H-distributions related to Hörmander spaces

Ivana Vojnović

Department of Mathematics and Informatics University of Novi Sad

> Analysis, PDEs and Applications Dubrovnik, June 19- June 25, 2022

Ivana Vojnović (University of Novi Sad)

Microlocal defect distributions

NADu22

H-measures, micro-local defect measures (Tartar, Gérard, around 1990) - L² space, ψ ∈ C(S^{d-1})

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- H-measures, micro-local defect measures (Tartar, Gérard, around 1990) L² space, ψ ∈ C(S^{d−1})
- H-distributions (Antonić, Mitrović, 2011) $L^p L^q$ spaces, $p = \frac{q}{q-1}$,

1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- H-measures, micro-local defect measures (Tartar, Gérard, around 1990) L² space, ψ ∈ C(S^{d-1})
- H-distributions (Antonić, Mitrović, 2011) $L^p L^q$ spaces, $p = \frac{q}{q-1}$,

1

• H-distributions - $W^{-k,p} - W^{k,q}$ spaces, $1 , <math>k \in \mathbb{N}_0$ (Aleksić, Pilipović, Vojnović, 2016)

イロト イポト イヨト イヨト 二日

- H-measures, micro-local defect measures (Tartar, Gérard, around 1990) L² space, ψ ∈ C(S^{d-1})
- H-distributions (Antonić, Mitrović, 2011) $L^p L^q$ spaces, $p = \frac{q}{q-1}$,

1

- H-distributions $W^{-k,p} W^{k,q}$ spaces, $1 , <math>k \in \mathbb{N}_0$ (Aleksić, Pilipović, Vojnović, 2016)
- H-distributions on Hörmander B_s^p spaces, 1 (Ivec, Vojnović, 2021)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$u_n
ightarrow 0$$
 in $L^2(\mathbb{R}^d), n \to \infty$

Ivana	Vojnović	(University of	Novi Sad)	N
-------	----------	----------------	-----------	---

・ロト・日本・日本・日本・日本・日本

•
$$u_n \rightarrow 0$$
 in $L^2(\mathbb{R}^d), n \rightarrow \infty$

Existence of H-measure (Tartar, [5])

There exists a subsequence $(u_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ s. t. for all $\varphi_1(x), \varphi_2(x) \in C_0(\mathbb{R}^d), \psi(\xi) \in C(\mathbb{S}^{d-1})$ we have that

$$\lim_{n'\to\infty}\int_{\mathbb{R}^d}\mathcal{F}(\varphi_1 u_{n'})(\xi)\overline{\mathcal{F}(\varphi_2 u_{n'})}(\xi)\psi\left(\frac{\xi}{|\xi|}\right)d\xi$$
$$=\int_{\mathbb{R}^d\times\mathbb{S}^{d-1}}\varphi_1(x)\overline{\varphi_2}(x)\psi(\xi)d\mu(x,\xi)=\langle\mu,\varphi_1\overline{\varphi_2}\psi\rangle$$

• \mathbb{S}^{d-1} - unit sphere in \mathbb{R}^d

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

H-distributions, $W^{-k,p} - W^{k,q}$, 1

Theorem (H-measures, equivalent formulation)

Let sequences $u_n, v_n \rightarrow 0$ in $L^2(\mathbb{R}^d)$. There exist $(u_{n'}), (v_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbb{R}^d), \psi \in C(\mathbb{S}^{d-1})$

$$\langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle := \lim_{n' \to \infty} \langle \varphi_1 U_{n'}, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 V_{n'})} \rangle.$$

• $\mathcal{A}_{\psi}(u) = \mathcal{F}^{-1}(\psi \mathcal{F}(u))$

H-distributions, $W^{-k,p} - W^{k,q}$, 1

Theorem (H-measures, equivalent formulation)

Let sequences $u_n, v_n \rightarrow 0$ in $L^2(\mathbb{R}^d)$. There exist $(u_{n'}), (v_{n'})$ and a complex Radon measure μ on $\mathbb{R}^d \times \mathbb{S}^{d-1}$ such that for all $\varphi_1, \varphi_2 \in C_0(\mathbb{R}^d), \psi \in C(\mathbb{S}^{d-1})$

$$\langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle := \lim_{n' \to \infty} \langle \varphi_1 U_{n'}, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 V_{n'})} \rangle.$$

