Classical Friedrichs operators in one dimensional scalar case

Sandeep Kumar Soni

Department of Mathematics, Faculty of Science, University of Zagreb

PMF-MO

7th Croatian mathematical congress June 15-18, 2022, Split, Croatia

Joint work with Marko Erceg

IP-2018-01-2449 (MiTPDE)

Classical Friedrichs operators

Assumptions:

 $d,r\in\mathbb{N}$, $\Omega\subseteq\mathbb{R}^d$ open and bounded with Lipschitz boundary;

$$\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C})), \ k \in \{1,\ldots,d\}, \ \mathrm{and} \ \mathbf{B} \in L^\infty(\Omega; \mathrm{M}_r(\mathbb{C})) \ \mathrm{satisfying} \ (\mathrm{a.e. \ on} \ \Omega):$$

$$\mathbf{A}_k = \mathbf{A}_k^*;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \geqslant 2\mu_0 \mathbf{I}.$$

Define $\mathcal{L},\widetilde{\mathcal{L}}:L^2(\Omega)^r o \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L} \mathbf{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \mathbf{u}) + \mathbf{B} \mathbf{u} \;, \qquad \widetilde{\mathcal{L}} \mathbf{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \mathbf{u}) + \Big(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \Big) \mathbf{u} \;.$$

Classical Friedrichs operators

Assumptions:

 $d,r\in\mathbb{N}$, $\Omega\subseteq\mathbb{R}^d$ open and bounded with Lipschitz boundary;

$$\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C})), \ k \in \{1,\ldots,d\}, \ \mathrm{and} \ \mathbf{B} \in L^\infty(\Omega; \mathrm{M}_r(\mathbb{C})) \ \mathrm{satisfying} \ (\mathrm{a.e. \ on} \ \Omega):$$

(F1)
$$\mathbf{A}_k = \mathbf{A}_k^*;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \geqslant 2\mu_0 \mathbf{I}.$$

Define $\mathcal{L},\widetilde{\mathcal{L}}:L^2(\Omega)^r o \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L} \textbf{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \textbf{u}) + \mathbf{B} \textbf{u} \; , \qquad \widetilde{\mathcal{L}} \textbf{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \textbf{u}) + \Big(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \Big) \textbf{u} \; .$$

Aim: impose boundary conditions such that for any $\mathbf{f} \in L^2(\Omega)^r$ we have a unique solution of $\mathcal{L}\mathbf{u} = \mathbf{f}$.

Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

The classical theory in short

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result.
- no intrinsic (unique) way to pose boundary conditions.

The classical theory in short

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result.
- no intrinsic (unique) way to pose boundary conditions.

→ development of the abstract theory

Abstract Friedrichs operators

$$(\mathcal{H},\langle\,\cdot\,\,|\,\,\cdot\,\rangle)$$
 complex Hilbert space $(\mathcal{H}'\equiv\mathcal{H})$, $\|\,\cdot\,\|:=\sqrt{\langle\,\cdot\,\,|\,\,\cdot\,\rangle}$ $\mathcal{D}\subseteq\mathcal{H}$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \to \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

(T1)
$$(\forall \varphi, \psi \in \mathcal{D}) \qquad \langle T\varphi \mid \psi \rangle = \langle \varphi \mid \widetilde{T}\psi \rangle;$$

(T2)
$$(\exists c > 0)(\forall \varphi \in \mathcal{D}) \qquad \|(T + \widetilde{T})\varphi\| \leqslant c\|\varphi\|;$$

(T3)
$$(\exists \mu_0 > 0)(\forall \varphi \in \mathcal{D}) \qquad \langle (T + \widetilde{T})\varphi \mid \varphi \rangle \geqslant \mu_0 \|\varphi\|^2.$$

N. Antonić, K. Burazin: *Intrinsic boundary conditions for Friedrichs systems*, Comm. Partial Diff. Eq. **35** (2010) 1690–1715.

