Entropy solutions of degenerate parabolic equations

Marko Erceg

Department of Mathematics, Faculty of Science, University of Zagreb

Mathematical Colloquium Osijek, 17th March 2022

Joint work with M. Mišur and D. Mitrović

UIP-2017-05-7249 (MANDphy) IP-2018-01-2449 (MiTPDE)

$$\begin{split} \partial_t u(t,\mathbf{x}) + \mathrm{div}_\mathbf{x} \mathsf{f}(t,\mathbf{x},u(t,\mathbf{x})) &= D_\mathbf{x}^2 \cdot A(u(t,\mathbf{x})) \\ &= \mathrm{div}_\mathbf{x} \big(A'(u(t,\mathbf{x})) \nabla_\mathbf{x} u(t,\mathbf{x}) \big) \,, \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

$$\begin{split} \partial_t u(t, \mathbf{x}) + \mathsf{div}_{\mathbf{x}} \mathsf{f}(t, \mathbf{x}, u(t, \mathbf{x})) &= D_{\mathbf{x}}^2 \cdot A(u(t, \mathbf{x})) \\ &= \mathsf{div}_{\mathbf{x}} \big(A'(u(t, \mathbf{x})) \nabla_{\mathbf{x}} u(t, \mathbf{x}) \big) \,, \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

- LHS: convection effects (f flux, f = f(u) homogeneous case);
- RHS: diffusion effects (A' diffusion matrix direction and intensity of the diffusion).

Motivation for the equation:

- \bullet flow in porous media (e.g. f = 0 and $A(u)=u^m \mathbf{I}$ porous media equation)
 - \bullet heterogeneous layers \longrightarrow discontinuous flux and a lack of diffusion in some directions
- sedimentation-consolidation process

$$\begin{split} \partial_t u(t,\mathbf{x}) + \mathsf{div}_\mathbf{x} \mathsf{f}(t,\mathbf{x},u(t,\mathbf{x})) &= D_\mathbf{x}^2 \cdot A(u(t,\mathbf{x})) \\ &= \mathsf{div}_\mathbf{x} \left(A'(u(t,\mathbf{x})) \nabla_\mathbf{x} u(t,\mathbf{x}) \right), \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

Aim:

- Existence (and uniqueness) of solution to the Cauchy problem;
- Existence of traces of solutions, i.e. give meaning to $u(0,\cdot)$.

$$\begin{split} \partial_t u(t, \mathbf{x}) + \mathsf{div}_{\mathbf{x}} \mathsf{f}(t, \mathbf{x}, u(t, \mathbf{x})) &= D_{\mathbf{x}}^2 \cdot A(u(t, \mathbf{x})) \\ &= \mathsf{div}_{\mathbf{x}} \big(A'(u(t, \mathbf{x})) \nabla_{\mathbf{x}} u(t, \mathbf{x}) \big) \,, \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

Aim:

- Existence (and uniqueness) of solution to the Cauchy problem;
- Existence of traces of solutions, i.e. give meaning to $u(0,\cdot)$.

Why traces:

- Formulation, well-posedness, optimal control, etc., for initial-boundary problems.
- Characterising the limit of hyperbolic relaxation towards a scalar conservation law.

$$\begin{split} \partial_t u(t,\mathbf{x}) + \mathsf{div}_\mathbf{x} \mathsf{f}(t,\mathbf{x},u(t,\mathbf{x})) &= D_\mathbf{x}^2 \cdot A(u(t,\mathbf{x})) \\ &= \mathsf{div}_\mathbf{x} \big(A'(u(t,\mathbf{x})) \nabla_\mathbf{x} u(t,\mathbf{x}) \big) \,, \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

Aim:

- Existence (and uniqueness) of solution to the Cauchy problem;
- Existence of traces of solutions, i.e. give meaning to $u(0,\cdot)$.

Why traces:

- Formulation, well-posedness, optimal control, etc., for initial-boundary problems.
- Characterising the limit of hyperbolic relaxation towards a scalar conservation law.

Challenges:

- discontinuous flux (and diffusion matrix);
- heterogeneous flux (and diffusion matrix);
- degeneracy of A', i.e. $A' \geq 0$.

$$\begin{split} \partial_t u(t,\mathbf{x}) + \mathsf{div}_\mathbf{x} \mathsf{f}(t,\mathbf{x},u(t,\mathbf{x})) &= D_\mathbf{x}^2 \cdot A(u(t,\mathbf{x})) \\ &= \mathsf{div}_\mathbf{x} \big(A'(u(t,\mathbf{x})) \nabla_\mathbf{x} u(t,\mathbf{x}) \big) \,, \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

Aim:

- Existence (and uniqueness) of solution to the Cauchy problem;
- Existence of traces of solutions, i.e. give meaning to $u(0,\cdot)$.

