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Motivation: fully nonlinear mean field game



−∂tu = F (Lu) + f(m) on [0, T ]× Rd,

u(T ) = g
(
m(T )

)
on Rd,

∂tm = L∗(F ′(Lu)m) on [0, T ]× Rd,

m(0) = m0 on Rd.

• Players control the time rate θ of a Lévy process (L) – how fast they move

along a (random) path of the process.

• The game’s outcome is determined by the distribution m of the players. Their

movement — towards maximizing their own individual chances u — changes

that distribution, leading to more movement, ad nauseam.

• m is described by a Fokker–Planck equation (when u is fixed)

• We need at least existence and stability, and ideally also uniqueness for m

with arbitrary fixed u to solve the game (u,m).



Lévy operators

• Lévy ⇔ maximum principle

• Lévy–Khintchin–Courrège formula: L = local + nonlocal

Lφ(x) = c · ∇φ(x) + tr
(
aaTD2φ(x)

)
+

∫
Rd

(
φ(x+ z)− φ(x)− 1B1 (z) z · ∇φ(x)

)
ν(dz).

∫
Rd

min(1, |x|2) ν(dy) <∞, ν({0}) = 0

• Examples:

local: ∆,
d

dx
, c · ∇

nonlocal: (−∆)su = F−1
(
|ξ|2s û(ξ)

)
, s ∈ (0, 1)

nonlocal, bounded:
u(x+ h)− u(x)

h
,

u(x− h) + u(x+ h)− 2u(x)

h2

• generator of a Lévy process (iid stationary increments) – a “diffusion”.



Fokker–Planck–Kolmogorov

∂tm = L∗(bm) on [0, T ]× Rd,

m(0) = m0 on Rd.
(FPK)

b = F ′(Lu)

• b ∈ C
(
[0, T ]× Rd

)
and b ≥ 0

• Natural space to look for solutions: m ∈ C
(
[0, T ],P(Rd)

)
:

m(t)[φ(t)] = m0[φ(0)] +

∫ t

0
m(τ)

[
∂tφ(τ) + b(τ)(Lφ)(τ)

]
dτ.

• Existence – setM of solutions is convex, compact and non-empty

• Stability – if bn → b locally uniformly, thenMn →M as closed sets

(“K − lim sup”)

• Uniqueness – by the Holmgren method



Preliminaries

• Even if m0 is compactly supported, the action of an arbitrary Lévy measure ν

may produce a solution – a probabilistic measure m(t) – with unbounded

(integer) moments. This is a purely nonlocal phenomenon.

• Recall Prokhorov: pre-compactness of probability measures ⇔ tightness.

• Also: tightness of Π ⊂ P(Rd) ⇔ ∃ V : Rd :→ [0,∞) such that

lim|x|→∞ V (x) =∞ and ∀ m ∈ Π m[V ] < 1.

Definition
A real function V ∈ C2(Rd) is a Lyapunov function if V (x) = V0

(√
1 + |x|2

)
for

some subadditive, non-decreasing function V0 : [0,∞)→ [0,∞) such that

‖V ′0‖∞, ‖V ′′0 ‖∞ ≤ 1, and limx→∞ V0(x) =∞.

Lemma
A set Π ⊂ P(Rd) is tight/pre-compact if and only if there exists a Lyapunov

function V such that m[V ] ≤ 1 for every m ∈ Π.

Remark
We can also apply this lemma to tails ν1Bc

1(0)
of Lévy measures (they’re bounded).



Existence

Theorem
Assume L is a Lévy operator, m0 ∈ P(Rd) and 0 ≤ b <∞ is continuous. The set

M of solutions is convex, compact, and non-empty. Moreover, there are constants

c1, c2 such that for every m ∈M,

sup
t∈[0,T ]

m(t)[V ] ≤ c1, sup
0<|t−s|≤T

‖m(t)−m(s)‖0√
|t− s|

≤ c2,

where V is a Lyapunov function such that m0[V ], ‖LV ‖∞ <∞.

