Classical Friedrichs operators in one dimensional scalar case

Sandeep Kumar Soni

Department of Mathematics, Faculty of Science, University of Zagreb

PMF-MO

7th Croatian mathematical congress
June $15-18$, 2022, Split, Croatia

Joint work with Marko Erceg

IP-2018-01-2449 (MiTPDE)

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}
$$

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}
$$

Aim: impose boundary conditions such that for any $f \in L^{2}(\Omega)^{r}$ we have a unique solution of $\mathcal{L} \mathrm{u}=\mathrm{f}$.
Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

The classical theory in short

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

The classical theory in short

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.

Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- treating the equations of mixed type, such as the Tricomi equation:

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

Shortcommings:

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.
\rightsquigarrow development of the abstract theory

Abstract Friedrichs operators

$(\mathcal{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathcal{H}^{\prime} \equiv \mathcal{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathcal{D} \subseteq \mathcal{H}$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \varphi, \psi \in \mathcal{D}) & \langle T \varphi \mid \psi\rangle=\langle\varphi \mid \widetilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \varphi \in \mathcal{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathcal{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} \tag{T3}
\end{align*}
$$

A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
F. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.

Classical is abstract

$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfy (F1)-(F2):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Classical is abstract

$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfy (F1)-(F2):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

$(\mathrm{T} 1)\langle T \mathbf{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathbf{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{*} \mathbf{v}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\langle\mathbf{u} \mid \widetilde{T} \mathbf{v}\rangle_{L^{2}}$.

Classical is abstract

$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfy (F1)-(F2):

$$
\begin{equation*}
\mathbf{A}_{k}=\mathbf{A}_{k}^{*} \tag{F1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant \mu_{0} \mathbf{I} . \tag{F2}
\end{equation*}
$$

$\mathcal{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and

$$
T \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{T} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

$(\mathrm{T} 1)\langle T \mathbf{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathbf{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k}^{*} \mathrm{v}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\langle\mathbf{u} \mid \widetilde{T} \mathbf{v}\rangle_{L^{2}}$.
Since $(T+\widetilde{T}) \mathbf{u}=\left(\mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u}$,
(T2) $\|(T+\widetilde{T}) \mathbf{u}\|_{L^{2}} \leqslant\left(2\|\mathbf{B}\|_{L^{\infty}}+\sum_{k=1}^{d}\left\|\mathbf{A}_{k}\right\|_{W^{1, \infty}}\right)\|\mathbf{u}\|_{L^{2}}$,
(T3) $\langle(T+\widetilde{T}) \mathbf{u} \mid \mathbf{u}\rangle_{L^{2}} \stackrel{(\mathrm{~F} 2)}{\geqslant} \mu_{0}\|\mathbf{u}\|_{L^{2}}^{2}$.

Characterisation of joint pair of abstract Friedrichs operators

Lemma

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \widetilde{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}
\end{array}\right.
$$

Characterisation of joint pair of abstract Friedrichs operators

Lemma

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .
\end{array}\right.
$$

Dual pairs : Operators A, B on \mathcal{H} with the property that $A \subseteq B^{*}$ and $B \subseteq A^{*}$ are often referred to as dual pairs. Thus, T and \widetilde{T} are dual pairs.

Characterisation of joint pair of abstract Friedrichs operators

Lemma

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \& \widetilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}
\end{array}\right.
$$

Dual pairs : Operators A, B on \mathcal{H} with the property that $A \subseteq B^{*}$ and $B \subseteq A^{*}$ are often referred to as dual pairs. Thus, T and \widetilde{T} are dual pairs.

By (T1) , T and \widetilde{T} are closable. By (T2) , $T+\widetilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\widetilde{T}}$ are equivalent.

$$
\begin{align*}
\operatorname{dom} \bar{T} & =\operatorname{dom} \widetilde{\widetilde{T}}=: \mathcal{W}_{0}, \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathcal{W}, \tag{1}
\end{align*}
$$

Characterisation of joint pair of abstract Friedrichs operators

Lemma

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \quad \& \quad \widetilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \quad \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .
\end{array}\right.
$$

Dual pairs : Operators A, B on \mathcal{H} with the property that $A \subseteq B^{*}$ and $B \subseteq A^{*}$ are often referred to as dual pairs. Thus, T and \widetilde{T} are dual pairs.