Why traces:

- Formulation, well-posedness, optimal control, etc., for initial-boundary problems.
- Characterising the limit of hyperbolic relaxation towards a scalar conservation law.

Challenges:

- discontinuous flux (and diffusion matrix);
- heterogeneous flux (and diffusion matrix);
- degeneracy of A', i.e. $A' \geq 0$.

$$\begin{split} \partial_t u(t, \mathbf{x}) + \mathsf{div}_{\mathbf{x}} \mathsf{f}(t, \mathbf{x}, u(t, \mathbf{x})) &= D_{\mathbf{x}}^2 \cdot A(u(t, \mathbf{x})) \\ &= \mathsf{div}_{\mathbf{x}} \big(A'(u(t, \mathbf{x})) \nabla_{\mathbf{x}} u(t, \mathbf{x}) \big) \,, \end{split}$$

where $f: \mathbb{R}^+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $A: \mathbb{R} \to \mathbb{R}^{d \times d}$ are given and $u: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ is unknown.

We start with: ${\cal A}=0$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d), \end{cases}$$

where $\mathbf{f}:\mathbb{R}\to\mathbb{R}^d$ (homogeneous) flux, $u:\mathbb{R}^{d+1}_+\to\mathbb{R}$ unknown.

Classical solutions are too strong (we want allow discontinuities in x)

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d), \end{cases}$$

where $\mathbf{f}:\mathbb{R} \to \mathbb{R}^d$ (homogeneous) flux, $u:\mathbb{R}^{d+1}_+ \to \mathbb{R}$ unknown.

Classical solutions are too strong (we want allow discontinuities in x)

$$\textbf{Weak solutions:}\ \ u \in \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^{d+1}_+) \ \text{s.t.}\ \ \mathsf{f}(u) \in \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^{d+1}_+;\mathbb{R}^d) \ \text{and}\ \ \forall \varphi \in \mathrm{C}^\infty_c(\mathbb{R}^{1+d})$$

$$\int_{\mathbb{R}^{d+1}_+} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0 \varphi(0, \cdot) \, d\mathbf{x} = 0.$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}_+^{d+1} := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d), \end{cases}$$

where $\mathbf{f}:\mathbb{R}\to\mathbb{R}^d$ (homogeneous) flux, $u:\mathbb{R}^{d+1}_+\to\mathbb{R}$ unknown.

Classical solutions are too strong (we want allow discontinuities in x)

$$\begin{aligned} \textbf{Weak solutions:} \ u \in \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^{d+1}_+) \ \text{s.t.} \ \ &\mathsf{f}(u) \in \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^{d+1}_+;\mathbb{R}^d) \ \text{and} \ \forall \varphi \in \mathrm{C}^\infty_c(\mathbb{R}^{1+d}) \\ \int_{\mathbb{R}^{d+1}} u \varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0 \varphi(0,\cdot) \, d\mathbf{x} = 0 \,. \end{aligned}$$

Even for smooth f's non-uniqueness:

$$d=1, \ f(\lambda)=rac{\lambda^2}{2}$$
 (Burgers equation), $u_0(x)= \begin{cases} 0 \ , & x<0 \\ 1 \ , & x\geq 0 \end{cases}$.

Both functions are a weak solution:

$$u_1(t,x) = \begin{cases} 0 \ , & x < t/2 \\ 1 \ , & x \ge t/2 \end{cases} \quad , \qquad u_2(x) = \begin{cases} 0 \ , & x < 0 \\ x/t \ , & 0 \le x < t \ \text{(rarefraction wave)} \\ 1 \ , & x \ge t \end{cases}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d), \end{cases}$$

where $\mathbf{f}:\mathbb{R}\to\mathbb{R}^d$ (homogeneous) flux, $u:\mathbb{R}^{d+1}_+\to\mathbb{R}$ unknown.

Classical solutions are too strong (we want allow discontinuities in x)

$$\textbf{Weak solutions:} \ u \in \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^{d+1}_+) \ \mathrm{s.t.} \ \mathsf{f}(u) \in \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^{d+1}_+;\mathbb{R}^d) \ \mathrm{and} \ \forall \varphi \in \mathrm{C}^\infty_c(\mathbb{R}^{1+d})$$

$$\int_{\mathbb{R}^{d+1}_+} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0 \varphi(0, \cdot) \, d\mathbf{x} = 0.$$

For the uniqueness we need to impose some conditions on discontinuities.

