

Classical Friedrichs Operators in 1-D Scalar Case Marko Erceg, Sandeep Kumar Soni

Introduction

The concept of positive symmetric systems was introduced by Friedrichs, which are today customarily referred to as the Friedrichs systems. More precisely, for $d, r \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary, $\mathbf{A}_k \in W^{1,\infty}(\Omega; M_r(\mathbb{C})), k \in \{1, \ldots, d\},\$ and $\mathbf{B} \in L^{\infty}(\Omega; M_r(\mathbb{C}))$ satisfying (a.e. on Ω):

 $\left(\left[u \,|\, v \right] = \left[v \,|\, u \right] \right),$ i) $(\forall u, v \in \mathcal{W})$ ii) ker $D = \mathcal{W}_0$. **Remark**: $(\mathcal{W}, [\cdot | \cdot])$ is indefinite inner product space.

Well-posedness Result

For $\mathcal{V}, \mathcal{V} \subseteq \mathcal{W}$ we introduce two conditions:

Lemma Let $I := [a, b] \setminus \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H^1_{\text{loc}}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c, d] \subseteq I, c < d$, we have $u|_{[c,d]} \in H^{1}(c, d)$. The boundary operator can be written explicitly as $\mathcal{W}(Du, v)_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a), \quad u, v \in \mathcal{W},$ where we define

$$\mathbf{A}_{k} = \mathbf{A}_{k}^{*}; \qquad (F1)$$
$$\exists \mu_{0} > 0 \quad \mathbf{B} + \mathbf{B}^{*} + \sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \ge \mu_{0} \mathbf{I}. \qquad (F2)$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$ by

$$\begin{split} \mathcal{L}\mathbf{u} &:= \sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathbf{u}) + \mathbf{B}\mathbf{u} \,, \\ \widetilde{\mathcal{L}}\mathbf{u} &:= -\sum_{k=1}^{d} \partial_k (\mathbf{A}_k \mathbf{u}) + \Big(\mathbf{B}^* + \sum_{k=1}^{d} \partial_k \mathbf{A}_k \Big) \mathbf{u} \,, \end{split}$$

is called Classical Friedrichs System.

Aim: to impose boundary conditions such that for any $f \in L^2(\Omega)^r$ we have a unique solution of $\mathcal{L}u = f$.

Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators. Cassical theory in short: Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- treating the equations of mixed type, such as the Tricomi equation:

 $y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial u^2} = 0;$

– unified treatment of equations and systems of different type; – more recently: better numerical properties.

Shortcommings:

no satisfactory well-posedness result,

– no intrinsic (unique) way to pose boundary conditions.

(V1)	$(\forall u \in \mathcal{V}) \\ (\forall v \in \widetilde{\mathcal{V}})$	$\begin{bmatrix} u \mid u \end{bmatrix} \ge 0$ $\begin{bmatrix} v \mid v \end{bmatrix} \leqslant 0$
(V2) .	${\cal V}^{[\perp]} = {\widetilde {\cal V}} , {\widetilde {\cal V}}^{[\perp]}$	$^{ot]} = \mathcal{V}$

Theorem[Ern, Guermond, Caplain, 2007] (T1)–(T3) + (V1)–(V2) $\implies T_1|_{\mathcal{V}}, \widetilde{T}_1|_{\widetilde{\mathcal{V}}}$ bijective realisations.

Existence, Multiplicity and Classification

We seek for bijective closed operators $S \equiv T^*|_{\mathcal{V}}$ such that

 $\overline{T} \subseteq S \subseteq \widetilde{T}^*,$

and thus also S^* is bijective and $\widetilde{T} \subseteq S^* \subseteq T^*$. We call (S, S^*) an adjoint pair of bijective realisations relative to (T, T).

Theorem[Antonić, Erceg, Michelangeli, 2017] Let (T, T) satisfies (T1)–(T3).

(i) **Existence**: There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, T).