By (T1) , T and \widetilde{T} are closable. By (T2) , $T+\widetilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\tilde{T}}$ are equivalent.

$$
\begin{align*}
\operatorname{dom} \bar{T} & =\operatorname{dom} \widetilde{\widetilde{T}}=: \mathcal{W}_{0}, \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathcal{W}, \tag{1}
\end{align*}
$$

and $(\overline{T+\widetilde{T}}) \mid \mathcal{w}=\widetilde{T}^{*}+T^{*}$. So, $(\bar{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators.

Characterisation of joint pair of abstract Friedrichs operators

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} \tag{2}
\end{equation*}
$$

Characterisation of joint pair of abstract Friedrichs operators

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*} .
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} . \tag{2}
\end{equation*}
$$

$\left(\mathcal{W},\|\cdot\|_{T}\right)$ is the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}.

Characterisation of joint pair of abstract Friedrichs operators

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*} .
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} . \tag{2}
\end{equation*}
$$

$\left(\mathcal{W},\|\cdot\|_{T}\right)$ is the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}.
For, $\mathcal{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Characterisation of joint pair of abstract Friedrichs operators

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*} .
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} . \tag{2}
\end{equation*}
$$

$\left(\mathcal{W},\|\cdot\|_{T}\right)$ is the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}.
For, $\mathcal{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle
$$

Characterisation of joint pair of abstract Friedrichs operators

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*} .
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} . \tag{2}
\end{equation*}
$$

$\left(\mathcal{W},\|\cdot\|_{T}\right)$ is the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}.
For, $\mathcal{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

Let a pair of operators (T, \widetilde{T}) on \mathcal{H} satisfies (T1)-(T2). Then D is continuous and satisfies
i) $(\forall u, v \in \mathcal{W}) \quad([u \mid v]=\overline{[v \mid u]})$,
ii) $\operatorname{ker} D=\mathcal{W}_{0}$.

Characterisation of joint pair of abstract Friedrichs operators

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*} .
$$

Therefore, we have

$$
\begin{equation*}
T_{0} \subseteq T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq \widetilde{T}_{1} . \tag{2}
\end{equation*}
$$

$\left(\mathcal{W},\|\cdot\|_{T}\right)$ is the graph space. \mathcal{W}_{0} is a closed subspace of the graph space \mathcal{W}.
For, $\mathcal{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathcal{W} and \mathcal{W}_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

Let a pair of operators (T, \widetilde{T}) on \mathcal{H} satisfies (T1)-(T2). Then D is continuous and satisfies
i) $(\forall u, v \in \mathcal{W}) \quad([u \mid v]=\overline{[v \mid u]})$,
ii) $\operatorname{ker} D=\mathcal{W}_{0}$.

Remark : $(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space.

Well-posedness result

For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0}
\end{array}
$$

(V2).

$$
\mathcal{V}^{[\perp]}=\widetilde{\mathcal{V}}, \widetilde{\mathcal{V}}^{[\perp]}=\mathcal{V}
$$

Well-posedness result

For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0}
\end{array}
$$

(V2) .

$$
\mathcal{V}^{[\perp]}=\widetilde{\mathcal{V}}, \widetilde{\mathcal{V}}^{[\perp]}=\mathcal{V}
$$

If (T, \widetilde{T}) satisfies $(\mathrm{T} 1)-(\mathrm{T} 2)$, then
$(V 2) \Longleftrightarrow\left\{\begin{array}{l}\mathcal{D} \subseteq \mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W} \\ \left(\widetilde{T^{*}} \mid \mathcal{V}\right)^{*}=\left.T^{*}\right|_{\tilde{\mathcal{V}}} \\ \left(T^{*} \mid \tilde{\mathcal{V}}\right)^{*}=\widetilde{T}^{*} \mid \mathcal{V} .\end{array}\right.$