Vanishing Viscosity 1/2

Consider only those weak solutions that can be reached as a limit $\varepsilon \to 0^+$ of the sequence of solutions (u^ε) :

$$\begin{cases} \partial_t u^{\varepsilon} + \operatorname{div}_{\mathbf{x}} \mathbf{f}(u^{\varepsilon}) = \frac{\varepsilon \Delta u^{\varepsilon}}{u^{\varepsilon}} & \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u^{\varepsilon}|_{t=0} = u_0 \in \operatorname{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

For $\eta\in\mathrm{C}^2(\mathbb{R})$ convex (i.e. $\eta''\geq0$) and $\varphi\in\mathrm{C}^2_c(\mathbb{R}^{1+d})$, $\varphi\geq0$, we multiply the equation by $-\eta'(u^\varepsilon)\varphi$ and integrate over \mathbb{R}^{1+d}_+ :

$$-\int_{\mathbb{R}^{d+1}_+} \partial_t u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi + \mathsf{f}'(u^{\varepsilon}) \cdot \nabla u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt = -\varepsilon \int_{\mathbb{R}^{d+1}_+} \Delta u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt$$

Vanishing Viscosity 2/2

Using

$$\partial_t u^\varepsilon \eta'(u^\varepsilon) = \partial_t \big(\eta(u^\varepsilon) \big) \quad \text{and} \quad \mathsf{f}'(u^\varepsilon) \cdot \nabla u^\varepsilon \eta'(u^\varepsilon) = \mathsf{div} \big(\mathsf{f}^\eta(u^\varepsilon) \big) \,,$$

where $\mathbf{f}^{\eta}(\lambda) = \int_0^{\lambda} \mathbf{f}'(s) \eta'(s) \, ds$, for the left hand side we have

$$-\int_{\mathbb{R}^{1+d}_+} \partial_t u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi + \mathsf{f}'(u^{\varepsilon}) \cdot \nabla u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt$$

$$= \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \partial_t \varphi + \mathsf{f}^{\eta}(u^{\varepsilon}) \cdot \nabla \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} \eta(u_0) \varphi(0, \cdot) \, d\mathbf{x} \, .$$

The right hand side satisfies

$$-\varepsilon \int_{\mathbb{R}^{1+d}_+} \Delta u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt = \varepsilon \int_{\mathbb{R}^{1+d}_+} \eta'(u^{\varepsilon}) \nabla u^{\varepsilon} \cdot \nabla \varphi + \underbrace{|\nabla u^{\varepsilon}|^2 \eta''(u^{\varepsilon}) \varphi}_{\geq 0} \, d\mathbf{x} dt$$
$$\geq -\varepsilon \int_{\mathbb{R}^{1+d}} \eta(u^{\varepsilon}) \Delta \varphi \, d\mathbf{x} dt$$

Vanishing Viscosity 2/2

Using

$$\partial_t u^\varepsilon \eta'(u^\varepsilon) = \partial_t \big(\eta(u^\varepsilon) \big) \quad \text{and} \quad \mathsf{f}'(u^\varepsilon) \cdot \nabla u^\varepsilon \eta'(u^\varepsilon) = \mathsf{div} \big(\mathsf{f}^\eta(u^\varepsilon) \big) \,,$$

where $\mathbf{f}^{\eta}(\lambda) = \int_0^{\lambda} \mathbf{f}'(s) \eta'(s) \, ds$, for the left hand side we have

$$-\int_{\mathbb{R}^{1+d}_+} \partial_t u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi + \mathsf{f}'(u^{\varepsilon}) \cdot \nabla u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt$$

$$= \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \partial_t \varphi + \mathsf{f}^{\eta}(u^{\varepsilon}) \cdot \nabla \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} \eta(u_0) \varphi(0, \cdot) \, d\mathbf{x} \, .$$

The right hand side satisfies

$$\begin{split} -\varepsilon \int_{\mathbb{R}^{1+d}_+} \Delta u^{\varepsilon} \eta'(u^{\varepsilon}) \varphi \, d\mathbf{x} dt &= \varepsilon \int_{\mathbb{R}^{1+d}_+} \eta'(u^{\varepsilon}) \nabla u^{\varepsilon} \cdot \nabla \varphi + \underbrace{|\nabla u^{\varepsilon}|^2 \eta''(u^{\varepsilon}) \varphi}_{\geq 0} \, d\mathbf{x} dt \\ &\geq -\varepsilon \int_{\mathbb{R}^{1+d}_+} \eta(u^{\varepsilon}) \Delta \varphi \, d\mathbf{x} dt \overset{\varepsilon \to 0}{\longrightarrow} 0 \end{split}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}_+^{d+1} := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d). \end{cases}$$

Entropy solutions: u a weak solution and s.t. $\forall \eta \in C(\mathbb{R})$ convex and $\forall \varphi \in C_c^{\infty}(\mathbb{R}^{1+d})$, $\varphi \geq 0$,

$$\int_{\mathbb{R}^{d+1}_+} \eta(u)\varphi_t + \mathsf{f}^{\eta}(u) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} \eta(u_0)\varphi(0,\cdot) \, d\mathbf{x} \ge 0,$$

here $f^{\eta}(\lambda) = \int_0^{\lambda} f' \eta' ds$ is an entropy-flux.