(ii) **Multiplicity**:

Classification: For (T, \tilde{T}) satisfying (T1)–(T3) we have

 $(\alpha u \overline{v})(x) := \begin{cases} 0 & , \ \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} & , \ \alpha(x) \neq 0 \end{cases}, \quad x \in [a, b].$ The domain of the closures T_0 and T_0 satisfies $\mathcal{W}_0 = \mathrm{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$, is characterised as Lemma

$$\mathcal{W}_0 = \left\{ u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}$$

Lemma The codimension of the quotient space W/W_0 is

 $= \begin{cases} 2 , \alpha(a)\alpha(b) \neq 0 , \\ 1 , (\alpha(a) = 0 \land \alpha(b) \neq 0) \lor (\alpha(a) \neq 0 \land \alpha(b) = 0) \\ 0 , \alpha(a) = \alpha(b) = 0 . \end{cases}$

By the decomposition we have

$\dim(\ker T_1) + \dim(\ker T_1) = \dim \mathcal{W}/\mathcal{W}_0.$

Thus, when $\alpha(a)\alpha(b) = 0$ there is only one bijective realisation of T_0 . In case $\alpha(a)\alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\dim(\ker T_1) = \dim(\ker T_1)$. The only interesting case is, when $\alpha(a) > 0$, $\alpha(b) > 0$. In this case we have,

 $u \in \mathcal{W}$ belongs to dom $T_{c,d}$ if and only if

\rightsquigarrow development of the abstract theory

 $(\mathcal{H}, \langle \cdot | \cdot \rangle)$ complex Hilbert space $(\mathcal{H}' \equiv \mathcal{H}), \| \cdot \| := \sqrt{\langle \cdot | \cdot \rangle},$ $\mathcal{D} \subseteq \mathcal{H}$ dense subspace. Let Let $T, T : \mathcal{D} \to \mathcal{H}$. The pair (T, T)is called a joint pair of abstract Friedrichs operators if the following holds:

$(\forall \varphi, \psi \in \mathcal{D})$	$\langle T\varphi \mid \psi \rangle = \langle \varphi \mid \widetilde{T}\psi \rangle;$	(T1)
$(\exists c > 0) (\forall \varphi \in \mathcal{D})$	$\ (T+\widetilde{T})\varphi\ \leqslant c\ \varphi\ ;$	(T2)
$(\exists \mu_0 > 0) (\forall \varphi \in \mathcal{D})$	$\langle (T+\widetilde{T})\varphi \mid \varphi \rangle \ge \mu_0 \ \varphi\ ^2.$	(T3)

Note: Classical is abstract.

Characterisation of joint pair of abstract Friedrichs operators

Lemma

$$(T1) - (T3) \iff \begin{cases} \frac{T \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } \mathcal{H} \\ \text{with strictly positive bottom;} \\ \text{dom } \overline{T} = \text{dom } \overline{\widetilde{T}} & \& \quad \text{dom } T^* = \text{dom } \widetilde{T}^*. \end{cases}$$

By (T1), T and T are closable. By (T2), T+T is a bounded operator, so the graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

 $\overline{T} \subseteq \widetilde{T}^*$ and $\widetilde{T} \subseteq T^*$, while by the previous theorem there exists closed T_r such that • $\overline{T} \subset T_{\mathbf{r}} \subset \widetilde{T}^* \ (\iff \widetilde{T} \subset T_{\mathbf{r}}^* \subset T^*),$

• $T_{\rm r}: {\rm dom}\, T_{\rm r} \to \mathcal{H}$ bijection,

• $(T_r)^{-1}$: $\mathcal{H} \to \operatorname{dom} T_r$ bounded.

Thus, we can apply Grubb's universal classification theory (classification of dual (adjoint) pairs).

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.

To do: apply this result to general classical Friedrichs operators from the beginning.

Decomposition of the graph space

Theorem[Erceg, Soni, 2022] (T_0, T_0) is a joint pair of closed abstract Friedrichs operators then $\mathcal{W} = \mathcal{W}_0 + \ker T_1 + \ker \widetilde{T}_1$. **Corollary:** $(T_1|_{\mathcal{W}_0 + \ker \widetilde{T}_1}, \widetilde{T}_1|_{\mathcal{W}_0 + \ker T_1})$ is a pair of mutually adjoint pair of bijective realisations relative to (T, T). A sketch for the proof of the theorem is: • $\mathcal{W}_0 + \ker T_1 + \ker T_1$ is direct and closed in \mathcal{W} . • For any bijective realisation $T_{\rm r}$, $\mathcal{W} = \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}_0 \dotplus (T_r^*)^{-1}(\ker T_1) \dotplus \ker \widetilde{T}_1.$