Well-posedness result

For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0}
\end{array}
$$

(V2) .

$$
\mathcal{V}^{[\perp]}=\widetilde{\mathcal{V}}, \widetilde{\mathcal{V}}^{[\perp]}=\mathcal{V}
$$

If (T, \widetilde{T}) satisfies $(\mathrm{T} 1)-(\mathrm{T} 2)$, then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathcal{D} \subseteq \mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W} \\
\left(\widetilde{T^{*}} \mid \mathcal{V}\right)^{*}=T^{*} \mid \tilde{\mathcal{V}} \\
\left(T^{*} \mid \tilde{\mathcal{V}}\right)^{*}=\widetilde{T}^{*} \mid \mathcal{V}
\end{array}\right.
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-(V 2) \Longrightarrow T_{1}\left|\mathcal{V}, \widetilde{T}_{1}\right|_{\tilde{\mathcal{V}}}$ bijective realisations .

Existance, multiplicity and classification

We seek for bijective closed operators $S \equiv \widetilde{T}^{*} \mid \mathcal{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. We call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations relative to (T, \widetilde{T}).

Existance, multiplicity and classification

We seek for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{\mathcal{V}}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. We call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations relative to (T, \widetilde{T}).

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification

For (T, \widetilde{T}) satisfying (T1)-(T3) we have

$$
\bar{T} \subseteq \widetilde{T}^{*} \quad \text { and } \quad \overline{\widetilde{T}} \subseteq T^{*}
$$

while by the previous theorem there exists closed T_{r} such that

- $\bar{T} \subseteq T_{\mathrm{r}} \subseteq \widetilde{T}^{*}\left(\Longleftrightarrow \overline{\widetilde{T}} \subseteq T_{\mathrm{r}}^{*} \subseteq T^{*}\right)$,
- $T_{\mathrm{r}}: \operatorname{dom} T_{\mathrm{r}} \rightarrow \mathcal{H}$ bijection,
- $\left(T_{\mathrm{r}}\right)^{-1}: \mathcal{H} \rightarrow \operatorname{dom} T_{\mathrm{r}}$ bounded.

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).
We used Grubb's universal classification
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.
N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.
To do: apply this result to general classical Friedrichs operators from the beginning (nice class of non-self-adjoint differential operators of interest)

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
& \operatorname{dom} T_{1}=\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
& \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
& \operatorname{dom} T_{1}=\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1}, \\
& \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
\end{aligned}
$$

(P2) $(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space.

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]} .
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
& \operatorname{dom} T_{1}=\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1}, \\
& \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
\end{aligned}
$$

(P2) $(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space.

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & \left|\left\langle T_{1} u \mid u\right\rangle\right| \geq \mu_{0}\|u\|^{2}, \\
(\forall v \in \widetilde{\mathcal{V}}) & \left|\left\langle\widetilde{T}_{1} v \mid v\right\rangle\right| \geq \mu_{0}\|v\|^{2} .
\end{array}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
\operatorname{dom} T_{1} & =\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
\operatorname{dom} \widetilde{T}_{1} & =\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

(P2) $(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space.

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & \left|\left\langle T_{1} u \mid u\right\rangle\right| \geq \mu_{0}\|u\|^{2} \\
(\forall v \in \widetilde{\mathcal{V}}) & \left|\left\langle\widetilde{T}_{1} v \mid v\right\rangle\right| \geq \mu_{0}\|v\|^{2}
\end{array}
$$

(P4)

$$
\mathcal{H}=\operatorname{ran} T_{0} \oplus \operatorname{ker} \widetilde{T}_{1}=\operatorname{ran} \widetilde{T}_{0} \oplus \operatorname{ker} T_{1}
$$

Some preliminary results

(P1) Grubb's decomposition :

$$
\begin{aligned}
\operatorname{dom} T_{1} & =\operatorname{dom} T_{r} \dot{+} \operatorname{ker} T_{1} \\
\operatorname{dom} \widetilde{T}_{1} & =\operatorname{dom} T_{r}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
\end{aligned}
$$