Classical is abstract

$$\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$$
 and $\mathbf{B} \in L^{\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$ satisfy (F1)–(F2):

(F1)
$$\mathbf{A}_k = \mathbf{A}_k^*;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \geqslant \mu_0 \mathbf{I}.$$

$$\mathcal{D}:=C_c^\infty(\Omega)^r$$
, $\mathcal{H}:=L^2(\Omega)^r$, and

$$T \mathsf{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \mathsf{u}) + \mathbf{B} \mathsf{u} \;, \qquad \widetilde{T} \mathsf{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \mathsf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \right) \mathsf{u} \;.$$

Classical is abstract

$$\mathbf{A}_k \in W^{1,\infty}(\Omega;\mathrm{M}_r(\mathbb{C}))$$
 and $\mathbf{B} \in L^\infty(\Omega;\mathrm{M}_r(\mathbb{C}))$ satisfy (F1)–(F2):

(F1)
$$\mathbf{A}_k = \mathbf{A}_k^*;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \geqslant \mu_0 \mathbf{I}.$$

$$\mathcal{D}:=C_c^\infty(\Omega)^r$$
, $\mathcal{H}:=L^2(\Omega)^r$, and

$$T\mathsf{u} := \sum_{k=1}^d \partial_k(\mathbf{A}_k\mathsf{u}) + \mathbf{B}\mathsf{u} \;, \qquad \widetilde{T}\mathsf{u} := -\sum_{k=1}^d \partial_k(\mathbf{A}_k\mathsf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^d \partial_k\mathbf{A}_k\right)\!\mathsf{u} \;.$$

(T1)
$$\langle T\mathbf{u} \mid \mathbf{v} \rangle_{L^2} = \langle \mathbf{u} \mid -\sum_{k=1}^d \partial_k (\mathbf{A}_k^* \mathbf{v}) + (\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k) \mathbf{v} \rangle_{L^2} \stackrel{\text{(F1)}}{=} \langle \mathbf{u} \mid \widetilde{T} \mathbf{v} \rangle_{L^2}$$
.

Classical is abstract

$$\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$$
 and $\mathbf{B} \in L^{\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$ satisfy (F1)–(F2):

(F1)
$$\mathbf{A}_k = \mathbf{A}_k^* \,;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \geqslant \mu_0 \mathbf{I}.$$

$$\mathcal{D}:=C_c^\infty(\Omega)^r$$
, $\mathcal{H}:=L^2(\Omega)^r$, and

$$T \mathbf{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \mathbf{u}) + \mathbf{B} \mathbf{u} , \qquad \widetilde{T} \mathbf{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \mathbf{u}) + \left(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \right) \mathbf{u} .$$

(T1)
$$\langle T\mathbf{u} \mid \mathbf{v} \rangle_{L^2} = \langle \mathbf{u} \mid -\sum_{k=1}^d \partial_k (\mathbf{A}_k^* \mathbf{v}) + (\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k) \mathbf{v} \rangle_{L^2} \stackrel{\text{(F1)}}{=} \langle \mathbf{u} \mid \widetilde{T} \mathbf{v} \rangle_{L^2}$$
.

Since
$$(T+\widetilde{T})\mathbf{u} = \left(\mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \right) \mathbf{u}$$
,

(T2)
$$\|(T+\widetilde{T})\mathbf{u}\|_{L^2} \leqslant \left(2\|\mathbf{B}\|_{L^\infty} + \sum_{k=1}^d \|\mathbf{A}_k\|_{W^{1,\infty}}\right) \|\mathbf{u}\|_{L^2}$$
,

$$(\mathsf{T3}) \ \langle \, (T+\widetilde{T}) \mathsf{u} \mid \mathsf{u} \, \rangle_{L^2} \overset{(\mathrm{F2})}{\geqslant} \mu_0 \| \mathsf{u} \|_{L^2}^2 \, .$$

Lemma

$$(T1)-(T3) \iff \begin{cases} T\subseteq \widetilde{T}^* & \& \quad \widetilde{T}\subseteq T^*;\\ \overline{T+\widetilde{T}} \text{ bounded self-adjoint in \mathcal{H} with strictly positive bottom};\\ \operatorname{dom} \overline{T}=\operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^*=\operatorname{dom} \widetilde{T}^*. \end{cases}$$

