Continuity of pseudodifferential operators with nonsmooth symbols on mixed-norm Lebesgue spaces

Ivan Ivec

Faculty of Metallurgy University of Zagreb

Time-frequency representations for function spaces
Novi Sad, April 11-13, 2022.

Joint work with Nenad Antonić and Ivana Vojnović

Symbol classes

Pseudodifferential operators

The composition and adjoints

Continuity on mixed-norm Lebesgue spaces

Symbol classes

$S_{\rho, \delta, N, N^{\prime}}^{m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|},
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$
norm: $|\sigma|_{N, N^{\prime}}^{(m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}}$

Symbol classes

$S_{\rho, \delta, N, N^{\prime}}^{m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|},
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$
norm: $|\sigma|_{N, N^{\prime}}^{(m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\langle\xi)^{m-\rho|\beta|+\delta|\alpha|}}$
$\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle x\rangle^{q-|\alpha|}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}
$$

norm: $|\sigma|_{N, N^{\prime}}^{(q, m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\left.\langle x)^{q-|\alpha|} \mid \xi\right)^{m-\rho}|\beta|+\delta|\alpha|}$

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|,
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|,
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

By C we always denote a constant, even if it changes during calculation, while C_{p} is a constant depending on parameter p.

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

By C we always denote a constant, even if it changes during calculation, while C_{p} is a constant depending on parameter p.

By $\lfloor x\rfloor$ we denote the largest integer not greater than x, while $\lfloor x\rfloor_{2}$ is the largest even integer not greater than x. We also use the standard notation $m^{+}=\max \{m, 0\}$.
$\Psi D O$ - definition and continuity
For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ or $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right),
$$

where $d \xi=(2 \pi)^{-d} d \xi$.

$\Psi D O$ - definition and continuity

For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ or $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

where $d \xi=(2 \pi)^{-d} d \xi$.
Lemma 1. $\mathcal{F}: \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{N^{\prime}, N-d-1}\left(\mathbf{R}^{d}\right)$ is a linear bounded mapping for $N \geq d+1$. More precisely, there is a constant $C_{N, N^{\prime}}>0$ such that

$$
|\hat{\varphi}|_{N^{\prime}, N-d-1} \leq C_{N, N^{\prime}}|\varphi|_{N, N^{\prime}} \quad \text { for all } \varphi \in \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) .
$$

$\Psi D O$ - definition and continuity

For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ or $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

where $d \xi=(2 \pi)^{-d} d \xi$.
Lemma 1. $\mathcal{F}: \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{N^{\prime}, N-d-1}\left(\mathbf{R}^{d}\right)$ is a linear bounded mapping for $N \geq d+1$. More precisely, there is a constant $C_{N, N^{\prime}}>0$ such that

$$
|\hat{\varphi}|_{N^{\prime}, N-d-1} \leq C_{N, N^{\prime}}|\varphi|_{N, N^{\prime}} \quad \text { for all } \varphi \in \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) .
$$

Theorem 1. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$. Then T_{σ} is a bounded mapping from $\mathcal{S}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right)$, and from $\mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$ to
$\mathcal{S}_{\min \left\{N^{\prime}, M-d-1\right\}, \min \left\{N, M^{\prime}-(\lfloor m\rfloor+d+1)^{+}\right\}}\left(\mathbf{R}^{d}\right), M \geq d+1$, $M^{\prime} \geq(\lfloor m\rfloor+d+1)^{+}$. More precisely, there is a constant $C_{k, l}>0$ such that

$$
\left|T_{\sigma} \varphi\right|_{k, l} \leq C_{k, l}|\sigma|_{l, k}^{(m, \rho, \delta)}|\varphi|_{d+1+k,(\lfloor m\rfloor+d+1)^{+}+l}
$$

for all $k, l \in \mathbf{N}_{0}$ for which semi-norms are well-defined.

The composition theorem

Theorem 2. Let $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}}, m_{1}, m_{2} \geq-d$,
$m^{*}=\max \left\{m_{1}^{+}, 2 m_{1}^{+}+m_{2}\right\}, \tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}, \rho=\min \left\{\rho_{1}, \rho_{2}\right\}$, $\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$ and $\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}$ and

$$
N_{2}>\frac{m^{*}+3 d+5}{1-\delta_{2}}, N_{2}^{\prime}>3 d+5, \quad N_{1}^{\prime}>N_{2}^{\prime}+3 d+5, \quad M>2 d+1, M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+5,
$$

then

$$
\left(T_{\sigma_{1}} \circ T_{\sigma_{2}}\right) \varphi(x)=T_{\sigma_{1} \# \sigma_{2}} \varphi(x),
$$

where

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\iint e^{-i y \eta} \sigma_{1}(x, \xi+\eta) \sigma_{2}(x+y, \xi) d y đ \eta
$$