(P2) $(\mathcal{W},[\cdot \mid \cdot])$ is indefinite inner product space.

$$
\mathcal{W}_{0} \subseteq \mathcal{V} \subseteq \mathcal{W} \text { is closed in } \mathcal{W} \Longleftrightarrow \mathcal{V}=\mathcal{V}^{[\perp][\perp]}
$$

(P3) If $\mathcal{V}, \widetilde{\mathcal{V}} \subset \mathcal{W}$ and $(\mathcal{V}, \widetilde{\mathcal{V}})$ satisfies the condition (V1) then

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & \left|\left\langle T_{1} u \mid u\right\rangle\right| \geq \mu_{0}\|u\|^{2} \\
(\forall v \in \widetilde{\mathcal{V}}) & \left|\left\langle\widetilde{T}_{1} v \mid v\right\rangle\right| \geq \mu_{0}\|v\|^{2}
\end{array}
$$

(P4)

$$
\mathcal{H}=\operatorname{ran} T_{0} \oplus \operatorname{ker} \widetilde{T}_{1}=\operatorname{ran} \widetilde{T}_{0} \oplus \operatorname{ker} T_{1}
$$

(P5) $\left(\mathcal{W}_{0} \dot{+} \operatorname{ker} \widetilde{T}_{1}, \mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1}\right)$ satisfies (V1) condition.

Decomposition of the graph space

Theorem

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Decomposition of the graph space

Theorem

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

Decomposition of the graph space

Theorem

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \tilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

- $\mathcal{W}_{0}+\operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W}.

Decomposition of the graph space

Theorem

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

- $\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W}.
- For any bijective realisation T_{r},

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathcal{W}_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}
$$

Decomposition of the graph space

Theorem

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} \widetilde{T}_{1}},\left.\widetilde{T}_{1}\right|_{\mathcal{W}_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

- $\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathcal{W}.
- For any bijective realisation T_{r},

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathcal{W}_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}
$$

- $\mathcal{W}=\left(\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}\right)^{[\perp][\perp]}$.

One-dimensional scalar case: Preliminaries $1 / 5$

$$
\begin{aligned}
& \Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b) \text { and } \mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}: \\
& T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
\end{aligned}
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.

One-dimensional scalar case: Preliminaries $1 / 5$

$$
\Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b) \text { and } \mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}:
$$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathcal{W}=\left\{u \in \mathcal{H}:(\alpha u)^{\prime} \in \mathcal{H}\right\}, \quad\|u\| \mathcal{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\|
$$

One-dimensional scalar case: Preliminaries $1 / 5$

$\Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b)$ and $\mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathcal{W}=\left\{u \in \mathcal{H}:(\alpha u)^{\prime} \in \mathcal{H}\right\}, \quad\|u\|_{\mathcal{W}}:=\|u\|+\left\|(\alpha u)^{\prime}\right\|
$$

Equivalently,

$$
u \in \mathcal{W} \Longleftrightarrow \alpha u \in H^{1}(a, b)
$$

So, by Sobolev embedding $\alpha u \in C(a, b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x) u(x)$ is not meaningful.

One-dimensional scalar case: Preliminaries $1 / 5$

$\Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b)$ and $\mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathcal{W}=\left\{u \in \mathcal{H}:(\alpha u)^{\prime} \in \mathcal{H}\right\}, \quad\|u\| \mathcal{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\|
$$

Equivalently,

$$
u \in \mathcal{W} \Longleftrightarrow \alpha u \in H^{1}(a, b)
$$

So, by Sobolev embedding $\alpha u \in C(a, b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x) u(x)$ is not meaningful.

Lemma

Let $I:=[a, b] \backslash \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H_{\mathrm{loc}}^{1}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c, d] \subseteq I, c<d$, we have $\left.u\right|_{[c, d]} \in H^{1}(c, d)$.

