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Semilinear abstract Cauchy problem

(X, - |I) Banach space, T' > 0,

(ACP) {u,(tHA”(t): (t,u(t)) in(0,T)
u(0) =g
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Semilinear abstract Cauchy problem

(X, - |I) Banach space, T' > 0,

{ u'(t) + Au(t) = f(t,u(t)) in (0,T)
g

(ACP) «(0)

e A:D(A) C X — X generator of a Co-semigroup (7'(t))¢=0 on X, and
M > 1, w > 0 such that

(Vt=0) Tl < Me™,

gE X,
f:]0,7] x X — X Borel measurable and locally Lipschitz in u:
3vel®)(Vr>0)(Vw,z € Bx[0,7])

If(t,2) — £t W)l < W(r)llz—w[| (ae t€[0,T]),

e u:[0,7) — X is the unknown.
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Semilinear abstract Cauchy problem

(X, |l - ||) Banach space, T > 0,

(ACP) {UI(MA"(”: (t,u(t)) in(0,T)
u(0) =g
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Semilinear abstract Cauchy problem

(X, |l - II) Banach space, T' > 0,

{ u'(t) + Au(t) = f(t,u(t)) in (0,T)
g

(ACP) “0)

u € C([0,8); X) is called a mild solution of (ACP) on [0, S) if

(CS) u(t) =T(t)g +/0 T(t — s)f(s,u(s))ds, te]0,S5).
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Semilinear abstract Cauchy problem

(X, |l - II) Banach space, T' > 0,

{ u'(t) + Au(t) = f(t,u(t)) in (0,T)
g

(ACP) “0)

u € C([0,8); X) is called a mild solution of (ACP) on [0, S) if

(CS) u(t) =T(t)g +/0 T(t — s)f(s,u(s))ds, te]0,S5).

Standard theory [Pazy (1983), Cazenave-Haraux (1998)]: existence and
uniqueness of the mild solution

Different apporach (based on [Tartar (2008), Burazin (2008)]): estimate on the
mild solution and its time of existence
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Local bound and ODE

Theorem

The function ®(t, u) := supy <, If(t, W), t € [0,T], u € R{ is (the smallest)
local bound for f:

(Vr >0)(Yw € Bx[0,7]) |If(t,w)] < ®(t,r) (ae. (t,w)€[0,T] % X),
and has the following properties:

o ® € Lig.([0, 7] x Rg) ;
ed >0 and ®(t,-) is nondecresing, t € [0,T];

e & js locally Lipschitz in u.
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Local bound and ODE

Theorem

The function ®(t, u) := supy <, If(t, W), t € [0,T], u € R{ is (the smallest)
local bound for f:

(Vr >0)(Yw € Bx[0,7]) |If(t,w)] < ®(t,r) (ae. (t,w)€[0,T] % X),
and has the following properties:

o ® € Lig.([0, 7] x Rg) ;
ed >0 and ®(t,-) is nondecresing, t € [0,T];

e & js locally Lipschitz in u.

The properties of the function ® guarantee that the Cauchy problem

{ V() = e “t(t, Me“tu(t))

O _
(ODE-2) 0(0) = [g]

I

has the unique maximal solutions v € W2°([0, S)), for some S > 0 (v is

Lipschitz continuous on every [a,b] C [0, .5)).
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Recall
t

(CS) u(t) =T(t)g +/ T(t— s)f(s,u(s))ds, te]0,S).

0
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Main theorem

Recall

(CS) u(t) =T(t)g+ /Ot T(t— s)f(s,u(s))ds, te]0,S).

Theorem

Let the previous assumptions hold, and assume that v € W}O’;”([o, S)) is the
maximal solution of (ODE-®) for some S € (0,T]. Then there exists the
unique mild solution on [0, S), u € C([0, S); X), of the problem (ACP).

Additionally, u satisfies the estimate

(E) lu(®ll < Me**o(t) telo,S).
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Main theorem

Recall

(CS) u(t) =T(t)g+ /Ot T(t— s)f(s,u(s))ds, te]0,S).

Theorem

Let the previous assumptions hold, and assume that v € W}O’;”([o, S)) is the
maximal solution of (ODE-®) for some S € (0,T]. Then there exists the
unique mild solution on [0, S), u € C([0, S); X), of the problem (ACP).

Additionally, u satisfies the estimate

(E) lu(®ll < Me**o(t) telo,S).

