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Introduction
The concept of positive symmetric systems was introduced by
Friedrichs, which are today customarily referred to as the Friedrichs
systems. More precisely, for d, r ∈ N, Ω ⊆ Rd open and bounded
with Lipschitz boundary, Ak ∈ W 1,∞(Ω;Mr(C)), k ∈ {1, . . . , d},
and B ∈ L∞(Ω;Mr(C)) satisfying (a.e. on Ω):

Ak = A∗
k ; (F1)

∃µ0 > 0 B +B∗ +
d∑
k=1

∂kAk ≥ µ0I . (F2)

Define L, L̃ : L2(Ω)r → D′(Ω)r by

Lu :=

d∑
k=1

∂k(Aku) +Bu ,

L̃u := −
d∑
k=1

∂k(Aku) +
(
B∗ +

d∑
k=1

∂kAk

)
u ,

is called Classical Friedrichs System.
Aim: to impose boundary conditions such that for any f ∈ L2(Ω)r we
have a unique solution of Lu = f.
Gain: many important (semi)linear equations of mathematical physics
can be written in the form of classical Friedrichs operators.
Cassical theory in short: Unified treatment of linear hyperbolic sys-
tems like Maxwell’s, Dirac’s, or higher order equations (e.g. the wave
equation).

– treating the equations of mixed type, such as the Tricomi equation:

y
∂2u

∂x2
+
∂2u

∂y2
= 0 ;

– unified treatment of equations and systems of different type;
– more recently: better numerical properties.

Shortcommings:
– no satisfactory well-posedness result,
– no intrinsic (unique) way to pose boundary conditions.

⇝ development of the abstract theory

(H, ⟨ · | · ⟩) complex Hilbert space (H′ ≡ H), ∥ · ∥ :=
√

⟨ · | · ⟩,
D ⊆ H dense subspace. Let Let T, T̃ : D → H. The pair (T, T̃ )
is called a joint pair of abstract Friedrichs operators if the following
holds:

(∀φ, ψ ∈ D) ⟨Tφ | ψ ⟩ = ⟨φ | T̃ψ ⟩ ; (T1)

(∃ c > 0)(∀φ ∈ D) ∥(T + T̃ )φ∥ ⩽ c∥φ∥ ; (T2)

(∃µ0 > 0)(∀φ ∈ D) ⟨ (T + T̃ )φ | φ ⟩ ⩾ µ0∥φ∥2 . (T3)

Note: Classical is abstract.

Characterisation of joint pair of abstract
Friedrichs operators

Lemma

(T1)− (T3) ⇐⇒


T ⊆ T̃ ∗ & T̃ ⊆ T ∗;

T + T̃ bounded self-adjoint in H
with strictly positive bottom;

domT = dom T̃ & domT ∗ = dom T̃ ∗ .

By (T1) , T and T̃ are closable. By (T2) , T + T̃ is a bounded operator,
so the graph norms ∥ · ∥T and ∥ · ∥

T̃
are equivalent.

domT = dom T̃ =: W0 ,

domT ∗ = dom T̃ ∗ =: W ,
(1)

and
(
T + T̃

)
|W = T̃ ∗ + T ∗. So, (T , T̃ ) is also a pair of abstract

Friedrichs operators.
Notation :

T0 := T , T̃0 := T̃ , T1 := T̃ ∗ , T̃1 := T ∗ .

Therefore, we have

T0 ⊆ T1 and T̃0 ⊆ T̃1 . (2)

(W , ∥ · ∥T ) is the graph space. W0 is a closed subspace of the graph
space W .
For, D = C∞

c (Ω), H = L2(Ω) and a certain choice of operators it
could be that W and W0 are Sobolev spaces H1(Ω) and H1

0(Ω), re-
spectively.
Boundary map (form ): D : W → W ′,

[u | v] := W ′⟨Du, v⟩W := ⟨T1u | v ⟩ − ⟨u | T̃1v ⟩ .

