplying equation by $v \in Y_0$, and using partial integration we get

$$\mu(u_{tt}, v) + \theta(u_t, v) + \kappa(u, v) = 0,$$

where

$$\mu(u,v) = \int_a^b \rho u \bar{v} dx,$$

$$\theta(u,v) = \int_a^b (\gamma u \bar{v} + du_x \bar{v}_x) dx + \zeta k(b) u(b) \bar{v}(b),$$

$$\kappa(u,v) = \int_a^b k u_x \bar{v}_x dx.$$

$$\mu(u,v) = \int_a^b \rho u \bar{v} dx,$$

$$\theta(u,v) = \int_a^b (\gamma u \bar{v} + du_x \bar{v}_x) dx + \zeta k(b) u(b) \bar{v}(b),$$

$$\kappa(u,v) = \int_a^b k u_x \bar{v}_x dx.$$

$$\mu(u,v) = \int_{a}^{b} \rho u \bar{v} dx,$$

$$\theta(u,v) = \int_{a}^{b} (\gamma u \bar{v} + du_{x} \bar{v}_{x}) dx + \zeta k(b) u(b) \bar{v}(b),$$

$$\kappa(u,v) = \int_{a}^{b} k u_{x} \bar{v}_{x} dx.$$

- ullet μ , θ and κ are symmetric
- ullet μ , θ are positive and κ is strictly positive
- μ , θ are κ -bounded

$$\mu(u,v) = \int_a^b \rho u \bar{v} dx,$$

$$\theta(u,v) = \int_a^b (\gamma u \bar{v} + du_x \bar{v}_x) dx + \zeta k(b) u(b) \bar{v}(b),$$

$$\kappa(u,v) = \int_a^b k u_x \bar{v}_x dx.$$

- μ , θ and κ are symmetric
- μ , θ are positive and κ is strictly positive
- μ , θ are κ -bounded

$$\langle\,u\mid v\,\rangle_\kappa:=\kappa(u,v)$$
 is a scalar product on Y_0 , and $\|u\|_\kappa:=\sqrt{\kappa(u,u)}$ is a norm. $(Y,\langle\,\cdot\mid\cdot\,\rangle_\kappa)$ completion of Y_0 ... Hilbert space

$$\begin{split} \mu(u,v) &= \int_a^b \rho u \bar{v} dx \,, \\ \theta(u,v) &= \int_a^b (\gamma u \bar{v} + du_x \bar{v}_x) dx + \zeta k(b) u(b) \bar{v}(b) \,, \\ \kappa(u,v) &= \int_a^b k u_x \bar{v}_x dx \,. \end{split}$$

- μ , θ and κ are symmetric
- ullet μ , θ are positive and κ is strictly positive
- μ , θ are κ -bounded

 $\langle u \mid v \rangle_{\kappa} := \kappa(u,v)$ is a scalar product on Y_0 , and $\|u\|_{\kappa} := \sqrt{\kappa(u,u)}$ is a norm. $(Y, \langle \cdot \mid \cdot \rangle_{\kappa})$ completion of Y_0 . . . Hilbert space

Let us extend μ , θ to Y and denote by M, C bounded, selfadjoint and positive operators on Y such that

$$\mu(u,v) = \langle Mu \mid v \rangle_{\kappa}, \quad \theta(u,v) := \langle Cu \mid v \rangle_{\kappa}$$

$$\begin{split} \mu(u,v) &= \int_a^b \rho u \bar{v} dx \,, \\ \theta(u,v) &= \int_a^b (\gamma u \bar{v} + du_x \bar{v}_x) dx + \zeta k(b) u(b) \bar{v}(b) \,, \\ \kappa(u,v) &= \int_a^b k u_x \bar{v}_x dx \,. \end{split}$$

- μ , θ and κ are symmetric
- ullet μ , θ are positive and κ is strictly positive
- μ , θ are κ -bounded

 $\langle u \mid v \rangle_{\kappa} := \kappa(u,v)$ is a scalar product on Y_0 , and $\|u\|_{\kappa} := \sqrt{\kappa(u,u)}$ is a norm. $(Y,\langle \cdot \mid \cdot \rangle_{\kappa})$ completion of Y_0 . . . Hilbert space

Let us extend μ , θ to Y and denote by M, C bounded, selfadjoint and positive operators on Y such that

$$\mu(u,v) = \langle Mu \mid v \rangle_{\kappa}, \quad \theta(u,v) := \langle Cu \mid v \rangle_{\kappa}$$

Our variational formulation reads: find $u \in Y$ such that

$$(\forall v \in Y) \quad \langle Mu_{tt} + Cu_t + u \mid v \rangle_{\kappa} = 0.$$

$$\mu(u,v) = \int_a^b \rho u \bar{v} dx,$$

$$\theta(u,v) = \int_a^b (\gamma u \bar{v} + du_x \bar{v}_x) dx + \zeta k(b) u(b) \bar{v}(b),$$

$$\kappa(u,v) = \int_a^b k u_x \bar{v}_x dx.$$

- μ , θ and κ are symmetric
- ullet μ , θ are positive and κ is strictly positive
- μ , θ are κ -bounded