- ullet η is called (mathematical) entropy ($-\eta$ corresponds to physical entropy)
- The above inequality is due to the fact that the physical entropy has a tendency to increase in time, i.e. the mathematical entropy decreases in time

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}_+^{d+1} := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d). \end{cases}$$

Entropy solutions: (Kružkov) $u \in L^{\infty}(\mathbb{R}^{d+1}_+)$ s.t. $\forall \lambda \in \mathbb{R}$ and $\forall \varphi \in C^{\infty}_c(\mathbb{R}^{1+d})$, $\varphi \geq 0$,

$$\int_{\mathbb{R}^{d+1}_+} |u - \lambda| \varphi_t + \operatorname{sgn}(u - \lambda) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0 - \lambda| \varphi(0, \cdot) \, d\mathbf{x} \ge 0.$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}_+^{d+1} := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d). \end{cases}$$

Entropy solutions: (Kružkov) $u \in L^{\infty}(\mathbb{R}^{d+1}_+)$ s.t. $\forall \lambda \in \mathbb{R}$ and $\forall \varphi \in C^{\infty}_c(\mathbb{R}^{1+d})$, $\varphi \geq 0$,

$$\int_{\mathbb{R}^{d+1}_+} |u - \lambda| \varphi_t + \operatorname{sgn}(u - \lambda)(\mathsf{f}(u) - \mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0 - \lambda| \varphi(0, \cdot) \, d\mathbf{x} \ge 0.$$

$$\begin{split} \lambda &= \|u\|_{L^{\infty}} \implies -\int_{\mathbb{R}^{d+1}_+} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt - \int_{\mathbb{R}^d} u_0\varphi(0,\cdot) \, d\mathbf{x} \geq 0 \\ \lambda &= -\|u\|_{L^{\infty}} \implies \int_{\mathbb{R}^{d+1}_+} u\varphi_t + \mathsf{f}(u) \cdot \nabla_{\mathbf{x}}\varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} u_0\varphi(0,\cdot) \, d\mathbf{x} \geq 0 \end{split}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}_+^{d+1} := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d). \end{cases}$$

Entropy solutions: (Kružkov) $u \in L^{\infty}(\mathbb{R}^{d+1}_+)$ s.t. $\forall \lambda \in \mathbb{R}$ and $\forall \varphi \in C^{\infty}_c(\mathbb{R}^{1+d})$, $\varphi \geq 0$,

$$\int_{\mathbb{R}^{d+1}_+} |u - \lambda| \varphi_t + \operatorname{sgn}(u - \lambda) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0 - \lambda| \varphi(0, \cdot) \, d\mathbf{x} \ge 0.$$

Kružkov (1970): existence and uniqueness of entropy solutions for smooth heterogeneous fluxes f.

 Existence: vanishing viscosity method; Uniqueness: method of doubling variables (used for developing numerical schemes as well)

Panov (2010): existence of entropy solutions for non-smooth heterogeneous fluxes under non-degeneracy assumptions

ullet u_n solution for the regularised flux ${\sf f}_n$, and apply a compactness result

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

 $\forall \lambda \in \mathbb{R} \text{ and } \forall \varphi \in \mathrm{C}^{\infty}_{c}(\mathbb{R}^{1+d}), \ \varphi \geq 0$:

$$\int_{\mathbb{R}^{d+1}_+} |u - \lambda| \varphi_t + \operatorname{sgn}(u - \lambda) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0 - \lambda| \varphi(0, \cdot) \, d\mathbf{x} \ge 0.$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in} \quad \mathbb{R}_+^{d+1} := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

 $\forall \lambda \in \mathbb{R} \text{ and } \forall \varphi \in \mathrm{C}^{\infty}_{c}(\mathbb{R}^{1+d}), \ \varphi \geq 0$:

$$\int_{\mathbb{R}^{d+1}_+} |u - \lambda| \varphi_t + \operatorname{sgn}(u - \lambda) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \cdot \nabla_{\mathbf{x}} \varphi \, d\mathbf{x} dt + \int_{\mathbb{R}^d} |u_0 - \lambda| \varphi(0, \cdot) \, d\mathbf{x} \ge 0.$$

 \iff

$$\begin{split} (\mathsf{a.e.}\ \lambda \in \mathbb{R}) \qquad \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathrm{sgn} \big(u - \lambda \big) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) &\leq 0 \quad \text{in} \quad \mathcal{D}'(\mathbb{R}_+^{d+1}) \,, \\ & \quad \mathrm{ess} \lim_{t \to 0^+} u(t, \cdot) = u_0 \quad \text{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \,. \end{split}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

$$\begin{split} (\text{a.e. } \lambda \in \mathbb{R}) \qquad \partial_t |u - \lambda| + \operatorname{div}_{\mathbf{x}} \Big(\operatorname{sgn}(u - \lambda) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) &\leq 0 \quad \text{in} \quad \mathcal{D}'(\mathbb{R}^{d+1}_+) \,, \\ & \operatorname{ess\,lim}_{t \to 0^+} u(t, \cdot) = u_0 \quad \text{in} \quad \mathbf{L}^1_{\operatorname{loc}}(\mathbb{R}^d) \,. \quad \text{strong trace} \end{split}$$