Lemma

$$(T1)-(T3) \iff \begin{cases} \overline{T}\subseteq \widetilde{T}^* & \& \quad \widetilde{T}\subseteq T^*;\\ \overline{T+\widetilde{T}} \text{ bounded self-adjoint in \mathcal{H} with strictly positive bottom;}\\ \operatorname{dom} \overline{T}=\operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^*=\operatorname{dom} \widetilde{T}^*. \end{cases}$$

Dual pairs: Operators A,B on $\mathcal H$ with the property that $A\subseteq B^*$ and $B\subseteq A^*$ are often referred to as *dual pairs*. Thus, T and $\widetilde T$ are *dual pairs*.

Lemma

$$(T1)-(T3) \iff \begin{cases} T\subseteq \widetilde{T}^* & \& \quad \widetilde{T}\subseteq T^*;\\ \overline{T+\widetilde{T}} \text{ bounded self-adjoint in \mathcal{H} with strictly positive bottom};\\ \operatorname{dom} \overline{T}=\operatorname{dom} \widetilde{\widetilde{T}} & \& \quad \operatorname{dom} T^*=\operatorname{dom} \widetilde{T}^*. \end{cases}$$

Dual pairs: Operators A,B on $\mathcal H$ with the property that $A\subseteq B^*$ and $B\subseteq A^*$ are often referred to as *dual pairs*. Thus, T and $\widetilde T$ are *dual pairs*.

By (T1) , T and \widetilde{T} are closable. By (T2) , $T+\widetilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

(1)
$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0,$$
$$\operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W},$$

Lemma

$$(T1)-(T3) \iff \begin{cases} T\subseteq \widetilde{T}^* & \& \quad \widetilde{T}\subseteq T^*;\\ \overline{T+\widetilde{T}} \text{ bounded self-adjoint in \mathcal{H} with strictly positive bottom};\\ \operatorname{dom} \overline{T}=\operatorname{dom} \overline{\widetilde{T}} & \& \quad \operatorname{dom} T^*=\operatorname{dom} \widetilde{T}^*. \end{cases}$$

Dual pairs : Operators A,B on $\mathcal H$ with the property that $A\subseteq B^*$ and $B\subseteq A^*$ are often referred to as *dual pairs*. Thus, T and $\widetilde T$ are *dual pairs*.

By (T1) , T and \widetilde{T} are closable. By (T2) , $T+\widetilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_T$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

(1)
$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0,$$
$$\operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W},$$

and $(\overline{T+\widetilde{T}})|_{\mathcal{W}}=\widetilde{T}^*+T^*$. So, $(\overline{T},\overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators.

Notation:

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

(2)
$$T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1$$
 .

Notation:

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

$$(2) T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1.$$

 $(\mathcal{W}, \|\cdot\|_T)$ is the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} .

Notation:

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

$$(2) T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1.$$

 $(\mathcal{W}, \|\cdot\|_T)$ is the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} .

For, $\mathcal{D}=C_c^\infty(\Omega),\ \mathcal{H}=L^2(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_0 are Sobolev spaces $H^1(\Omega)$ and $H^1_0(\Omega)$, respectively.

Notation:

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

$$(2) T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1 .$$

 $(\mathcal{W}, \|\cdot\|_T)$ is the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} .

For, $\mathcal{D}=C_c^\infty(\Omega),\ \mathcal{H}=L^2(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_0 are Sobolev spaces $H^1(\Omega)$ and $H^1_0(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$,

$$[u \mid v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle.$$

Notation:

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

$$(2) T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1 .$$

 $(\mathcal{W}, \|\cdot\|_T)$ is the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} .

For, $\mathcal{D}=C_c^\infty(\Omega),\ \mathcal{H}=L^2(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_0 are Sobolev spaces $H^1(\Omega)$ and $H^1_0(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$,

$$[u \mid v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle.$$

Let a pair of operators (T,\widetilde{T}) on $\mathcal H$ satisfies $(\mathrm{T1})$ – $(\mathrm{T2})$. Then D is continuous and satisfies

- i) $(\forall u, v \in \mathcal{W})$ $([u \mid v] = \overline{[v \mid u]}),$
- ii) $\ker D = \mathcal{W}_0$.