$$= \left(\frac{\alpha(a)\tilde{\varphi}(a)}{\|\tilde{\varphi}\|^2} - \frac{(c+\alpha)\sqrt{\alpha(b)}}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}\right)u(a) .$$

rly, $u \in \mathcal{W}$ is in dom $T_{c,d}^*$ if and only if

$$[2] \left(\alpha(b)\overline{\varphi(b)} - \frac{\|\tilde{\varphi}\|^2(c-id)}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\tilde{\varphi}(a)}\right)u(b)$$

$$= \left(\alpha(a)\overline{\varphi(a)} - \frac{\|\tilde{\varphi}\|^2(c-id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\tilde{\varphi}(a)}\right)u(a) .$$

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, T) is given by

[3]
$$\left\{ (T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{ (0,0) \} \right\} \bigcup \left\{ (T_r, T_r^*) \right\}.$$

Summary :

Simila

α at end-points	No. of bij. realis.	$(\mathcal{V},\widetilde{\mathcal{V}})$
$\alpha(a)\alpha(b) \le 0$	1	$\frac{\alpha(a) \ge 0 \land \alpha(b) \le 0 (\mathcal{W}_0, \mathcal{W})}{\alpha(a) \le 0 \land \alpha(b) \ge 0 (\mathcal{W}, \mathcal{W}_0)}$
$\alpha(a)\alpha(b) > 0$	∞	[3] (see [1] and [2])

Acknowledgements

This work is supported by Croatian Science Foundation under the project IP-2018-01-2449 MiTPDE.

$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0,$$

$$\operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W},$$

(1)

and $(T+\widetilde{T})|_{\mathcal{W}} = \widetilde{T}^* + T^*$. So, $(\overline{T}, \widetilde{T})$ is also a pair of abstract Friedrichs operators. **Notation :**

 $T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$

Therefore, we have

 $T_0 \subseteq T_1$ and $\widetilde{T}_0 \subseteq \widetilde{T}_1$. (2)

 $(\mathcal{W}, \|\cdot\|_T)$ is the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} .

For, $\mathcal{D} = C_c^{\infty}(\Omega)$, $\mathcal{H} = L^2(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_0 are Sobolev spaces $H^1(\Omega)$ and $H^1_0(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$,

 $[u \mid v] := \mathcal{W}(Du, v) = \langle T_1 u \mid v \rangle - \langle u \mid T_1 v \rangle.$

Let a pair of operators (T, T) on \mathcal{H} satisfies (T1)–(T2). Then D is continuous and satisfies

• $\mathcal{W} = \left(\mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1 \right)^{[\perp][\perp]}.$

Using the above theorem we now find all admissible boundary conditions for 1-d scalar case with variable coefficients.

One-dimensional(d = 1) **Scalar**(r = 1) **Case**

 $\Omega = (a, b), a < b, \mathcal{D} = C_c^{\infty}(a, b) \text{ and } \mathcal{H} = L^2(a, b), T, \widetilde{T} : \mathcal{D} \to \mathcal{H} :$ $T\varphi := (\alpha \varphi)' + \beta \varphi$ and $\widetilde{T}\varphi := -(\alpha \varphi)' + (\overline{\beta} + \alpha')\varphi$. Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R}), \beta \in L^{\infty}((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re\beta + \alpha' \ge 2\mu_0 > 0.$ The graph space :

 $\mathcal{W} = \{ u \in \mathcal{H} : (\alpha u)' \in \mathcal{H} \}, \quad ||u||_{\mathcal{W}} := ||u|| + ||(\alpha u)'||.$ Equivalently,

 $u \in \mathcal{W} \iff \alpha u \in H^1(a, b)$.

So, by Sobolev embedding $\alpha u \in C(a, b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x)u(x)$ is not meaningful.

References

[1] K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. **11** (1958) 333–418.

[2] A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. **32** (2007) 317–341.

[3] G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa **22** (1968) 425–513.

[4] N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690–1715. [5] N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.

[6] M. Erceg, S. K. Soni: Classification of classical Friedrichs differential operators: One-dimensional scalar case, Communications on Pure and Applied Analysis, 2022, 21 (10) : 3499-3527. doi: 10.3934/cpaa.2022112