Let a pair of operators (T, T̃ ) on H satisfies (T1)–(T2). Then D is
continuous and satisfies

i) (∀u, v ∈ W) ([u | v] = [v |u]) ,
ii) kerD = W0 .

Remark: (W , [· | ·]) is indefinite inner product space.

Well-posedness Result

For V , Ṽ ⊆ W we introduce two conditions:

(V1)
(∀u ∈ V) [u |u] ⩾ 0

(∀ v ∈ Ṽ) [v | v] ⩽ 0

(V2) . V [⊥] = Ṽ , Ṽ [⊥] = V

Theorem[Ern, Guermond, Caplain, 2007]
(T1)–(T3) + (V1)–(V2) =⇒ T1|V , T̃1|Ṽ bijective realisations .

Existence, Multiplicity and Classification

We seek for bijective closed operators S ≡ T̃ ∗|V such that

T ⊆ S ⊆ T̃ ∗ ,

and thus also S∗ is bijective and T̃ ⊆ S∗ ⊆ T ∗. We call (S, S∗) an
adjoint pair of bijective realisations relative to (T, T̃ ).

Theorem[Antonić, Erceg, Michelangeli, 2017]
Let (T, T̃ ) satisfies (T1)–(T3).

(i) Existence: There exists an adjoint pair of bijective realisations
with signed boundary map relative to (T, T̃ ).

(ii) Multiplicity:

ker T̃ ∗ ̸= {0}
& kerT ∗ ̸= {0}

=⇒
uncountably many adjoint pairs of
bijective realisations with signed
boundary map

ker T̃ ∗ = {0}
or kerT ∗ = {0}

=⇒ only one adjoint pair of bijective
realisations with signed boundary map

Classification: For (T, T̃ ) satisfying (T1)–(T3) we have

T ⊆ T̃ ∗ and T̃ ⊆ T ∗ ,

while by the previous theorem there exists closed Tr such that

• T ⊆ Tr ⊆ T̃ ∗ ( ⇐⇒ T̃ ⊆ T ∗
r ⊆ T ∗),

• Tr : domTr → H bijection,
• (Tr)−1 : H → domTr bounded.

Thus, we can apply Grubb’s universal classification theory (classifica-
tion of dual (adjoint) pairs).
Result: complete classification of all adjoint pairs of bijective realisa-
tions with signed boundary map.
To do: apply this result to general classical Friedrichs operators from
the beginning.

Decomposition of the graph space

Theorem[Erceg, Soni, 2022]
(T0, T̃0) is a joint pair of closed abstract Friedrichs operators then

W = W0+̇ kerT1+̇ ker T̃1 .

Corollary:
(
T1|W0+̇ ker T̃1

, T̃1|W0+̇ kerT1

)
is a pair of mutually ad-

joint pair of bijective realisations relative to (T, T̃ ).
A sketch for the proof of the theorem is:
• W0+̇ kerT1+̇ ker T̃1 is direct and closed in W .
• For any bijective realisation Tr,

W = W0 +̇ T−1
r (ker T̃1) +̇ kerT1 = W0 +̇ (T ∗

r )
−1(kerT1) +̇ ker T̃1 .

• W =
(
W0+̇ kerT1+̇ ker T̃1

)[⊥][⊥]
.

Using the above theorem we now find all admissible boundary con-
ditions for 1-d scalar case with variable coefficients.

One-dimensional(d = 1) Scalar(r = 1) Case
Ω = (a, b), a < b, D = C∞

c (a, b) and H = L2(a, b). T, T̃ : D → H :

Tφ := (αφ)′ + βφ and T̃φ := −(αφ)′ + (β + α′)φ .

Here α ∈ W 1,∞((a, b);R), β ∈ L∞((a, b);C) and for some µ0 > 0,
2ℜβ + α′ ≥ 2µ0 > 0.
The graph space :

W = {u ∈ H : (αu)′ ∈ H} , ∥u∥W := ∥u∥ + ∥(αu)′∥ .
Equivalently ,

u ∈ W ⇐⇒ αu ∈ H1(a, b) .