 $\langle\,u\mid v\,\rangle_\kappa:=\kappa(u,v)$ is a scalar product on Y_0 , and $\|u\|_\kappa:=\sqrt{\kappa(u,u)}$ is a norm. $(Y,\langle\,\cdot\mid\cdot\,\rangle_\kappa)$ completion of Y_0 . . . Hilbert space

Let us extend μ , θ to Y and denote by M, C bounded, selfadjoint and positive operators on Y such that

$$\mu(u,v) = \langle Mu \mid v \rangle_{\kappa}, \quad \theta(u,v) := \langle Cu \mid v \rangle_{\kappa}$$

Our variational formulation reads: find $u \in Y$ such that

$$(\forall v \in Y) \quad \langle Mu_{tt} + Cu_t + u \mid v \rangle_{\kappa} = 0.$$

$$\iff Mu_{tt} + Cu_t + u = 0$$

$$\label{eq:update} \begin{split} \mathbf{u}:[0,\infty\rangle &\longrightarrow Y\text{, } \mathbf{u}(t):=u(t,\cdot)\\ '\text{ is derivative in Hilbert space } Y \end{split}$$

$$\label{eq:u:def} \begin{array}{l} \mathbf{u}: [0, \infty \rangle \longrightarrow Y \text{, } \mathbf{u}(t) := u(t, \cdot) \\ \text{$'$ is derivative in Hilbert space Y} \end{array}$$

$$M\mathbf{u}'' + C\mathbf{u}' + \mathbf{u} = 0$$

$$\label{eq:update} \begin{split} \mathbf{u} : [0, \infty\rangle &\longrightarrow Y, \ \mathbf{u}(t) := u(t, \cdot) \\ ' \ \text{is derivative in Hilbert space} \ Y \end{split}$$

$$M^{\frac{1}{2}}(M^{\frac{1}{2}}u')' + Cu' + u = 0$$

u:
$$[0,\infty)\longrightarrow Y$$
, u(t):= $u(t,\cdot)$ ' is derivative in Hilbert space Y
$$M^{\frac{1}{2}}(M^{\frac{1}{2}}\mathbf{u}')'+C\mathbf{u}'+\mathbf{u}=0$$

$$\mathbf{u}(0)=\mathbf{u}_0$$

$$M^{\frac{1}{2}}\mathbf{u}'(0)=\mathbf{u}_1$$

$$\mbox{\bf u}:[0,\infty\rangle\longrightarrow Y,\mbox{\bf u}(t):=u(t,\cdot)$$
 ' is derivative in Hilbert space Y

$$\begin{split} \mathit{M}^{\frac{1}{2}}(\mathit{M}^{\frac{1}{2}}\mathsf{u}')' + \mathit{C}\mathsf{u}' + \mathsf{u} &= 0\\ \mathsf{u}(0) &= \mathsf{u}_0\\ \mathit{M}^{\frac{1}{2}}\mathsf{u}'(0) &= \mathsf{u}_1 \end{split}$$

$$y_1 := u, y_2 := M^{\frac{1}{2}}u', y := [y_1y_2]^{\top}, y_0 := [u_0u_1]^{\top}$$

$$\label{eq:update} \begin{array}{l} \mathbf{u}:[0,\infty\rangle\longrightarrow Y,\ \mathbf{u}(t):=u(t,\cdot)\\ {}' \ \text{is derivative in Hilbert space} \ Y \end{array}$$

$$\begin{split} \mathit{M}^{\frac{1}{2}}(\mathit{M}^{\frac{1}{2}}\mathsf{u}')' + \mathit{C}\mathsf{u}' + \mathsf{u} &= 0\\ \mathsf{u}(0) &= \mathsf{u}_0\\ \mathit{M}^{\frac{1}{2}}\mathsf{u}'(0) &= \mathsf{u}_1 \end{split}$$

$$\begin{split} \mathbf{y}_1 := \mathbf{u}, \ \mathbf{y}_2 := M^{\frac{1}{2}} \mathbf{u}', \ \mathbf{y} := [\mathbf{y}_1 \mathbf{y}_2]^\top, \ \mathbf{y}_0 := [\mathbf{u}_0 \mathbf{u}_1]^\top \\ \\ \left\{ \begin{array}{l} \mathcal{A}_+ \mathbf{y}' = \mathbf{y} \\ \mathbf{y}(0) = \mathbf{y}_0 \end{array} \right. \end{split}$$

where

$$\mathcal{A}_+ := \begin{bmatrix} -C & -M^{\frac{1}{2}} \\ M^{\frac{1}{2}} & 0 \end{bmatrix}.$$