The composition theorem

Theorem 2. Let $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}} m_{1}, m_{2} \geq-d$,
$m^{*}=\max \left\{m_{1}^{+}, 2 m_{1}^{+}+m_{2}\right\}, \tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}, \rho=\min \left\{\rho_{1}, \rho_{2}\right\}$,
$\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$ and $\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}$ and

$$
N_{2}>\frac{m^{*}+3 d+5}{1-\delta_{2}}, N_{2}^{\prime}>3 d+5, \quad N_{1}^{\prime}>N_{2}^{\prime}+3 d+5, \quad M>2 d+1, M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+5,
$$

then

$$
\left(T_{\sigma_{1}} \circ T_{\sigma_{2}}\right) \varphi(x)=T_{\sigma_{1} \# \sigma_{2}} \varphi(x),
$$

where

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\iint e^{-i y \eta} \sigma_{1}(x, \xi+\eta) \sigma_{2}(x+y, \xi) d y đ \eta
$$

If additionally $\delta \leq \rho_{1}$ and $N_{2}-2 l \geq N_{1}$, where $l \in \mathbf{N}_{0}$ is such that

$$
2 l>\frac{m_{1}^{+}+d+\left(\lfloor d\rfloor_{2}+2\right) \delta}{1-\delta}, \quad 2 l \geq \frac{m_{1}^{+}-m_{1}+(1-\delta) d+\left(\lfloor d\rfloor_{2}+2\right) \delta}{1-\delta}
$$

then

$$
\sigma_{1} \# \sigma_{2} \in S_{\rho, \delta, N_{1}, N_{2}^{\prime}}^{m_{1}+m_{2}}
$$

The composition theorem - cont.

Theorem 2. Moreover, if (for some $K \in \mathbf{N}_{0}$) $\delta<\rho$,
$N_{2} \geq\left\lfloor m_{1}^{+}+K+d+1\right\rfloor_{2}+2, \quad N_{2}-2 l-K-1 \geq N_{1}, \quad N_{1}^{\prime}-K-\lfloor d\rfloor_{2}-3 \geq N_{2}^{\prime}$, where

$$
2 l>\frac{m_{1}^{+}+d+\left(\lfloor d\rfloor_{2}+2\right) \delta+\delta(K+1)}{1-\delta}, \quad 2 l \geq \frac{m_{1}^{+}-m_{1}+(1-\delta) d+\left(\lfloor d\rfloor_{2}+2\right) \delta+\rho(K+1)}{1-\delta},
$$

then we have the following asymptotic expansion:

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \sigma_{1}(x, \xi) D_{x}^{\gamma} \sigma_{2}(x, \xi)+r^{(K)}(x, \xi)
$$

where

$$
r^{(K)} \in S_{\rho, \delta, N_{1}, N_{2}^{\prime}}^{m_{1}+m_{2}-(\rho-\delta)(K+1)}
$$

The adjoint

Now we define a formal adjoint of the operator with symbol $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$. From Theorem 1 it follows that T_{σ} maps $\mathcal{S}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right)$. Also, $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right) \subseteq L^{2}\left(\mathbf{R}^{d}\right)$ for $N^{\prime}>\frac{d}{2}$. This motivates the following definition.

The adjoint

Now we define a formal adjoint of the operator with symbol $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$. From Theorem 1 it follows that T_{σ} maps $\mathcal{S}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right)$. Also, $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right) \subseteq L^{2}\left(\mathbf{R}^{d}\right)$ for $N^{\prime}>\frac{d}{2}$. This motivates the following definition.

Definition

Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}, \sigma^{*} \in S_{\rho, \delta, M, M^{\prime}}^{m}, M^{\prime}, N^{\prime}>\frac{d}{2}$. Then $T_{\sigma^{*}}$ is called a formal adjoint of T_{σ} if

$$
\begin{equation*}
\left(\forall \varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbf{R}^{d}\right)\right) \quad\left\langle T_{\sigma} \varphi_{1} \mid \varphi_{2}\right\rangle=\left\langle\varphi_{1} \mid T_{\sigma^{*}} \varphi_{2}\right\rangle \tag{1}
\end{equation*}
$$

where $\langle\cdot \mid \cdot\rangle$ is the standard inner product on $L^{2}\left(\mathbf{R}^{d}\right)$.