Proof.
• Step 1: Convexity by linearity. Bounds by Lyapunov. Compactness by AA.

• Step 2: Construct a sequence of approximations, where Lε are bounded Lévy

operators, uniform w.r.t. the Lyapunov function, and mε0, b
ε are

regularizations (use Banach FPT). These solution are in L1(Rd)

• Step 3: Show that the solutions are nonnegative and the mass is conserved.

• Step 4: Compactness of approximations in P(Rd) by Lyapunov+AA. Each

limit is a solution.



Stability

Lemma
Assume L is a Lévy operator, m0 ∈ P(Rd) and {bn, b}n∈N are non-negative,

continuous and uniformly bounded. Let {Mn,M} be the corresponding sets of

solutions with m0 as initial conditions. If mn ∈Mn for every n ∈ N and

bn(t)→ b(t) uniformly on compact sets in Rd for every t ∈ [0,∞), then there

exists a subsequence {mnk} and m ∈M such that mnk → m in C
(
[0, T ],P(Rd)

)
.

Remark
The long text above means: if bn → b (locally uniformly in x) and all other things

are equal, then Mn →M (in the sense of Kuratowski/Hausdorff).

Remark
In case Mn = {mn} (i.e. uniqueness), we have mn → m in C

(
[0, T ],P(Rd)

)
.



Uniqueness – Holmgren method

Prove existence for the dual problem (backward in time) ∂tw = −bLw, on [0, τ ]× Rd

w(τ) = ψ ∈ C∞c (Rd) on Rd

and then

(m1 −m2)[ψ] = (m1 −m2)[w(0)] +

∫ t

0
(m1 −m2)[∂tw + bLw] ds = 0.



Uniqueness — comments

• We don’t expect uniquness to always hold. Consider

∂tm(t, x) = ∂x
(
b(t, x)m(t, x)

)
in [0, T ]× R.

If b is continuous, but not Lipschitz-continuous, we may not have uniqueness

• But if b ≥ κ > 0 is uniformly continuous and Hölder in x for each t, then

∂tm(t, x) = ∆
(
b(t, x)m(t, x)

)
has unique solutions [Lunardi + Holmgren method (next slide)]

• Also, if b ≥ κ > 0 is continuous and Hölder in x for each t, then

∂tm(t, x) = −(−∆)s
(
b(t, x)m(t, x)

)
has unique solutions (the operator can be slightly more general) [Mikulevičius

and Pragarauskas + Holmgren]

• What can we say if either b = 0 somewhere or the operator is degenerate (in

the sense of the lack of regularization properties of the semigroup)?



Uniqueness — degenerate case

Let 2σ ∈ (0, 1) and for a constant K ≥ 0 and every p ∈ (2σ, 1], r ∈ (0, 1),

Lφ(x) =

∫
Rd

(
φ(x+ z)− φ(x)

)
ν(dz),

∫
B1

(
1 ∧
|z|p

rp

)
ν(dz) ≤

K

p− 2σ
r−2σ

• We employ visosity solutions techniques (even though, it is hardly a fully

nonlinear problem).

• After long computations we obtain existence of sufficiently regular w.

• We hit a restriction: b ∈ B([0,∞), Cβb (Rd)) for β > 2σ + 2σ
1−2σ

; but that

means 1 > 2σ + 2σ
1−2σ

and so σ < 3−
√
5

4
≈ 1

5
.

• If the measure is symmetric near {0}, then β > 2σ + 2σ
1−σ , σ <

5−
√
17

4
≈ 2

9
.



Happy Birthday, Nenad!

Sto lat, sto lat

Niech żyje, żyje nam

Sto lat, sto lat

Niech żyje, żyje nam

Jeszcze raz, jeszcze raz

Niech żyje, żyje nam

Niech żyje nam

Niech mu gwiazdka pomyślności

Nigdy nie zagaśnie

Nigdy nie zagaśnie

A kto z nami nie wypije

Niech go piorun trzaśnie

A kto z nami nie wypije

Niech go piorun trzaśnie