 $\mbox{\bf u}:[0,\infty\rangle\longrightarrow Y,\mbox{\bf u}(t):=u(t,\cdot)$ ' is derivative in Hilbert space Y

$$\begin{split} \mathit{M}^{\frac{1}{2}}(\mathit{M}^{\frac{1}{2}}\mathsf{u}')' + \mathit{C}\mathsf{u}' + \mathsf{u} &= 0\\ \mathsf{u}(0) &= \mathsf{u}_0\\ \mathit{M}^{\frac{1}{2}}\mathsf{u}'(0) &= \mathsf{u}_1 \end{split}$$

$$\begin{split} \mathbf{y}_1 := \mathbf{u}, \ \mathbf{y}_2 := M^{\frac{1}{2}} \mathbf{u}', \ \mathbf{y} := [\mathbf{y}_1 \mathbf{y}_2]^\top, \ \mathbf{y}_0 := [\mathbf{u}_0 \mathbf{u}_1]^\top \\ \\ \left\{ \begin{aligned} \mathcal{A}_+ \mathbf{y}' &= \mathbf{y} \\ \mathbf{y}(0) &= \mathbf{y}_0 \end{aligned} \right. \end{split}$$

where

$$\mathcal{A}_+ := \begin{bmatrix} -C & -M^{\frac{1}{2}} \\ M^{\frac{1}{2}} & 0 \end{bmatrix}.$$

Problem: A_{+}^{-1} does not exist in general

Generator of C_0 -semigroup

$$\mathcal{A}_+ := \begin{bmatrix} -C & -M^{\frac{1}{2}} \\ M^{\frac{1}{2}} & 0 \end{bmatrix}.$$

- $\mathcal{D}(\mathcal{A}_+) = \mathcal{D}(\mathcal{A}_+^*) = Y \oplus Y$
- $N(\mathcal{A}_+) = N(\mathcal{A}_+^*) = (N(C) \cap N(M)) \oplus N(M)$
- ullet \mathcal{A}_+ is maximal dissipative

Generator of C_0 -semigroup

$$\mathcal{A}_+ := \begin{bmatrix} -C & -M^{\frac{1}{2}} \\ M^{\frac{1}{2}} & 0 \end{bmatrix}.$$

- $\mathcal{D}(\mathcal{A}_+) = \mathcal{D}(\mathcal{A}_+^*) = Y \oplus Y$
- $N(\mathcal{A}_+) = N(\mathcal{A}_+^*) = (N(C) \cap N(M)) \oplus N(M)$
- A₊ is maximal dissipative

Hence, for
$$X:=(N(C)\cap N(M))^{\perp}\oplus N(M)^{\perp}$$

$$A_{+}|_{X}:X\longrightarrow R(A_{+})$$

is maximal dissipative and invertible which implies that

$$\mathcal{A} := (\mathcal{A_+}_{\mid_X})^{-1} : R(\mathcal{A}_+) \subseteq X \longrightarrow X$$

is maximal dissipative, therefore generates a C_0 -semigroup of contractions.

$$\begin{cases} \mathcal{A}_+ \mathbf{y}' = \mathbf{y} \\ \mathbf{y}(0) = \mathbf{y}_0 \end{cases}$$

$$\begin{cases} y' = Ay \\ y(0) = y_0 \end{cases}$$

$$\begin{cases} y' = Ay \\ y(0) = y_0 \end{cases}$$

If $y_0 \in R(\mathcal{A}_+)$ there exists the unique classical solution $y \in C([0,\infty);X) \cap C(\langle 0,\infty\rangle;R(\mathcal{A}_+)) \cap C^2(\langle 0,\infty\rangle;X)$ of the system above.

$$\begin{cases} y' = Ay \\ y(0) = y_0 \end{cases}$$

If $y_0 \in R(\mathcal{A}_+)$ there exists the unique classical solution $y \in C([0,\infty);X) \cap C(\langle 0,\infty\rangle;R(\mathcal{A}_+)) \cap C^2(\langle 0,\infty\rangle;X)$ of the system above.

Finally,
$$\mathbf{y}_1 \in \mathrm{C}([0,\infty); (N(C)\cap N(M))^\perp) \cap \mathrm{C}(\langle 0,\infty\rangle; R(C) + R(M^{\frac{1}{2}})) \cap \mathrm{C}^1(\langle 0,\infty\rangle; (N(C)\cap N(M))^\perp)$$
 satisfies

 $i) M^{\frac{1}{2}} \mathbf{y}_{1}' \in \mathcal{C}([0,\infty); N(M)^{\perp}) \cap \mathcal{C}(\langle 0,\infty\rangle; R(M^{\frac{1}{2}})) \cap \mathcal{C}^{1}(\langle 0,\infty\rangle; N(M)^{\perp})$

$$\begin{cases} M^{\frac{1}{2}}(M^{\frac{1}{2}}y'_1)' + Cy'_1 + y_1 = 0 \\ y_1(0) = u_0 \\ M^{\frac{1}{2}}y'_1(0) = u_1 \end{cases}$$

Good luck DEUTSCHLAND