Sketch of the proof. Uniqueness: uq,us € C([0,5); X) two mild solutions,

lur (@) —u2(®)[l < /O IT(t = )l cx) [If (s, ui(s)) — f(s,u2(s))[ ds
< Me‘“’t/0 If(s,u1(s)) — f(s,u2(s))|l ds

t
< Me“S | os) / lus(s) — ua(s)]| ds.
0
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Sketch of the proof: Existence

Picards’s iterations:
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Sketch of the proof: Existence

Picards's iterations: ug € C([0,S]; X) such that |luo(t)|| < Me**v(t),
t€[0,5],

(CS,) un(t) :=T(t)g + /Ot T(t— s)f(s,un—1(s))ds, t€]0,S).
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Sketch of the proof: Existence

Picards's iterations: ug € C([0,S]; X) such that |luo(t)|| < Me**v(t),
t€[0,5],

(CS,) un(t) :=T(t)g + /Ot T(t— s)f(s,un—1(s))ds, t€]0,S).

We have
t
lus ()] < IT(0)ell + / IT(t — 5)f(s, uos))]| ds
t
< Mg + Me*t / e[| (s, un(s))]| ds
0

t
< Me! <Hg|| +/ e~ B (s, Me“*u(s)) ds)
0
< Me*'o(t),
and inductively we have for every n € N the estimate |Ju, ()| < Me“ v(t),

t €[0,S).

7118



Sketch of the proof: Existence

Picards's iterations: ug € C([0,S]; X) such that |luo(t)|| < Me**v(t),
t€[0,5],

(CS,) un(t) :=T(t)g + /Ot T(t— s)f(s,un—1(s))ds, t€]0,S).

We have
t
[ur @) < I1T(t)ell +/O IT(t = s)f(s,uo(s))l ds
t
< Mgl + M [ e (s, un(s)] ds
0
t
< M <Hg|| +/ e~ B (s, Me“*u(s)) ds)
0
< Me*'o(t),
and inductively we have for every n € N the estimate |Ju, ()| < Me“ v(t),
t €[0,S).

After passing to the limit as n — oo in (CS,,), we get the result.
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e Instead of a function defined on the whole [0,7] x X, we can consider a
function f : [0,7] x Bx(0,b) — X, for some b > 0. v cannot blow-up, but it
can quench when v approaches b.

e The mild solution of (ACP) exists at least as long as the solution v of (ODE-®).

e The best possible estimate of type (E) will be given by the smallest possible
local bound for f, i.e. the function ®.

e The estimate (E) is not optimal in general!

e The main theorem can be stated also for non-autonomous (evolution) abstract
systems

(eACP) w(0)

{ u'(t) + A(t)u(t) = f(t, u(t)) .
g
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Nonlinear heat equation

Q c R? open, bounded with a Lipschitz boundary; T, b,p > 0,

— Au(t,x) = 77()() in
Oru(t,x) — Au(t, x) b= ult. )" (0,T) x Q
(nlHE) u -0 ,
log
u(0,-) = ug

v, up € Co(R2) and u: [0,T) x @ — R.
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Nonlinear heat equation

Q c R? open, bounded with a Lipschitz boundary; T, b,p > 0,

— Au(t,x) = 77()() in
Oru(t,x) — Au(t, x) b= ult. )" (0,T) x Q
(nIHE) u -0 ,
log
u(0,-) = ug

v, up € Co(R2) and u: [0,T) x @ — R.

o X :=Co(Q), Il ==1l"llLe(e

o u(t) :==u(t,-), uo :=uo(-), v := (")

e A:= N, DA)={vcH}(QNX : Ave X} <X, is an infinitesimal
generator of a Co-semigroup of contractions (T'(t))+>0
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Nonlinear heat equation

Q c R? open, bounded with a Lipschitz boundary; T, b,p > 0,

— Au(t,x) = 77()() in
Oru(t,x) — Au(t, x) b= ult. )" (0,T) x Q
(nIHE) u -0 ,
log
u(0,-) = ug

v, up € Co(R2) and u: [0,T) x @ — R.

o X :=Co(Q), Il ==1l"llLe(e

o u(t) :==u(t,-), uo :=uo(-), v := (")

e A:= N, DA)={vcH}(QNX : Ave X} <X, is an infinitesimal
generator of a Co-semigroup of contractions (T'(t))+>0