So, by Sobolev embedding αu ∈ C(a, b). Implies the evaluation
(αu)(x) is well defined. However, u is not necessarily continuous so
α(x)u(x) is not meaningful.

Lemma Let I := [a, b] \ α−1({0}). Then W ⊆ H1
loc(I), i.e. for

any u ∈ W and [c, d] ⊆ I , c < d, we have u|[c,d] ∈ H1(c, d).

The boundary operator can be written explicitly as

W ′⟨Du, v ⟩W =
(
αuv

)
(b)−

(
αuv

)
(a) , u, v ∈ W ,

where we define(
αuv

)
(x) :=

{
0 , α(x) = 0

α(x)u(x)v(x) , α(x) ̸= 0
, x ∈ [a, b] .

The domain of the closures T0 and T̃0 satisfies W0 = clWC∞
c (R), is

characterised as

Lemma

W0 =
{
u ∈ W : (αu)(a) = (αu)(b) = 0

}
.

Lemma The codimension of the quotient space W/W0 is

=


2 , α(a)α(b) ̸= 0 ,
1 ,

(
α(a) = 0 ∧ α(b) ̸= 0

)
∨

(
α(a) ̸= 0 ∧ α(b) = 0

)
0 , α(a) = α(b) = 0 .

By the decomposition we have

dim(kerT1) + dim(ker T̃1) = dimW/W0 .

Thus, when α(a)α(b) = 0 there is only one bijective realisation of T0.
In case α(a)α(b) ̸= 0 there are infinitely many bijective realisations if
and only if dim(kerT1) = dim(ker T̃1).
The only interesting case is, when α(a) > 0, α(b) > 0. In this case we
have,
u ∈ W belongs to domTc,d if and only if

[1]

α(b)φ̃(b)

∥φ̃∥2
− (c + id)

φ(b)−
√
α(a)
α(b)

φ(a)

u(b)

=

α(a)φ̃(a)

∥φ̃∥2
−

(c + id)

√
α(a)
α(b)

φ(b)−
√
α(a)
α(b)

φ(a)

u(a) .

Similarly, u ∈ W is in domT ∗
c,d if and only if

[2]

α(b)φ(b)− ∥φ̃∥2(c− id)

φ̃(b)−
√
α(a)
α(b)

φ̃(a)

u(b)

=

α(a)φ(a)−
∥φ̃∥2(c− id)

√
α(a)
α(b)

φ̃(b)−
√
α(a)
α(b)

φ̃(a)

u(a) .

So, the set of all pairs of mutually adjoint bijective realisations relative
to (T, T̃ ) is given by

[3]
{
(Tc,d, T

∗
c,d) : c, d ∈ R2 \ {(0, 0)}

}⋃{
(Tr, T

∗
r )
}
.

Summary :

α at end-points No. of bij. realis. (V , Ṽ)

α(a)α(b) ≤ 0 1
α(a) ≥ 0 ∧ α(b) ≤ 0 (W0,W)
α(a) ≤ 0 ∧ α(b) ≥ 0 (W ,W0)

α(a)α(b) > 0 ∞ [3] (see [1] and [2] )

Acknowledgements
This work is supported by Croatian Science Foundation under the
project IP-2018-01-2449 MiTPDE.

References
[1] K. O. Friedrichs: Symmetric positive linear differential equations,

Commun. Pure Appl. Math. 11 (1958) 333–418.
[2] A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for

the bijectivity of Hilbert operators related to Friedrichs’ systems,
Comm. Partial Diff. Eq. 32 (2007) 317–341.

[3] G. Grubb: A characterization of the non-local boundary value
problems associated with an elliptic operator, Ann. Scuola Norm.
Sup. Pisa 22 (1968) 425–513.
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