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

$$\begin{split} (\text{a.e. } \lambda \in \mathbb{R}) \qquad \partial_t |u - \lambda| + \operatorname{div}_{\mathbf{x}} \Big(\mathrm{sgn} \big(u - \lambda \big) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) &\leq 0 \quad \text{in} \quad \mathcal{D}'(\mathbb{R}_+^{d+1}) \,, \\ & \quad \mathrm{ess} \lim_{t \to 0^+} u(t, \cdot) = u_0 \quad \text{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \,. \quad \text{strong trace} \end{split}$$

- Vasseur (2001): existence of strong traces for entropy solutions for smooth fluxes f and with a non-degeneracy condition
- Panov (2005, 2007): existence of strong traces for entropy solutions (without non-degeneracy conditions)
- Neves, Panov, Silva (2018): existence of strong traces for entropy solutions for heterogeneous fluxes f and with a non-degeneracy condition

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = 0 & \text{in } \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d, \\ u|_{t=0} = u_0 \in \mathrm{L}^{\infty}(\mathbb{R}^d). \end{cases}$$

$$\begin{split} (\mathsf{a.e.}\ \lambda \in \mathbb{R}) \qquad \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathrm{sgn} \big(u - \lambda \big) (\mathsf{f}(u) - \mathsf{f}(\lambda)) \Big) &\leq 0 \quad \text{in} \quad \mathcal{D}'(\mathbb{R}^{d+1}_+) \,, \\ & \quad \mathrm{ess} \lim_{t \to 0^+} u(t, \cdot) = u_0 \quad \text{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \,. \quad \text{strong trace} \end{split}$$

- Vasseur (2001): existence of strong traces for entropy solutions for smooth fluxes f and with a non-degeneracy condition
- Panov (2005, 2007): existence of strong traces for entropy solutions (without non-degeneracy conditions)
- Neves, Panov, Silva (2018): existence of strong traces for entropy solutions for heterogeneous fluxes f and with a non-degeneracy condition

The result does not hold for weak solutions!

Strong traces (A = 0) – comments

$$\partial_t u + \operatorname{div}_{\mathbf{x}} f(u) = 0 \quad \text{in} \quad \mathbb{R}^{d+1}_+ := \mathbb{R}^+ \times \mathbb{R}^d$$

Idea of the proof:

u admits the strong trace \iff

$$u_m(t,\mathbf{x},\mathbf{y}) := u\Big(\frac{t}{m},\frac{\mathbf{x}}{m} + \mathbf{y}\Big) \text{ is precompact in } \mathrm{L}^1_{loc}(\mathbb{R}^{d+1}_+ \times \mathbb{R}^d) \,.$$

Some applications:

• The strong boundary condition in the sense of Bardos, LeRoux, Nédélec for rough initial u_0 and boundary u_b data: $(\forall \lambda \in \mathbb{R})$

$$(\operatorname{sgn}(u-\lambda)+\operatorname{sgn}(\lambda-u_b))(\operatorname{f}(u)-\operatorname{f}(\lambda))\cdot\vec{\nu}\geq 0$$
 on $\partial\Omega$.

- Bürger, Frid, Karlsen (2007): The well-posedness of the initial-boundary problem with zero-flux boundary condition.
- Pfaff, Ulbrich (2015): The optimal control of initial-boundary value problems.

Degenerate parabolic equation $(A' \ge 0)$

$$(\mathsf{DP}) \quad \begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) & \text{in} \quad \mathbb{R}^{d+1}_+ \;, \\ \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d) \,, \end{cases} \quad \left(\mathsf{div}_{\mathbf{x}}(A'(u) \nabla_{\mathbf{x}} u) \right)$$

where $f: \mathbb{R} \to \mathbb{R}^d$, $A: \mathbb{R} \to \mathbb{R}^{d \times d}$, and $u: \mathbb{R}^{d+1}_+ \to \mathbb{R}$ unknown.

