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Motivation: fully nonlinear mean field game

—0iu = F(Lu) + f(m) on [0,T] x R?,
uw(T) = g(m(T)) on R?,
Om = L*(F'(Lu) m) on [0,T] x R?,

m(0) = mo on R,

Players control the time rate 0 of a Lévy process (£) — how fast they move

along a (random) path of the process.

The game’s outcome is determined by the distribution m of the players. Their
movement — towards maximizing their own individual chances u — changes
that distribution, leading to more movement, ad nauseam.

m is described by a Fokker—Planck equation (when u is fixed)

We need at least existence and stability, and ideally also uniqueness for m

with arbitrary fixed u to solve the game (u, m).
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/\ Lévy operators

® [évy < maximum principle

® Lévy—Khintchin—Courrége formula: £ = local 4+ nonlocal

Lo(z) = c-Vp(x) + tr (aaTD2®(a:))+/H;d (o(a: +z)—¢(x) —1p,(2)z- V(j)(x)) v(dz).

Agd min(1, |z|?) v(dy) < oo, v({0}) =0

® Examples:

local: A, —, ¢V
dx
nonlocal: (—A)su = F~1 (|£|25 a(g)), s €(0,1)
nonlocal, bounded: u(z + h’i —u(@) , ulz—h)+ u(hx2+ h) — 2u(z)

® generator of a Lévy process (iid stationary increments) — a “diffusion”.



Fokker—Planck—Kolmogorov

Oym = L (bm) on [0,T] x R,
m(0) = mo on RZ.
b= F'(Lu)
be C([0,T] x RY) and b >0

Natural space to look for solutions: m € C([0, T], P(R%)):

t
m(t)[p(t)] = mo[¢(0)] +/0 m(7) [8:(7) + b(T)(L)()] dr.

Existence — set M of solutions is convex, compact and non-empty
Stability — if b, — b locally uniformly, then M,, — M as closed sets
(“K — limsup”)

Uniqueness — by the Holmgren method

(FPK)
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/\ Preliminaries

® Even if mg is compactly supported, the action of an arbitrary Lévy measure v
may produce a solution — a probabilistic measure m(t) — with unbounded

(integer) moments. This is a purely nonlocal phenomenon.
® Recall Prokhorov: pre-compactness of probability measures <> tightness.
® Also: tightness of II C P(R?) < 3 V : R? :— [0, 0c0) such that
lim| 400 V(%) = 00 and V m € T m[V] < 1.
Definition
A real function V € C?(R%) is a Lyapunov function if V(z) = Vp(y/1 + |]2) for
some subadditive, non-decreasing function Vp : [0,00) — [0, 00) such that
V4 lloos 1V oo < 1, and limg 00 Vo(z) = oo.
Lemma

A set TI C P(RY) is tight/pre-compact if and only if there exists a Lyapunov
function V' such that m[V] < 1 for every m € II.

Remark

We can also apply this lemma to tails I/]le(O) of Lévy measures (they’re bounded).
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/\ Existence

Theorem
Assume L is a Lévy operator, mg € P(]Rd) and 0 < b < oo is continuous. The set
M of solutions is convex, compact, and non-empty. Moreover, there are constants

c1, ca such that for every m € M,

m(t) —m(s)llo _

= )

sup m(t)[V] < e,
t€[0,T) 0<|t—s|<T [t — s

where V' is a Lyapunov function such that mo[V],||LV]co < 0.
Proof.
® Step 1: Convexity by linearity. Bounds by Lyapunov. Compactness by AA.

® Step 2: Construct a sequence of approximations, where £¢ are bounded Lévy
operators, uniform w.r.t. the Lyapunov function, and mg, b* are

regularizations (use Banach FPT). These solution are in L!(R%)
® Step 3: Show that the solutions are nonnegative and the mass is conserved.

® Step 4: Compactness of approximations in P(R%) by Lyapunov+AA. Each

limit is a solution.
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/\ Stability

Lemma

Assume L is a Lévy operator, mg € P(R?) and {bn,b}necn are non-negative,
continuous and uniformly bounded. Let { My, M} be the corresponding sets of
solutions with mo as initial conditions. If myn € My, for every n € N and

bn (t) — b(t) uniformly on compact sets in R? for every t € [0,00), then there
exists a subsequence {mn, } and m € M such that mn, — m in C([0,T], P(R%)).

Remark
The long text above means: if b — b (locally uniformly in x) and all other things
are equal, then My, — M (in the sense of Kuratowski/Hausdorff).

Remark
In case Mpn = {mn} (i.e. uniqueness), we have mn — m in C([0,T], P(R)).
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/ \ Uniqueness — Holmgren method
Prove existence for the dual problem (backward in time)
orw = —b Lw, on [0, 7] x RY
{ w(r) =¥ € CX(RY) on R?
and then

(m1 —ma2)[¢] = (m1 — ma2)[w(0)] + /Ot(ml —ma2)[0rw + b Lw]ds = 0.



Uniqueness — comments

We don’t expect uniquness to always hold. Consider
Bm(t,x) = Oy (b(t,:c) mit, x)) in [0,T] x R.
If b is continuous, but not Lipschitz-continuous, we may not have uniqueness
But if b > x > 0 is uniformly continuous and Hélder in z for each ¢, then
Bml(t,x) = A(b(t, z) m(t,x))

has unique solutions [Lunardi + Holmgren method (next slide)]

Also, if b > k > 0 is continuous and Hoélder in x for each ¢, then
drmit,@) = —(=A)" (b(t, ) m(t,))
has unique solutions (the operator can be slightly more general) [Mikulevi¢ius

and Pragarauskas + Holmgren]|

What can we say if either b = 0 somewhere or the operator is degenerate (in

the sense of the lack of regularization properties of the semigroup)?
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/ \ Uniqueness — degenerate case

Let 20 € (0,1) and for a constant K > 0 and every p € (20,1], r € (0,1),

Lo(z) = /Rd (6 + 2) — $(x)) v(d=), / (1 %) Wdz) < 20

By T p—20

® We employ visosity solutions techniques (even though, it is hardly a fully

nonlinear problem).
® After long computations we obtain existence of sufﬁciently regular w.

® We hit a restriction: b € B([0, o), CB (R%))

andsoa<3‘[ g

20

means 1 > 20 + o

® If the measure is symmetric near {0}, then 8 > 20 + ﬁ, o< j ~ é



A Happy Birthday, Nenad!

Sto lat, sto lat Niech mu gwiazdka pomyslnosci
Niech zyje, zyje nam Nigdy nie zagasnie

Sto lat, sto lat Nigdy nie zagasnie
Niech zyje, zyje nam A kto z nami nie wypije
Jeszcze raz, jeszcze raz Niech go piorun trzasnie
Niech zyje, Zyje nam A kto z nami nie wypije

Niech zyje nam Niech go piorun trzasnie