One-dimensional scalar case: Preliminaries 2/5

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W}
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b] .\right.
$$

One-dimensional scalar case: Preliminaries 2/5

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W}
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b] .\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} satisfies $\mathcal{W}_{0}=\operatorname{cl}_{\mathcal{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathcal{W}_{0}=\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\}
$$

One-dimensional scalar case: Preliminaries $2 / 5$

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W}
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b] .\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} satisfies $\mathcal{W}_{0}=\operatorname{cl}_{\mathcal{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathcal{W}_{0}=\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\}
$$

Lemma

$$
\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)= \begin{cases}2 & , \quad \alpha(a) \alpha(b) \neq 0 \\ 1 & , \quad(\alpha(a)=0 \wedge \alpha(b) \neq 0) \vee(\alpha(a) \neq 0 \wedge \alpha(b)=0) \\ 0 \quad & \alpha(a)=\alpha(b)=0\end{cases}
$$

One-dimensional scalar case: Preliminaries $3 / 5$

By the decomposition we have

$$
\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathcal{W} / \mathcal{W}_{0}
$$

Thus, when $\alpha(a) \alpha(b)=0$ there is only one bijective realisation of T_{0}. When case $\alpha(a) \alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)$.

One-dimensional scalar case: Preliminaries 3/5

By the decomposition we have

$$
\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathcal{W} / \mathcal{W}_{0}
$$

Thus, when $\alpha(a) \alpha(b)=0$ there is only one bijective realisation of T_{0}. When case $\alpha(a) \alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)$.
The only interesting case is, when $\alpha(a)>0, \alpha(b)>0$. In this case we have, $u \in \mathcal{W}$ belongs to $\operatorname{dom} T_{c, d}$ if and only if

$$
[1]\left(\frac{\alpha(b) \overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(b)=\left(\frac{\alpha(a) \overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(a) \text {. }
$$

One-dimensional scalar case: Preliminaries 3/5

By the decomposition we have

$$
\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathcal{W} / \mathcal{W}_{0}
$$

Thus, when $\alpha(a) \alpha(b)=0$ there is only one bijective realisation of T_{0}. When case $\alpha(a) \alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)$.
The only interesting case is, when $\alpha(a)>0, \alpha(b)>0$. In this case we have, $u \in \mathcal{W}$ belongs to $\operatorname{dom} T_{c, d}$ if and only if

$$
[1]\left(\frac{\alpha(b) \overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(b)=\left(\frac{\alpha(a) \overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(a) \text {. }
$$

Similarly, $u \in \mathcal{W}$ is in $\operatorname{dom} T_{c, d}^{*}$ if and only if
$[2]\left(\alpha(b) \overline{\varphi(b)}-\frac{\|\tilde{\varphi}\|^{2}(c-i d)}{\tilde{\varphi}(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)}\right) u(b)=\left(\alpha(a) \overline{\varphi(a)}-\frac{\|\tilde{\varphi}\|^{2}(c-i d) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\tilde{\varphi}(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)}\right) u(a)$.

One-dimensional scalar case: Preliminaries 3/5

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, \widetilde{T}) is given by

$$
\text { [3] } \quad\left\{\left(T_{c, d}, T_{c, d}^{*}\right): c, d \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\} \bigcup\left\{\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)\right\} .
$$

One-dimensional scalar case: Preliminaries 3/5

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, \widetilde{T}) is given by

$$
[3] \quad\left\{\left(T_{c, d}, T_{c, d}^{*}\right): c, d \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\} \bigcup\left\{\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)\right\}
$$

Summary :

α at end-points	No. of bij. realisations	$(\mathcal{V}, \widetilde{\mathcal{V}})$	
$\alpha(a) \alpha(b) \leq 0$	1	$\frac{\alpha(a) \geq 0 \wedge \alpha(b) \leq 0}{}$	$\left(\mathcal{W}_{0}, \mathcal{W}\right)$
$\alpha(a) \alpha(b)>0$	∞	$\leq 0 \wedge \alpha(b) \geq 0$	

And...

...thank you for your attention :)