Definition of solutions (kinetic formulation)

(DP)
$$\begin{cases} \partial_t u + \operatorname{div}_{\mathbf{x}} f(u) = D_{\mathbf{x}}^2 \cdot A(u) & \text{in } \mathbb{R}_+^{d+1}, \\ u|_{t=0} = u_0 \in L^{\infty}(\mathbb{R}^d). \end{cases}$$

Definition

 $u\in \mathrm{L}^\infty(\mathbb{R}^{d+1}_+)$ is called a quasi-solution to (DP1) if for a.e. $\lambda\in\mathbb{R}$

$$\begin{split} \partial_t |u - \lambda| + \mathsf{div}_{\mathbf{x}} \Big(\mathsf{sgn}(u - \lambda) \left(\mathsf{f}(u) - \mathsf{f}(\lambda) \right) \Big) \\ &- D_{\mathbf{x}}^2 \cdot \left[\mathsf{sgn}(u - \lambda) (A(u) - A(\lambda)) \right] = - \gamma(t, \mathbf{x}, \lambda) \;, \end{split}$$

holds in $\mathcal{D}'(\mathbb{R}^{d+1}_+)$, where $\gamma \in \mathrm{C}(\mathbb{R}_{\lambda}; \mathcal{M}(\mathbb{R}^{d+1}_+))$.

Vol'pert, Hudjaev (1969)

For A=0 and $\gamma \geq 0$ coincides with the previous definition of entropy solutions.

Definition of solutions (kinetic formulation)

(DP)
$$\begin{cases} \partial_t u + \operatorname{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) & \text{in } \mathbb{R}_+^{d+1} , \\ u|_{t=0} = u_0 \in \mathrm{L}^{\infty}(\mathbb{R}^d) . \end{cases}$$

Theorem

If function u is a bounded quasi-solution to (DP_1) , then the function

$$h(t,\mathbf{x},\lambda) := \operatorname{sgn}(u(t,\mathbf{x}) - \lambda) = -\partial_{\lambda}|u(t,\mathbf{x}) - \lambda|$$

is a weak solution to the following linear equation:

$$\partial_t h + \operatorname{div}_{\mathbf{x}} (\mathbf{f}' h) - D_{\mathbf{x}}^2 \cdot [A'(\lambda)h] = \partial_\lambda \gamma(t, \mathbf{x}, \lambda) .$$

Lions, Perthame, Tadmor (1994)

Existence of entropy solutions to (DP)

$$\begin{cases} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) & \text{in} \quad \mathbb{R}_+^{d+1} \;, \\ \\ u|_{t=0} = u_0 \in \mathrm{L}^\infty(\mathbb{R}^d) \;. \end{cases}$$

- smooth fluxes
 - Carrillo (1999): L^{∞} solutions
 - Chen, Perthame (2003): L¹ solutions
 - Tadmor, Tao (2007): improved regularity under a non-degeneracy condition
 - Graf, Kunzinger, Mitrović (2017): on Riemannian manifolds
- non-smooth fluxes (under a non-degeneracy condition)
 - Sazhenkov (2006), Panov (2009): heterogeneous ultra-parabolic equations, i.e. $A(\lambda)$ satisfies an ellipticity assumption on a subspace of \mathbb{R}^d uniformly in λ
 - Lazar, Mitrović (2012): the result for heterogeneous ultra-parabolic equations using a velocity averaging approach
 - Holden, Karlsen, Mitrović, Panov (2009): general but homogeneous A
 (in E., Mišur, Mitrović (submitted) a similar result via velocity averaging
 approach)

Existence of entropy solutions to (DP)

$$\begin{cases} \partial_t u + \operatorname{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) & \text{in} \quad \mathbb{R}_+^{d+1} \ , \\ u|_{t=0} = u_0 \in \operatorname{L}^{\infty}(\mathbb{R}^d) \ . \end{cases}$$

- smooth fluxes
 - Carrillo (1999): L^{∞} solutions
 - Chen, Perthame (2003): L¹ solutions
 - Tadmor, Tao (2007): improved regularity under a non-degeneracy condition
 - Graf, Kunzinger, Mitrović (2017): on Riemannian manifolds
- non-smooth fluxes (under a non-degeneracy condition)
 - Sazhenkov (2006), Panov (2009): heterogeneous ultra-parabolic equations, i.e. $A(\lambda)$ satisfies an ellipticity assumption on a subspace of \mathbb{R}^d uniformly in λ
 - Lazar, Mitrović (2012): the result for heterogeneous ultra-parabolic equations using a velocity averaging approach
 - Holden, Karlsen, Mitrović, Panov (2009): general but homogeneous A
 (in E., Mišur, Mitrović (submitted) a similar result via velocity averaging
 approach)

- Regularisation of the flux
- Kinetic fomulation
- Localisation principle and non-degeneracy condition
- Adaptive H-measures

Regularisation of the flux

Replace f by f_n , which defines sequence of solutions (u_n) . It is sufficient to get the strong convergence of (u_n) .