Notation :

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

$$(2) T_0 \subseteq T_1 \text{ and } \widetilde{T}_0 \subseteq \widetilde{T}_1 .$$

 $(\mathcal{W}, \|\cdot\|_T)$ is the graph space. \mathcal{W}_0 is a closed subspace of the graph space \mathcal{W} .

For, $\mathcal{D}=C_c^\infty(\Omega),\ \mathcal{H}=L^2(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_0 are Sobolev spaces $H^1(\Omega)$ and $H^1_0(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \to \mathcal{W}'$,

$$[u \mid v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle.$$

Let a pair of operators (T,\widetilde{T}) on $\mathcal H$ satisfies $(\mathrm{T1})$ – $(\mathrm{T2})$. Then D is continuous and satisfies

- i) $(\forall u, v \in \mathcal{W})$ $([u \mid v] = \overline{[v \mid u]}),$
- ii) $\ker D = \mathcal{W}_0$.

Remark : $(W, [\cdot | \cdot])$ is indefinite inner product space.

Well-posedness result

For $\mathcal{V},\widetilde{\mathcal{V}}\subseteq\mathcal{W}$ we introduce two conditions:

$$(\forall u \in \mathcal{V}) \qquad [u \mid u] \geqslant 0$$

$$(\forall v \in \widetilde{\mathcal{V}}) \qquad [v \mid v] \leqslant 0$$

$$(V2)\;. \hspace{1cm} \mathcal{V}^{[\perp]} = \widetilde{\mathcal{V}}\,,\, \widetilde{\mathcal{V}}^{[\perp]} = \mathcal{V}$$

Well-posedness result

For $\mathcal{V},\widetilde{\mathcal{V}}\subseteq\mathcal{W}$ we introduce two conditions:

$$(\forall u \in \mathcal{V}) \qquad [u \mid u] \geqslant 0$$

$$(\forall v \in \widetilde{\mathcal{V}}) \qquad [v \mid v] \leqslant 0$$

$$(V2) \ . \hspace{1cm} \mathcal{V}^{[\perp]} = \widetilde{\mathcal{V}} \ , \ \widetilde{\mathcal{V}}^{[\perp]} = \mathcal{V}$$

If (T, \widetilde{T}) satisfies (T1)–(T2), then

$$(V2) \iff \begin{cases} \mathcal{D} \subseteq \mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W} \\ (\widetilde{T}^*|_{\mathcal{V}})^* = T^*|_{\widetilde{\mathcal{V}}} \\ (T^*|_{\widetilde{\mathcal{V}}})^* = \widetilde{T}^*|_{\mathcal{V}}. \end{cases}$$

Well-posedness result

For $\mathcal{V},\widetilde{\mathcal{V}}\subseteq\mathcal{W}$ we introduce two conditions:

$$(\forall u \in \mathcal{V}) \qquad [u \mid u] \geqslant 0$$

$$(\forall v \in \widetilde{\mathcal{V}}) \qquad [v \mid v] \leqslant 0$$

$$(\mathsf{V2})\,.\qquad\qquad \mathcal{V}^{[\perp]} = \widetilde{\mathcal{V}}\,,\,\widetilde{\mathcal{V}}^{[\perp]} = \mathcal{V}$$

If (T, \widetilde{T}) satisfies (T1)–(T2), then

$$(V2) \iff \begin{cases} \mathcal{D} \subseteq \mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W} \\ (\widetilde{T}^*|_{\mathcal{V}})^* = T^*|_{\widetilde{\mathcal{V}}} \\ (T^*|_{\widetilde{\mathcal{V}}})^* = \widetilde{T}^*|_{\mathcal{V}}. \end{cases}$$

Theorem (Ern, Guermond, Caplain, 2007)

(T1)–(T3) + (V1)–(V2)
$$\implies T_1|_{\mathcal{V}}, \widetilde{T}_1|_{\widetilde{\mathcal{V}}}$$
 bijective realisations .