The adjoint theorem

Theorem 3. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}, m \geq-d$. If $N, N^{\prime} \in 2 \mathbf{N}_{0}$ such that

$$
N>\frac{2 m^{+}+(3-\delta) d+(5-\delta)(1-\delta)}{(1-\delta)^{2}}, \quad N^{\prime}>6 d+12
$$

then (1) is satisfied for

$$
\sigma^{*}(x, \xi)=\iint e^{-i y \eta} \overline{\sigma(x+y, \xi+\eta)} d y d \eta .
$$

The adjoint theorem

Theorem 3. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}, m \geq-d$. If $N, N^{\prime} \in 2 \mathbf{N}_{0}$ such that

$$
N>\frac{2 m^{+}+(3-\delta) d+(5-\delta)(1-\delta)}{(1-\delta)^{2}}, \quad N^{\prime}>6 d+12
$$

then (1) is satisfied for

$$
\sigma^{*}(x, \xi)=\iint e^{-i y \eta} \overline{\sigma(x+y, \xi+\eta)} d y d \eta .
$$

If additionally $\delta \leq \rho, N-2 l \geq M$ and $N^{\prime}-\lfloor d\rfloor_{2}-2 \geq M^{\prime}$, where $l \in \mathbf{N}_{0}$ is such that

$$
2 l>\frac{m^{+}+d+\left(\lfloor d\rfloor_{2}+2\right) \delta}{1-\delta}, \quad 2 l \geq \frac{m^{+}-m+(1-\delta) d+\left(\lfloor d\rfloor_{2}+2\right) \delta}{1-\delta},
$$

then

$$
\sigma^{*} \in S_{\rho, \delta, M, M^{\prime}}^{m} .
$$

The adjoint theorem - cont.

Theorem 3. Moreover, if (for some $K \in \mathbf{N}_{0}$) $\delta<\rho$,

$$
N \geq \frac{m^{+}+K+d+3}{1-\delta}, \quad N-2 l-K-1 \geq M, \quad N^{\prime}-K-\lfloor d\rfloor_{2}-3 \geq M^{\prime},
$$

where

$$
2 l>\frac{m^{+}+d+\left(\lfloor d\rfloor_{2}+2\right) \delta+\delta(K+1)}{1-\delta}, \quad 2 l \geq \frac{m^{+}-m+(1-\delta) d+\left(\lfloor d\rfloor_{2}+2\right) \delta+\rho(K+1)}{1-\delta},
$$

then we have the following asymptotic expansion:

$$
\sigma^{*}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x}^{\gamma} \overline{\sigma(x, \xi)}+r_{*}^{(K)}(x, \xi)
$$

where

$$
r_{*}^{(K)} \in S_{\rho, \delta, M, M^{\prime}}^{m-(\rho-\delta)(K+1)}
$$

Known continuity results

Our starting point is a famous result by Coifman and Meyer: for $0 \leq \delta \leq \rho \leq 1, \delta<1$ and $m=0$ it is enough to have $N, N^{\prime}>\frac{d}{2}$ to obtain the continuity on $L^{2}\left(\mathbf{R}^{d}\right)$.

Known continuity results

Our starting point is a famous result by Coifman and Meyer: for $0 \leq \delta \leq \rho \leq 1, \delta<1$ and $m=0$ it is enough to have $N, N^{\prime}>\frac{d}{2}$ to obtain the continuity on $L^{2}\left(\mathbf{R}^{d}\right)$.

Also, in smooth case we have the following necessary and sufficient condition for continuity on $L^{p}\left(\mathbf{R}^{d}\right)$ spaces:

$$
m \leq-d(1-\rho)\left|\frac{1}{2}-\frac{1}{p}\right|
$$

The general framework

Take $l \in\{0, \ldots,(d-1)\}$ and split $x=\left(\bar{x}, x^{\prime}\right)=\left(x_{1}, \ldots, x_{l} ; x_{l+1}, \ldots, x_{d}\right)$. Next define $\|f\|_{\overline{\mathbf{p}}, p}=\|f\|_{(\overline{\mathbf{p}}, p, \ldots, p)}$.
We also define (for each $t>0$ and $y^{\prime} \in \mathbf{R}^{d-l}$):

$$
\mathcal{F}_{l, t}^{y^{\prime}}:=\left\{f \in L_{l o c}^{1}\left(\mathbf{R}^{d}\right): \operatorname{supp} f \subseteq \mathbf{R}^{l} \times\left\{x^{\prime}:\left|x^{\prime}-y^{\prime}\right| \infty \leq t\right\} \quad \& \int_{\mathbf{R}^{d-l}} f\left(\bar{x}, x^{\prime}\right) d x^{\prime}=0\left(\text { ae } \bar{x} \in \mathbf{R}^{l}\right)\right\} .
$$