- Kinetic fomulation
- Secondary Localisation principle and non-degeneracy condition
- Adaptive H-measures

- Regularisation of the flux
- Kinetic fomulation

$$h_n(t, \mathbf{x}, \lambda) := \operatorname{sgn}(u_n(t, \mathbf{x}) - \lambda).$$

$$\partial_t h_n + \operatorname{div}_{\mathbf{x}} \left(\mathsf{f}'_n \, h_n \right) - D^2_{\mathbf{x}} \cdot \left[A'(\lambda) h_n \right] = \partial_\lambda \gamma_n(t,\mathbf{x},\lambda) \; .$$

$$2u_n(t, \mathbf{x}) - \alpha - \beta = \int_{\alpha}^{\beta} h_n(t, \mathbf{x}, \lambda) d\lambda$$

- Localisation principle and non-degeneracy condition
- Adaptive H-measures

- Regularisation of the flux
- Kinetic fomulation
- Localisation principle and non-degeneracy condition

On the limit we get (μ is a suitable variant of microlocal defect object):

$$\begin{split} (\forall \phi) \ \langle \mu, F \phi \rangle &= 0 & \overset{F \text{ non-degenerate}}{\Longrightarrow} \ \mu \equiv 0 \\ & \Longrightarrow \text{ strong convergence of } \int_{\alpha}^{\beta} h_n(t, \mathbf{x}, \lambda) \, d\lambda \,. \end{split}$$

Non-degenerate condition:

$$\underset{(t,\mathbf{x})\in\mathbb{R}^{+}\times\mathbb{R}^{d}}{\text{ess sup}} \sup_{|\boldsymbol{\xi}|=1} \max \left\{ \lambda \in K : \tau + \left\langle \mathsf{f}'(t,\mathbf{x},\lambda) \,|\, \boldsymbol{\xi} \right\rangle = \left\langle A'(\lambda)\boldsymbol{\xi} \,|\, \boldsymbol{\xi} \right\rangle = 0 \right\} = 0$$

Adaptive H-measures

- Regularisation of the flux
- Kinetic fomulation
- Ocalisation principle and non-degeneracy condition
- Adaptive H-measures

$$\mu(\varphi\psi) = \lim_{n \to \infty} \int_{\mathbb{R}^+ \times \mathbb{R}^{d+1}} \varphi(t, \mathbf{x}) h_n(t, \mathbf{x}, \lambda) \overline{\mathcal{A}_{\bar{\psi}(\pi_P(\cdot, \cdot, \lambda), \lambda)}(v_n)(\mathbf{x})} dt d\mathbf{x} d\lambda,$$

where

$$\pi_P(\tau, \boldsymbol{\xi}, \lambda) := \frac{(\tau, \boldsymbol{\xi})}{|(\tau, \boldsymbol{\xi})| + \langle A'(\lambda) \boldsymbol{\xi} \mid \boldsymbol{\xi} \rangle}$$

Existence of strong traces for (DP₁)

$$(\mathsf{DP_1}) \qquad \qquad \partial_t u + \mathsf{div_x} \mathsf{f}(u) = D_\mathbf{x}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \; .$$

$$\operatorname{ess\,lim}_{t \to 0^+} u(t,\cdot) = u_0 \quad \text{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \quad ???$$

Kwon (2009): scalar diffusion matrices A(u)=a(u)I without non-degeneracy conditions

Aleksić, Mitrović (2013): traceable fluxes f and ultra-parabolic A (i.e. $A=B\oplus 0$ where B>0) without non-degeneracy conditions

"Fully degenerate" matrices A' not covered, e.g.

$$A'(\lambda) = \left(\frac{1}{\sqrt{\lambda^2+1}} \begin{bmatrix} \lambda & 1 \\ 1 & -\lambda \end{bmatrix}\right) \begin{bmatrix} 0 & 0 \\ 0 & \lambda^2+1 \end{bmatrix} \left(\frac{1}{\sqrt{\lambda^2+1}} \begin{bmatrix} \lambda & 1 \\ 1 & -\lambda \end{bmatrix}\right) = \begin{bmatrix} 1 & -\lambda \\ -\lambda & \lambda^2 \end{bmatrix}$$

Existence of strong traces for (DP_1)

$$(\mathsf{DP_1}) \qquad \qquad \partial_t u + \mathsf{div_x} \mathsf{f}(u) = D_\mathbf{x}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \; .$$

$$\operatorname{ess\,lim}_{t \to 0^+} u(t, \cdot) = u_0 \quad \text{in} \quad \mathrm{L}^1_{\mathrm{loc}}(\mathbb{R}^d) \quad ???$$

Theorem (E., Mitrović)

Let $f \in C^1(\mathbb{R}; \mathbb{R}^d)$ and let $A \in C^{1,1}(\mathbb{R}; \mathbb{R}^{d \times d})$ be such that for any $\lambda \in \mathbb{R}$ we have $A'(\lambda)$ is symmetric and positive semi-definite.

Then any quasi-solution $u \in L^{\infty}_{loc}(\mathbb{R}^+; L^p_{loc}(\mathbb{R}^d))$, for some p > 1, to (DP_1) admits the strong trace at t = 0.

Proof – an important point

$$(\mathsf{DP}_1) \qquad \qquad \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}_+^{d+1} \; .$$

Which scaling to choose with respect to x in

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\mathbf{x}}{m} + \mathbf{y}\right)$$
?