(1) = _
(ODE-9) {UU)¢awa»

(b—w(®)?
©(0) = [|uol|
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Nonlinear heat equation

Q c R? open, bounded with a Lipschitz boundary; T, b,p > 0,

— Au(t,x) = o) in
Oru(t,x) — Au(t, x) b= ult. )" (0,T) x Q
(nIHE) A ,
log
u(0,+) = uo

v, up € Co(R2) and u: [0,T) x @ — R.

o X :=Co(Q), Il ==1l"llLe(e

o u(t) :==u(t,-), uo :=uo(-), v := (")

e A:= N, DA)={vcH}(QNX : Ave X} <X, is an infinitesimal
generator of a Co-semigroup of contractions (T'(t))+>0

(b—w(®)?

(1) = _
(ODE-9) {UU)¢awa»

©(0) = [|uol|

= o®) =b— (O~ llul)*™ = o+ Dlvlit)

(o—lluo P!

BT when it quenches

exists until time 77 =
Q118



Nonlinear Schrodinger equation (d < 3) 1/2

I

{&u(t, x) —iAu(t,x) = —y(t)u(t,x) — g(t)|u(t,x)[*u(t,x) in (0,T) x R
u(0,-) = uo

7,9 € C([0,T]; C), uo € L*(R%; C).
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Nonlinear Schrodinger equation (d < 3) 1/2

I

{&u(t, x) —iAu(t,x) = —y(t)u(t,x) — g(t)|u(t,x)[*u(t,x) in (0,T) x R
u(0,-) = uo
7.9 € C((0,T);C), up € L*(R*; C).

o u(t) :=ul(t,-), uo :=uo()
e A := —i/A is an infinitesimal generator of a Cy-semigroup of unitary operators
(T(t))es0 on L2(R?; C) with the domain D(A) = H*(R%; C)
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Nonlinear Schrodinger equation (d < 3) 1/2

{&u(t, x) —iAu(t,x) = —y(t)u(t,x) — g(t)|u(t,x)[*u(t,x) in (0,T) x R
u(0,-) = uo '
7.9 € C((0,T);C), up € L*(R*; C).

o u(t) :=ul(t,-), uo :=uo()
e A := —i/A is an infinitesimal generator of a Cy-semigroup of unitary operators
(T(t))es0 on L2(R?; C) with the domain D(A) = H*(R%; C)

Problem: the right hand side is not locally Lipshitz in u on LQ(Rd)!
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Nonlinear Schrodinger equation (d < 3) 1/2

I

{atu(t, x) —iAu(t,x) = —y(t)u(t,x) — g(t)|u(t,x)[*u(t,x) in (0,T) x R
u(0,-) = uo
7.9 € C((0,T);C), up € L*(R*; C).

u(t) :==u(t,-), uo := uo(:)
e A := —i/A is an infinitesimal generator of a Cy-semigroup of unitary operators
(T(t))es0 on L2(R?; C) with the domain D(A) = H*(R%; C)

Problem: the right hand side is not locally Lipshitz in u on LZ(Rd)!

X := D(A) = H*(R%; C)
A|X : D(A|X) CX — X, A|Xu := Au on the domain

D(A|)={u€DA)NX : Aue X}<X.

is an infinitesimal generator of a Cy-semigroup of unitary operators
(T(t)|X)t>0 on X.
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Nonlinear Schrodinger equation (d < 3) 2/2

Sobolev emmbeding theorem implies that w — |w|?w is locally Lipschitz in X.
Under a stronger assumption on the inital data, up € X = H?(R%; C), we can
apply the main theorem:
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Nonlinear Schrodinger equation (d < 3) 2/2

Sobolev emmbeding theorem implies that w — |w|?w is locally Lipschitz in X.
Under a stronger assumption on the inital data, up € X = H?(R%; C), we can
apply the main theorem:

(ODE-®) {«/(t) = 0(t,0(1) = O + lg®)o(t)’

1
2

t
— v(t) — (e—2fot [v(T)|dT (_2/ |g(s)|€2f° [y(m)| dr ds + ||UO||_2>> ,
0

that has a blow-up in finite time 77.
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Nonlinear Schrodinger equation (d < 3) 2/2

Sobolev emmbeding theorem implies that w — |w|?w is locally Lipschitz in X.
Under a stronger assumption on the inital data, up € X = H?(R%; C), we can
apply the main theorem:

(ODE-®) {«/(t) = 0(t,0(1) = O + lg®)o(t)’

t
— v(t) — (e—2fot [v(T)|dT (_2/ |g(s)|€2f° [y(m)| dr ds + ||UO||_2>> ,
0

that has a blow-up in finite time 77.
Finally, for ug € H?(R%; C) we have the existence of the unique mild solution
u € C([0,T1); H*(R?; C)).