Existance, multiplicity and classification

We seek for bijective closed operators $S \equiv \widetilde{T}^*|_{\mathcal{V}}$ such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^* \,,$$

and thus also S^* is bijective and $\overline{\widetilde{T}}\subseteq S^*\subseteq T^*$. We call (S,S^*) an adjoint pair of bijective realisations relative to (T,\widetilde{T}) .

Existance, multiplicity and classification

We seek for bijective closed operators $S \equiv \widetilde{T}^*|_{\mathcal{V}}$ such that

$$\overline{T}\subseteq S\subseteq \widetilde{T}^*\;,$$

and thus also S^* is bijective and $\widetilde{T} \subseteq S^* \subseteq T^*$. We call (S, S^*) an adjoint pair of bijective realisations relative to (T, \widetilde{T}) .

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)–(T3).

(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}) .

(ii)

 $\ker \widetilde{T}^* \neq \{0\} \& \ker T^* \neq \{0\} \implies \begin{array}{l} \textit{uncountably many adjoint pairs of bijective} \\ \textit{realisations with signed boundary map} \\ \ker \widetilde{T}^* = \{0\} \textit{ or } \ker T^* = \{0\} \implies \begin{array}{l} \textit{only one adjoint pair of bijective realisations} \\ \textit{with signed boundary map} \end{array}$

Classification

For (T,\widetilde{T}) satisfying (T1)–(T3) we have

$$\overline{T} \subseteq \widetilde{T}^*$$
 and $\overline{\widetilde{T}} \subseteq T^*$,

while by the previous theorem there exists closed $T_{
m r}$ such that

- $\overline{T} \subseteq T_{\mathbf{r}} \subseteq \widetilde{T}^*$ ($\iff \overline{\widetilde{T}} \subseteq T_{\mathbf{r}}^* \subseteq T^*$),
- ullet $T_{
 m r}: {
 m dom}\, T_{
 m r}
 ightarrow {\cal H}$ bijection,
- $(T_r)^{-1}: \mathcal{H} \to \operatorname{dom} T_r$ bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).

We used Grubb's universal classification

G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa **22** (1968) 425–513.

N. Antonić, M.E., A. Michelangeli: *Friedrichs systems in a Hilbert space framework: solvability and multiplicity*, J. Differential Equations 263 (2017) 8264-8294.

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.

To do: apply this result to general classical Friedrichs operators from the beginning (nice class of non-self-adjoint differential operators of interest)

(P1) Grubb's decomposition:

$$\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1 ,$$

$$\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1 .$$

(P1) Grubb's decomposition:

$$\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1 ,$$

$$\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1 .$$

(P2) $(W, [\cdot | \cdot])$ is indefinite inner product space.

$$\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W} \ \mathrm{is \ closed \ in} \ \mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}.$$

(P1) Grubb's decomposition:

$$\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1 ,$$

$$\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1 .$$

(P2) $(W, [\cdot | \cdot])$ is indefinite inner product space.

$$\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W}$$
 is closed in $\mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}$.

(P3) If $\mathcal{V},\widetilde{\mathcal{V}}\subset\mathcal{W}$ and $(\mathcal{V},\widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$(\forall u \in \mathcal{V}) \quad |\langle T_1 u | u \rangle| \ge \mu_0 ||u||^2 ,$$

$$(\forall v \in \widetilde{\mathcal{V}}) \quad |\langle \widetilde{T}_1 v | v \rangle| > \mu_0 ||v||^2 .$$

(P1) Grubb's decomposition:

$$\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1 ,$$

$$\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1 .$$

(P2) $(W, [\cdot | \cdot])$ is indefinite inner product space.

$$\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W} \ \mathrm{is \ closed \ in} \ \mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}.$$

(P3) If $\mathcal{V},\widetilde{\mathcal{V}}\subset\mathcal{W}$ and $(\mathcal{V},\widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$(\forall u \in \mathcal{V}) \quad |\langle T_1 u | u \rangle| \ge \mu_0 ||u||^2 ,$$

$$(\forall v \in \widetilde{\mathcal{V}}) \quad |\langle \widetilde{T}_1 v | v \rangle| \ge \mu_0 ||v||^2 .$$

(P4)

$$\mathcal{H} = \operatorname{ran} T_0 \oplus \ker \widetilde{T}_1 = \operatorname{ran} \widetilde{T}_0 \oplus \ker T_1$$
.

