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Degenerate parabolic equation - introduction

∂tu(t,x) + divxf
(
t,x, u(t,x)

)
= divx

(
a
(
t,x, u(t,x)

)
∇xu(t,x)

)
,

where f : Ω× R→ Rd and a : Ω× R→ Rd×dsym are given, and u : Ω→ R is

unknown (Ω ⊆ R+ × Rd open).

Aim:

Existence of traces of solutions, i.e. give meaning to u(t,x) for (t,x) ∈ ∂Ω.

Why traces:

Formulation, well-posedness, optimal control, etc., for initial-boundary
problems.

Characterising the limit of hyperbolic relaxation towards a scalar conservation
law.

Challenges:

heterogeneous flux f and diffusion matrix a;

degeneracy of a, i.e. a ≥ 0.
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,

where f : Ω× R→ Rd and a : Ω× R→ Rd×dsym are given, and u : Ω→ R is

unknown (Ω ⊆ R+ × Rd open).

LHS: convection effects (f flux);

RHS: diffusion effects (a diffusion matrix – direction and intensity of the
diffusion);

f and a sufficiently smooth;

Homogeneous case: f = f(u), a = a(u).

Motivation for the equation:
flow in porous media (e.g. f = 0 and a(u) = mum−1I – porous media
equation)

heterogeneous layers −→ discontinuous flux and a lack of diffusion in some
directions

sedimentation-consolidation process
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Entropy solutions: a = 0

For simplicity we consider homogeneous case.

∂tu+ divxf(u) = 0 in Ω ⊆ R+ × Rd .

Entropy solutions: (Kružkov) u ∈ L∞(Ω) s.t. ∀λ ∈ R and ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0,∫
Ω

|u− λ|ϕt + sgn(u− λ)(f(u)− f(λ)) · ∇xϕdxdt ≥ 0 .

Cauchy problem: For Ω = R+ × Rd and u0 ∈ L∞(Rd) we prescribe:

ess limt→0+ u(t, ·) = u0 in L1
loc(Rd)

strong trace for t = 0 .

Kružkov (1970): existence and uniqueness of entropy solutions to Cauchy
problems for heterogeneous fluxes f.

Panov (2010): existence of entropy solutions for non-smooth heterogeneous fluxes
under non-degeneracy assumptions
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Entropy solutions: a ≥ 0

For simplicity we consider homogeneous case.

∂tu+ divxf(u) = divx
(
a(u)∇xu

)
in Ω ⊆ R+ × Rd .

Entropy solutions: u ∈ L∞(Ω) s.t.

(∀λ ∈ R) ∂t|u− λ|+ divx
(

sgn(u− λ)(f(u)− f(λ))
)

−D2
x

(
sgn(u− λ)(A(u)−A(λ))

)
≤ 0 in D′(Ω) ,

where A′ = a.

Well-posedness for the Cauchy problem:

Homogeneous case: Chen, Perthame (2003)
Heterogeneous case: Chen, Karlsen (2005)

→ in both cases a certain chain rule property is required (we will return to
this later!)
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Strong traces - definition

∂tu(t,x) + divxf
(
t,x, u(t,x)

)
= divx

(
a
(
t,x, u(t,x)

)
∇xu(t,x)

)
in Ω

Strong trace at t = 0: ess limt→0+ u(t, ·) = u0 in L1
loc(Rd)
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∂tu(t,x) + divxf
(
t,x, u(t,x)

)
= divx

(
a
(
t,x, u(t,x)

)
∇xu(t,x)

)
in Ω

Definition (Strong trace)

u0 ∈ L∞(∂Ω) is a strong trace of a solution u ∈ L∞(Ω) if for any x ∈ ∂Ω we have

ess lims→0+ ũ(s, ·) = ũ0 in L1
loc(Rd) ,

where ũ = u ◦ ζ−1 and ũ0 = u0 ◦ ζ−1(0, ·) are obtained after localising and
flattening the boundary.
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Strong traces - an overview of the results

∂tu+ divxf(u) = 0

Vasseur (2001): under a non-degeneracy condition
Panov (2005, 2007)

∂tu+ divxf(u) = divx
(
a(u)∇u

)
Kwon (2007): for scalar diffusion matrix a, i.e. a = cI, c ≥ 0
Aleksić, Mitrović (2013): for ultra-parabolic diffusion matrix a,
i.e. a = 0⊕ b, where b > 0 – only the trace at t = 0
Frid, Li (2017): for a = b⊕ 0, where cI ≤ b ≤ ΛcI and c ≥ 0 – under a
non-degeneracy condition
E., Mitrović (2021): general a – only the trace at t = 0

∂tu+ divxf(t,x, u) = divx
(
a(t,x, u)∇u

)
Aleksić, Mitrović (2013): ultra-parabolic diffusion matrix a, ”partial”
heterogeneity – under a non-degeneracy condition (only the trace at t = 0)
Neves. Panov, Silva (2018): rough fluxes, a = 0 – under a non-degeneracy
condition
E., Mǐsur, Mitrović (2021): a = a(u) – under a non-degeneracy condition
(only the trace at t = 0)
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Strong traces - an overview of the results

∂tu+ divxf(u) = 0

the general result valid without non-degeneracy conditions

∂tu+ divxf(u) = divx
(
a(u)∇u

)
no non-degeneracy conditions for the strong trace at the flat boundary
(e.g. t = 0), but in general they are used

∂tu+ divxf(t,x, u) = divx
(
a(t,x, u)∇u

)
a non-degeneracy condition always used
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Auxiliary problem

Thus, in order to get the existence of the strong trace on the boundary for entropy
solutions to

∂tu+ divxf(u) = divx
(
a(u)∇u

)
the main step is the following.