Nl
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Semilinear abstract Cauchy problem
Assumptions
Main thereom
Examples

Generalised damped wave equation
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Generalised damped wave equation in 1D

In [K. Veseli¢, (2006)] this problem has been observed:
p(@)use +y(@)ur — (d(@)uta)e — (k(2)tz)e =0 in (0,00) x (a,b),
0,7, d, k non-negative and "smooth enough” and u : (0,0) x {(a,b) — C.
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Generalised damped wave equation in 1D

In [K. Veseli¢, (2006)] this problem has been observed:

p(@)uee +y(@)ur — (d(2)uiz)e — (k(z)uz)e =0 in (0,00) X (a,b),
0,7, d, k non-negative and "smooth enough” and u : (0,0) x {(a,b) — C.
Additionally

* p,y € L=({a, b))
o k(z) >ko>0
® SUD,c(qp) % < oo and d(b) =0
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Generalised damped wave equation in 1D

In [K. Veseli¢, (2006)] this problem has been observed:
plx)ue +y(@)ue = (d(@)utz)e — (k(@)us)e =0 in (0,00) X (a,b),

0,7, d, k non-negative and "smooth enough” and u : (0,0) x {(a,b) — C.
Additionally

e p,v € L7((a, b))

e k(z)>ko>0

® SUD,c(qp) % < oo and d(b) =0

Boundary conditions: u(t,a) = 0, us(t,b) + Cu(t,b) =0 (¢ = 0)
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Generalised damped wave equation in 1D

In [K. Veseli¢, (2006)] this problem has been observed:
plx)ue +y(@)ue = (d(@)utz)e — (k(@)us)e =0 in (0,00) X (a,b),

0,7, d, k non-negative and "smooth enough” and u : (0,0) x {(a,b) — C.
Additionally

* p,y € L=({a, b))
o k(z) >ko>0
® SUD,c(qp) % < oo and d(b) =0

Boundary conditions: u(t,a) = 0, us(t,b) + Cu(t,b) =0 (¢ = 0)

Assume u € Yy := {w € C*({(a, b)) N C([a,b]) : w(a) = 0}. After multiplying
equation by v € Yo, and using partial integration we get

plute,v) + 0(ut, v) + £(u,v) =0,

where .
p(u,v) = / puvdz,

b
O(u,v) = / (yuD + duaUz)dx + Ck(b)u(b)u(d),

b
fc(u,v):/ kuyUgdx .
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b
puvdx

b
kg Uapdx .

wluo) = [

ab
O, v) = / (U + duate)dz + Ch(b)u(b)5(b),
K(u, v) :/

141 18



w(u,v) = / puvdx ,
ab
O, v) = / (YU + duats )dz + Ch(B)u(b)a(b),

b
/-@(u,v):/ kuz v dx .

e 4, 0 and k are symmetric
e 1, O are positive and & is strictly positive
e 4, 0 are k-bounded
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w(u,v) = / puvdx ,
ab
O, v) = / (YU + duats )dz + Ch(B)u(b)a(b),

b
/-@(u,v):/ kuz v dx .

e 4, 0 and k are symmetric
e 1, O are positive and & is strictly positive
e 4, 0 are k-bounded

(u]v)w = k(u,v) is a scalar product on Yo, and ||ul|x := \/k(u,u) is a norm.
(Y, (-] -)x) completion of Yy ... Hilbert space
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w(u,v) = / puvdx ,
ab
O, v) = / (YU + duats )dz + Ch(B)u(b)a(b),

b
H(u,v):/ kuz v dx .

e 4, 0 and k are symmetric
e 1, O are positive and & is strictly positive
e 4, 0 are k-bounded

(u]v)w = k(u,v) is a scalar product on Yo, and ||ul|x := \/k(u,u) is a norm.
(Y, (-] -)x) completion of Yy ... Hilbert space