Proof - an important point

$$(\mathsf{DP}_1) \hspace{1cm} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D_{\mathbf{x}}^2 \cdot A(u) \quad \text{in} \quad \mathbb{R}_+^{d+1} \; .$$

If
$$A'(\lambda)=egin{bmatrix} \tilde{a}(\lambda) & 0 \\ 0 & 0 \end{bmatrix}$$
, for $\tilde{a}(\lambda)\in\mathbb{R}^{k\times k}$ $(k\in\{1,\ldots,d\})$, and
$$\frac{\tilde{a}(\lambda)>0}{}$$

we use

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\tilde{\mathbf{x}}}{\sqrt{m}} + \tilde{\mathbf{y}}, \frac{\bar{\mathbf{x}}}{m} + \bar{\mathbf{y}}\right)$$

where $\mathbf{x}=(\tilde{\mathbf{x}},\bar{\mathbf{x}})\in\mathbb{R}^k\times\mathbb{R}^{d-k}$ and apply a compactness result from Holden et al (2009).

Proof – an important point

$$(\mathsf{DP_1}) \qquad \qquad \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D^2_{\mathbf{x}} \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \; .$$

If
$$A'(\lambda)=egin{bmatrix} \tilde{a}(\lambda) & 0 \\ 0 & 0 \end{bmatrix}$$
, for $\tilde{a}(\lambda)\in\mathbb{R}^{k\times k}$ $(k\in\{1,\ldots,d\})$, and

$$(*) \qquad (\forall \tilde{\boldsymbol{\xi}} \in \mathbb{R}^k \setminus \{0\}) (\forall (\alpha', \beta') \subseteq \mathbb{R}) \\ (\alpha', \beta') \ni \lambda \mapsto \langle \tilde{a}(\lambda) \tilde{\boldsymbol{\xi}} \mid \tilde{\boldsymbol{\xi}} \rangle \text{ is not indentically equal to zero.}$$

we use

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\tilde{\mathbf{x}}}{\sqrt{m}} + \tilde{\mathbf{y}}, \frac{\bar{\mathbf{x}}}{m} + \bar{\mathbf{y}}\right)$$

where $\mathbf{x}=(\tilde{\mathbf{x}},\bar{\mathbf{x}})\in\mathbb{R}^k\times\mathbb{R}^{d-k}$ and apply a compactness result from Holden et al (2009).

Proof – an important point

$$(\mathsf{DP}_1) \hspace{1cm} \partial_t u + \mathsf{div}_{\mathbf{x}} \mathsf{f}(u) = D^2_{\mathbf{x}} \cdot A(u) \quad \text{in} \quad \mathbb{R}^{d+1}_+ \; .$$

If
$$A'(\lambda)=egin{bmatrix} \tilde{a}(\lambda) & 0 \\ 0 & 0 \end{bmatrix}$$
, for $\tilde{a}(\lambda)\in\mathbb{R}^{k\times k}$ $(k\in\{1,\ldots,d\})$, and

$$(*) \qquad \begin{array}{l} (\forall \tilde{\pmb{\xi}} \in \mathbb{R}^k \setminus \{0\}) (\forall (\alpha', \beta') \subseteq \mathbb{R}) \\ (\alpha', \beta') \ni \lambda \mapsto \langle \tilde{a}(\lambda) \tilde{\pmb{\xi}} \, | \, \tilde{\pmb{\xi}} \rangle \text{ is not indentically equal to zero.} \end{array}$$

we use

$$u_m(t, \mathbf{x}, \mathbf{y}) = u\left(\frac{t}{m}, \frac{\tilde{\mathbf{x}}}{\sqrt{m}} + \tilde{\mathbf{y}}, \frac{\bar{\mathbf{x}}}{m} + \bar{\mathbf{y}}\right)$$

where $\mathbf{x}=(\tilde{\mathbf{x}},\bar{\mathbf{x}})\in\mathbb{R}^k\times\mathbb{R}^{d-k}$ and apply a compactness result from Holden et al (2009).

If (*) is not satisfied, we can reduce locally a on some $(\alpha, \beta) \subseteq \mathbb{R}$ to that form, and then apply above for $s_{\alpha,\beta}(u) := \max\{\alpha, \min\{u,\beta\}\}$ instead of u.

And...

...thank you for your attention :)

- Traces: E., Mitrović, accepted for publication in SIAM J. Math. Anal, 22 pp.
- Velocity averaging: E., Mišur, Mitrović, arXiv:2008.08310, submitted, 38 pp.

And...

...thank you for your attention :)

- Traces: E., Mitrović, accepted for publication in SIAM J. Math. Anal, 22 pp.
- Velocity averaging: E., Mišur, Mitrović, arXiv:2008.08310, submitted, 38 pp.