The general framework

Take $l \in\{0, \ldots,(d-1)\}$ and split $x=\left(\bar{x}, x^{\prime}\right)=\left(x_{1}, \ldots, x_{l} ; x_{l+1}, \ldots, x_{d}\right)$. Next define $\|f\|_{\overline{\mathbf{p}}, p}=\|f\|_{(\overline{\mathbf{p}}, p, \ldots, p)}$.
We also define (for each $t>0$ and $y^{\prime} \in \mathbf{R}^{d-l}$):

$$
\mathcal{F}_{l, t}^{y^{\prime}}:=\left\{f \in L_{l o c}^{1}\left(\mathbf{R}^{d}\right): \operatorname{supp} f \subseteq \mathbf{R}^{l} \times\left\{x^{\prime}:\left|x^{\prime}-y^{\prime}\right| \infty \leq t\right\} \quad \& \int_{\mathbf{R}^{d-l}} f\left(\bar{x}, x^{\prime}\right) d x^{\prime}=0\left(\text { ae } \bar{x} \in \mathbf{R}^{l}\right)\right\} .
$$

Theorem 4. Assume that $A, A^{*}: L_{c}^{\infty}\left(\mathbf{R}^{d}\right) \rightarrow L_{\text {loc }}^{1}\left(\mathbf{R}^{d}\right)$ are formally adjoint linear operators, i.e. such that

$$
\left(\forall \varphi, \psi \in C_{c}^{\infty}\left(\mathbf{R}^{d}\right)\right) \quad \int_{\mathbf{R}^{d}}(A \varphi) \bar{\psi}=\int_{\mathbf{R}^{d}} \varphi \overline{A^{*} \psi}
$$

Furthermore, let us assume that (both for $T=A$ and $T=A^{*}$) there exist constants $N>1$ and $c_{1}>0$ satisfying

$$
\begin{aligned}
& (\forall l \in\{0, \ldots,(d-1)\})\left(\forall x_{0}^{\prime} \in \mathbf{R}^{d-l}\right)(\forall t>0) \\
& \int_{\left|x^{\prime}-x_{0}^{\prime}\right|_{\infty}>N t}\left\|T f\left(\cdot, x^{\prime}\right)\right\|_{\overline{\mathbf{p}}} d x^{\prime} \leq c_{1}\|f\|_{\overline{\mathbf{p}}, 1},
\end{aligned}
$$

for any function $f \in L_{c}^{\infty}\left(\mathbf{R}^{d}\right) \cap \mathcal{F}_{l, t}^{x_{0}^{\prime}}$ and any $\overline{\mathbf{p}} \in\langle 1, \infty\rangle^{l}$.

The general framework - cont.

Theorem 4. If for some $q \in\langle 1, \infty\rangle$ operator A has a continuous extension to an operator from $L^{q}\left(\mathbf{R}^{d}\right)$ to itself with norm c_{q}, then A can be extended by the continuity to an operator from $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ to itself for any $\mathbf{p} \in\langle 1, \infty\rangle^{d}$, with the norm

$$
\begin{aligned}
\|A\|_{L^{\mathbf{P}} \rightarrow L^{\mathbf{P}}} & \leq \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(c_{1}+c_{q}\right) \\
& \leq c^{\prime} \prod_{j=0}^{d-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(c_{1}+c_{q}\right)
\end{aligned}
$$

where c and c^{\prime} are constants depending only on N and d.

Properties of the kernel

We have $\sigma(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ and so there is a $k(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\widehat{k(x, \cdot)}=\sigma(x, \cdot)$. Then we can write

$$
T_{\sigma} \varphi(x)=k(x, \cdot) * \varphi
$$

Properties of the kernel

We have $\sigma(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ and so there is a $k(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\widehat{k(x, \cdot)}=\sigma(x, \cdot)$. Then we can write

$$
T_{\sigma} \varphi(x)=k(x, \cdot) * \varphi
$$

Lemma 2. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}, \rho>0$. Then the kernel $k(x, z)$ satisfies

$$
\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k(x, z)\right| \leq C_{\alpha, \beta, L} \cdot|z|^{-d-m-\delta|\alpha|-|\beta|-L}, \quad z \neq 0
$$

for all $|\alpha| \leq N,|\beta| \geq 0$ and

$$
L \geq(1-\rho)\left(\left\lfloor\frac{d+m+\delta|\alpha|+|\beta|}{\rho}\right\rfloor+1\right)^{+}
$$

such that $N^{\prime} \geq d+m+\delta|\alpha|+|\beta|+L>0$ and $N^{\prime}>\frac{d+m+\delta|\alpha|+|\beta|}{\rho}$, and where $C_{\alpha, \beta, L}$ is a constant depending only on α, β and L.

The continuity result

Theorem 5. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m},[0,1\rangle \ni \delta \leq \rho \in\langle 0,1]$ and

$$
m \leq-(1-\rho)(d+1+\rho) .
$$

If

$$
N>\frac{(3-\delta) d+(5-\delta)(1-\delta)}{(1-\delta)^{2}}, \quad N^{\prime}>6 d+12,
$$

then T_{σ} is bounded on $L^{\mathrm{P}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in\langle 1, \infty\rangle^{d}$.