Let us extend y, 6 to Y and denote by M, C' bounded, selfadjoint and positive
operators on Y such that

w(u,v) = (Mu |v)e, O0(u,v):=(Cul|v)e
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(u]v)w = k(u,v) is a scalar product on Yo, and ||ul|x := \/k(u,u) is a norm.
(Y, (-] -)x) completion of Yy ... Hilbert space

Let us extend y, 6 to Y and denote by M, C' bounded, selfadjoint and positive
operators on Y such that

w(u,v) = (Mu |v)e, O0(u,v):=(Cul|v)e

Our variational formulation reads: find © € Y such that

VveY) (Muw+Cur+ulv)e.=0.
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w(u,v) = / puvdx ,
ab
O, v) = / (YU + duats )dz + Ch(B)u(b)a(b),

b
H(u,v):/ kuz v dx .

e 4, 0 and k are symmetric
e 1, O are positive and & is strictly positive
e 4, 0 are k-bounded

(u]v)w = k(u,v) is a scalar product on Yo, and ||ul|x := \/k(u,u) is a norm.
(Y, (-] -)x) completion of Yy ... Hilbert space

Let us extend y, 6 to Y and denote by M, C' bounded, selfadjoint and positive
operators on Y such that

w(u,v) = (Mu |v)e, O0(u,v):=(Cul|v)e

Our variational formulation reads: find © € Y such that

VveY) (Muw+Cur+ulv)e.=0.

<~ Muw+Cur+u=0
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Abstract setting

u:[0,00) — Y, u(t) :=u(t,-)
"is derivative in Hilbert space Y’
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Abstract setting

u:[0,00) — Y, u(t) :=u(t,-)
"is derivative in Hilbert space Y

M3 (M?u') +Cu +u=0
u(0) = uo
M%u’(O) =u

1
yi:=u,y2:= M2u', y = [y1y2] ", yo := [uou] "

151 18



Abstract setting

u:[0,00) — Y, u(t) :=u(t,-)
"is derivative in Hilbert space Y

M3 (M?u') +Cu +u=0
u(0) =up
M%u’(O) =u
yii=u,y2 = M2u', y == [y1ya] ", yo == [uour]
Ay =y
y(0) =yo ’

_C _M?
el )

where
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Abstract setting

u:[0,00) — Y, u(t) :=u(t,-)
"is derivative in Hilbert space Y

M3 (M?u') +Cu +u=0
u(0) = uo
M%u’(O) =u
yii=u,y2 = M2u', y == [y1ya] ", yo == [uour]
Ay =y
y(0) =yo ’

.A+ = |:_C _M2:| .

where
Mz 0

Problem: .A_T_l does not exist in general
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Generator of Cyp-semigroup

1

I e Vs
ac=[ o5 .

e D(A;) =D(A) =Y &Y

o N(Ay) = N(AL) = (N(C) N N(M)) & N (M)
e A, is maximal dissipative
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Generator of Cyp-semigroup

|-c —mz
aefig .

e D(A) =D(A}) =Y &Y
o N(Ay) = N(AL) = (N(C) N N(M)) & N (M)
e A, is maximal dissipative

Hence, for X := (N(C)NN(M))* @ N(M)*
A+|X : X — R(AL)
is maximal dissipative and invertible which implies that
A= (A+|X)71 tRAHCX — X

is maximal dissipative, therefore generates a Cy-semigroup of contractions.
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Final result

Ay =y
y(0) =yo
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Final result

y = Ay
Y(O) = Yo
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Final result

y = Ay
y(0) =yo
If yo € R(A4+) there exists the unique classical solution
y € C([0,00); X) N C({0, 00); R(A4)) N C?((0,00); X) of the system above.
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Final result

y = Ay
Y(O) = Yo

If yo € R(A4) there exists the unique classical solution

y € C([0,00); X) N C((0,0); R(A+)) N C%({0, 00); X) of the system above.
(€) N N(M)) )N C((0, 00); R(C) + R(M %)) N
N+ ) satlsﬁes

)N (M) N C ({0, 00); N(M)*)

Flnally y1 € C([0, 00); (N
N(M
N(M
{Mé M2y1 +Cyi4+y1=0

C((0,00); (N(C) N
i) M2y} € C([0, 00);
)

y1(0) = uo
M3y;(0) = u
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Good luck DEUTSCH

L

FIFA WORLD CUP
Grasil
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