(P1) Grubb's decomposition:

$$\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1 ,$$

$$\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1 .$$

(P2) $(W, [\cdot | \cdot])$ is indefinite inner product space.

$$\mathcal{W}_0 \subseteq \mathcal{V} \subseteq \mathcal{W}$$
 is closed in $\mathcal{W} \iff \mathcal{V} = \mathcal{V}^{[\perp][\perp]}$.

(P3) If $\mathcal{V},\widetilde{\mathcal{V}}\subset\mathcal{W}$ and $(\mathcal{V},\widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$(\forall u \in \mathcal{V}) \quad |\langle T_1 u | u \rangle| \ge \mu_0 ||u||^2 ,$$

$$(\forall v \in \widetilde{\mathcal{V}}) \quad |\langle \widetilde{T}_1 v | v \rangle| \ge \mu_0 ||v||^2 .$$

(P4)

$$\mathcal{H} = \operatorname{ran} T_0 \oplus \ker \widetilde{T}_1 = \operatorname{ran} \widetilde{T}_0 \oplus \ker T_1$$
.

(P5) $(W_0 \dot{+} \ker \widetilde{T}_1, W_0 \dot{+} \ker T_1)$ satisfies (V1) condition.

Theorem

 (T_0,\widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$W = W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1.$$

Theorem

 $(T_0, \overline{T_0})$ is a joint pair of closed abstract Friedrichs operators then

$$W = W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1.$$

Corollary

 $\left(T_1|_{\mathcal{W}_0 \dotplus \ker \tilde{T}_1}, \tilde{T}_1|_{\mathcal{W}_0 \dotplus \ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) .

Theorem

 (T_0,\widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$W = W_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1.$$

Corollary

 $\left(T_1|_{\mathcal{W}_0\dotplus\ker \widetilde{T}_1},\widetilde{T}_1|_{\mathcal{W}_0\dotplus\ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T,\widetilde{T}) .

• $W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$ is direct and closed in W.

Theorem

 (T_0,\widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$W = W_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1.$$

Corollary

 $\left(T_1|_{\mathcal{W}_0\dotplus\ker \widetilde{T}_1},\widetilde{T}_1|_{\mathcal{W}_0\dotplus\ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T,\widetilde{T}) .

- $W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$ is direct and closed in W.
- ullet For any bijective realisation $T_{
 m r}$,

$$\mathcal{W} = \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}_0 \dotplus (T_r^*)^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 \ .$$

Theorem

 (T_0,\widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$W = W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1.$$

Corollary

 $\left(T_1|_{\mathcal{W}_0\dotplus\ker \widetilde{T}_1},\widetilde{T}_1|_{\mathcal{W}_0\dotplus\ker T_1}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T,\widetilde{T}) .

- $W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$ is direct and closed in W.
- ullet For any bijective realisation $T_{
 m r}$,

$$\mathcal{W} = \mathcal{W}_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = \mathcal{W}_0 \dotplus (T_r^*)^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 .$$

•
$$\mathcal{W} = \left(\mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1\right)^{[\perp][\perp]}$$
.

One-dimensional scalar case: Preliminaries 1/5

$$\Omega = (a,b), \ a < b, \ \mathcal{D} = C_c^{\infty}(a,b) \ \text{and} \ \mathcal{H} = L^2(a,b). \ T, \widetilde{T}: \mathcal{D} \to \mathcal{H}:$$

$$T\varphi := (\alpha\varphi)' + \beta\varphi$$
 and $\widetilde{T}\varphi := -(\alpha\varphi)' + (\overline{\beta} + \alpha')\varphi$.

Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$, $\beta \in L^\infty((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re \beta + \alpha' \geq 2\mu_0 > 0$.

$$\Omega=(a,b)$$
, $a< b$, $\mathcal{D}=C_c^\infty(a,b)$ and $\mathcal{H}=L^2(a,b)$. $T,\widetilde{T}:\mathcal{D}\to\mathcal{H}:$

$$T\varphi := (\alpha\varphi)' + \beta\varphi \qquad \text{and} \qquad \widetilde{T}\varphi := -(\alpha\varphi)' + (\overline{\beta} + \alpha')\varphi \;.$$

Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$, $\beta \in L^{\infty}((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re \beta + \alpha' \geq 2\mu_0 > 0$.

The graph space:

$$W = \{u \in \mathcal{H} : (\alpha u)' \in \mathcal{H}\}, \quad ||u||_{W} := ||u|| + ||(\alpha u)'||.$$

$$\Omega=(a,b)$$
, $a < b$, $\mathcal{D}=C_c^\infty(a,b)$ and $\mathcal{H}=L^2(a,b)$. $T,\widetilde{T}:\mathcal{D} \to \mathcal{H}:$

$$T\varphi := (\alpha\varphi)' + \beta\varphi \qquad \text{and} \qquad \widetilde{T}\varphi := -(\alpha\varphi)' + (\overline{\beta} + \alpha')\varphi \;.$$

Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$, $\beta \in L^{\infty}((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re \beta + \alpha' \geq 2\mu_0 > 0$.

The graph space:

$$W = \{u \in \mathcal{H} : (\alpha u)' \in \mathcal{H}\}, \quad ||u||_{\mathcal{W}} := ||u|| + ||(\alpha u)'||.$$

Equivalently,

$$u \in \mathcal{W} \iff \alpha u \in H^1(a,b)$$
.

So, by Sobolev embedding $\alpha u \in C(a,b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x)u(x)$ is not meaningful.

$$\Omega=(a,b)$$
, $a < b$, $\mathcal{D}=C_c^\infty(a,b)$ and $\mathcal{H}=L^2(a,b)$. $T,\widetilde{T}:\mathcal{D}\to\mathcal{H}:$

$$T\varphi:=(\alpha\varphi)'+\beta\varphi\qquad\text{and}\qquad \widetilde{T}\varphi:=-(\alpha\varphi)'+(\overline{\beta}+\alpha')\varphi\;.$$

Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$, $\beta \in L^{\infty}((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re \beta + \alpha' \geq 2\mu_0 > 0$.

The graph space:

$$W = \{u \in \mathcal{H} : (\alpha u)' \in \mathcal{H}\}, \quad ||u||_{\mathcal{W}} := ||u|| + ||(\alpha u)'||.$$

Equivalently,

$$u \in \mathcal{W} \iff \alpha u \in H^1(a,b)$$
.

So, by Sobolev embedding $\alpha u \in C(a,b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x)u(x)$ is not meaningful.

Lemma

Let $I := [a,b] \setminus \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H^1_{\mathrm{loc}}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c,d] \subseteq I$, c < d, we have $u|_{[c,d]} \in H^1(c,d)$.

The boundary operator can be written explicitly as

$$W'\langle Du, v \rangle_{W} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a), \quad u, v \in W,$$

where we define

$$(\alpha u \overline{v})(x) := \left\{ \begin{array}{ll} 0 & , & \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} & , & \alpha(x) \neq 0 \end{array} \right. , \quad x \in [a, b].$$

The boundary operator can be written explicitly as

$$W'\langle Du, v \rangle_{W} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a), \quad u, v \in W,$$

where we define

$$(\alpha u \overline{v})(x) := \left\{ \begin{array}{ll} 0 & , & \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} & , & \alpha(x) \neq 0 \end{array} \right. , \quad x \in [a, b] \, .$$

The domain of the closures T_0 and \widetilde{T}_0 satisfies $\mathcal{W}_0 = \mathrm{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$W_0 = \left\{ u \in W : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}.$$