Task: To show the existence of the strong trace at x1 = 0 of the solution u to

divx
(
f(x, u)

)
= divx

(
a(x, u)∇xu

)
, x = (x1,x

′) ∈ R+ × Rd−1 ,

under the non-degeneracy condition (K ⊂⊂ R):

ess sup
x∈R+×Rd−1

sup
|ξ|=1

meas
{
λ ∈ K : f(x, λ) · ξ = a(x, λ)ξ · ξ = 0

}
= 0 .
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}
= 0 .

Step I. Blow-up (Vasseur, 2001)

u admits the strong trace ⇐⇒

un(x1,x
′,y) := u

(x1

n
,
x′

n
+ y′

)
is precompact in L1

loc(R+ × R2(d−1)) .
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Auxiliary problem
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ess sup
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sup
|ξ|=1

meas
{
λ ∈ K : f(x, λ) · ξ = a(x, λ)ξ · ξ = 0

}
= 0 .

Step II.

(un) is precompact ⇐⇒ the corresponding microlocal defect functional µ
(e.g. H-measures) is zero.
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Auxiliary problem

Task: To show the existence of the strong trace at x1 = 0 of the solution u to

divx
(
f(x, u)

)
= divx

(
a(x, u)∇xu

)
, x = (x1,x

′) ∈ R+ × Rd−1 ,

under the non-degeneracy condition (K ⊂⊂ R):

ess sup
x∈R+×Rd−1

sup
|ξ|=1

meas
{
λ ∈ K : f(x, λ) · ξ = a(x, λ)ξ · ξ = 0

}
= 0 .

Step III. µ will be zero if we get (localisation principle)(
if(x, λ) · ξ + a(x, λ)ξ · ξ

)
µ = 0 ,

by the assumed non-degeneracy condition.

This can be obtained using the rescaled equation that is satisfied by un.

However, in this process the choice of µ, i.e. the choice of the scaling, is
important!
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Auxiliary problem

Task: To show the existence of the strong trace at x1 = 0 of the solution u to

divx
(
f(x, u)

)
= divx

(
a(x, u)∇xu

)
, x = (x1,x

′) ∈ R+ × Rd−1 ,

under the non-degeneracy condition (K ⊂⊂ R):

ess sup
x∈R+×Rd−1

sup
|ξ|=1

meas
{
λ ∈ K : f(x, λ) · ξ = a(x, λ)ξ · ξ = 0

}
= 0 .

Step IV. The choice of the scaling in µ:

a = 0 or a > 0: ξ 7→ ξ
|ξ|

a = 0⊕ b, b > 0: ξ = (ξ′, ξ′′) 7→ ξ
|ξ′|+|ξ′′|2

a = a(λ): ξ 7→ ξ
|ξ|+a(λ)ξ·ξ

Problem: ξ 7→ ξ
|ξ|+a(x,λ)ξ·ξ is too complicated (pseudodifferential operator)

and does not give anything...
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Auxiliary problem

Task: To show the existence of the strong trace at x1 = 0 of the solution u to

divx
(
f(x, u)

)
= divx

(
a(x, u)∇xu

)
, x = (x1,x

′) ∈ R+ × Rd−1 ,

under the non-degeneracy condition (K ⊂⊂ R):

ess sup
x∈R+×Rd−1

sup
|ξ|=1

meas
{
λ ∈ K : f(x, λ) · ξ = a(x, λ)ξ · ξ = 0

}
= 0 .

Step V.a
Apply the scaling ξ 7→ ξ

|ξ| to get(
a(x, λ)ξ · ξ

)
µ = 0

(only the highest order terms are ”visible”).
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Task: To show the existence of the strong trace at x1 = 0 of the solution u to

divx
(
f(x, u)

)
= divx

(
a(x, u)∇xu

)
, x = (x1,x

′) ∈ R+ × Rd−1 ,

under the non-degeneracy condition (K ⊂⊂ R):

ess sup
x∈R+×Rd−1

sup
|ξ|=1

meas
{
λ ∈ K : f(x, λ) · ξ = a(x, λ)ξ · ξ = 0

}
= 0 .

Step V.b
Then lower the order of the equation by applying the chain rule from the
definition of the entropy solution (Chen, Karlsen, 2005), i.e. the term

divx
(
a(x, u)∇xu

)
is replaced by a first order term

=⇒ the term divx
(
f(x, u)

)
is ”visible”, so with the proper analysis we get (in a

certain form) (
f(x, λ) · ξ

)
µ = 0 ,

completing the argument.
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Thank you for your attention!
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