The boundary operator can be written explicitly as

$$W'\langle Du, v \rangle_{W} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a), \quad u, v \in W,$$

where we define

$$(\alpha u \overline{v})(x) := \left\{ \begin{array}{ll} 0 & , & \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} & , & \alpha(x) \neq 0 \end{array} \right. , \quad x \in [a,b] \, .$$

The domain of the closures T_0 and \widetilde{T}_0 satisfies $\mathcal{W}_0 = \operatorname{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$\mathcal{W}_0 = \left\{ u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}.$$

Lemma

$$\dim(\mathcal{W}/\mathcal{W}_0) \ = \ \begin{cases} 2 & , \quad \alpha(a)\alpha(b) \neq 0 \ , \\ 1 & , \quad \left(\alpha(a) = 0 \land \alpha(b) \neq 0\right) \lor \left(\alpha(a) \neq 0 \land \alpha(b) = 0\right) , \\ 0 & , \quad \alpha(a) = \alpha(b) = 0 \ . \end{cases}$$

By the decomposition we have

$$\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = \dim \mathcal{W}/\mathcal{W}_0.$$

Thus, when $\alpha(a)\alpha(b)=0$ there is only one bijective realisation of T_0 . When case $\alpha(a)\alpha(b)\neq 0$ there are infinitely many bijective realisations if and only if $\dim(\ker T_1)=\dim(\ker \widetilde T_1)$.

By the decomposition we have

$$\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = \dim \mathcal{W}/\mathcal{W}_0.$$

Thus, when $\alpha(a)\alpha(b)=0$ there is only one bijective realisation of T_0 . When case $\alpha(a)\alpha(b)\neq 0$ there are infinitely many bijective realisations if and only if $\dim(\ker T_1)=\dim(\ker\widetilde{T}_1)$.

The only interesting case is, when $\alpha(a)>0, \alpha(b)>0$. In this case we have, $u\in\mathcal{W}$ belongs to $\mathrm{dom}\,T_{c,d}$ if and only if

$$[1] \left(\frac{\alpha(b)\overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)} \right) u(b) = \left(\frac{\alpha(a)\overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)} \right) u(a) \; .$$

By the decomposition we have

$$\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = \dim \mathcal{W}/\mathcal{W}_0.$$

Thus, when $\alpha(a)\alpha(b)=0$ there is only one bijective realisation of T_0 . When case $\alpha(a)\alpha(b)\neq 0$ there are infinitely many bijective realisations if and only if $\dim(\ker T_1)=\dim(\ker\widetilde{T}_1)$.

The only interesting case is, when $\alpha(a)>0, \alpha(b)>0$. In this case we have, $u\in\mathcal{W}$ belongs to $\mathrm{dom}\,T_{c,d}$ if and only if

$$[1] \left(\frac{\alpha(b)\overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)} \right) u(b) = \left(\frac{\alpha(a)\overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)} \right) u(a) .$$

Similarly, $u \in \mathcal{W}$ is in $\operatorname{dom} T_{c,d}^*$ if and only if

$$[2] \left(\alpha(b) \overline{\varphi(b)} - \frac{\|\tilde{\varphi}\|^2(c - id)}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)} \right) u(b) = \left(\alpha(a) \overline{\varphi(a)} - \frac{\|\tilde{\varphi}\|^2(c - id) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)} \right) u(a) \ .$$

So, the set of all pairs of mutually adjoint bijective realisations relative to (T,\widetilde{T}) is given by

[3]
$$\{(T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{(0,0)\}\} \bigcup \{(T_r, T_r^*)\}$$
.

So, the set of all pairs of mutually adjoint bijective realisations relative to (T,\widetilde{T}) is given by

[3]
$$\left\{ (T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{(0,0)\} \right\} \bigcup \left\{ (T_r, T_r^*) \right\}.$$

Summary:

α at end-points	No. of bij. realisations	$(\mathcal{V},\widetilde{\mathcal{V}})$	
$\alpha(a)\alpha(b) \le 0$	1		$(\mathcal{V}_0,\mathcal{W})$ $(\mathcal{V}_0,\mathcal{W}_0)$
$\alpha(a)\alpha(b) > 0$	∞	[3] (see [1] and [2])	

And...

...thank you for your attention :)