•
$$\mathcal{A}_{\psi}(u) = \mathcal{F}^{-1}(\psi \mathcal{F}(u))$$

Theorem

If a sequence $u_n
ightarrow 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n
ightarrow 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution $\mu \in S\mathcal{E}'(\mathbb{R}^d \times \mathbb{S}^{d-1})$ such that for every $\varphi_1, \varphi_2 \in S(\mathbb{R}^d), \psi \in C^{\kappa}(\mathbb{S}^{d-1}), \kappa = \lfloor d/2 \rfloor + 1$,

$$\lim_{n'\to\infty} \langle \varphi_1 \boldsymbol{U}_{n'}, \, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 \boldsymbol{V}_{n'})} \rangle = \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle.$$

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Theorem

Let $u_n \rightarrow 0$ in $W^{-k,p}(\mathbb{R}^d)$. If for every sequence $v_n \rightarrow 0$ in $W^{k,q}(\mathbb{R}^d)$ the corresponding H-distribution is zero, then for every $\theta \in S(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ strongly in $W^{-k,p}(\mathbb{R}^d)$, $n \rightarrow \infty$.

•
$$1 < q < d, u_n \rightarrow 0$$
 in $W^{-k,p}, v_n \rightarrow 0$ in $W^{k,q}$
• $\sum_{i=1}^{d} \partial_{x_i}(A_i(x)u_n(x)) = f_n(x), A_i \in \mathcal{S}(\mathbb{R}^d), \theta f_n \rightarrow 0$ in $W^{-k-1,p}, n \rightarrow \infty$ for
every $\theta \in \mathcal{S}(\mathbb{R}^d)$

Localization property

$$\sum_{j=1}^{d} A_{j}(x)\xi_{j} \ \mu(x,\xi) = 0 \text{ in } \mathcal{SE}'(\mathbb{R}^{d} \times \mathbb{S}^{d-1})$$

supp $\mu \subset \operatorname{char} P$

• $\mathcal{S}(\mathbb{R}^d) \hat{\otimes} \mathcal{E}(\mathbb{S}^{d-1}) = \mathcal{S}\mathcal{E}(\mathbb{R}^d \times \mathbb{S}^{d-1}).$

æ

・ロン ・回 ・ ・ ヨン・

Weight functions

A positive function k is called a temperate weight function if there exist constants C, N > 0 such that

$$k(\xi + \eta) \leq (1 + C|\xi|)^N k(\eta), \ \xi, \eta \in \mathbb{R}^d.$$

・ロン ・回 と ・ ヨン・

3

Weight functions

A positive function k is called a temperate weight function if there exist constants C, N > 0 such that

$$k(\xi + \eta) \leq (1 + C|\xi|)^N k(\eta), \ \xi, \eta \in \mathbb{R}^d.$$

It can be derived that k is continuous and the following estimate holds

$$k(0)(1+C|\xi|)^{-N} \le k(\xi) \le k(0)(1+C|\xi|)^{N}.$$
(1)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Weight functions

A positive function k is called a temperate weight function if there exist constants C, N > 0 such that

$$k(\xi + \eta) \leq (1 + C|\xi|)^N k(\eta), \ \xi, \eta \in \mathbb{R}^d.$$

It can be derived that k is continuous and the following estimate holds

$$k(0)(1+C|\xi|)^{-N} \le k(\xi) \le k(0)(1+C|\xi|)^{N}.$$
(1)

Definition

Let *k* be a temperate weight function, $1 \le p < \infty$. We denote by $B_{p,k}$ the space of distributions $u \in S'(\mathbb{R}^d)$ such that \hat{u} is a function and $k\hat{u} \in L^p$. If $u \in B_{p,k}$, then we define $||u||_{p,k} = ||k\hat{u}||_p$.

Basic properties of $B_{p,k}$ spaces:

- The function || · ||_{p,k} defines a norm on B_{p,k} and B_{p,k} is a Banach space with this norm.
- **2** We have that $\mathcal{S}(\mathbb{R}^d)$ is dense in $B_{p,k}$ and

$$\mathcal{S}(\mathbb{R}^d) \subset B_{p,k} \subset \mathcal{S}'(\mathbb{R}^d)$$

continuously.

- If $\varphi \in S(\mathbb{R}^d)$ and $u \in B_{p,k}$, then $\varphi u \in B_{p,k}$ and $\|\varphi u\|_{p,k} \leq c |\varphi|_{k_0} \|u\|_{p,k}$, for some $k_0 \in \mathbb{N}$.
- If $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$, then $B_{q,1/k}$ is the dual space of $B_{p,k}$.

Algebra property of Hörmander spaces

A basic example of weight functions are functions $k_s(\xi) = (1 + |\xi|^2)^{s/2} = \langle \xi \rangle^s$, $s \in \mathbb{R}$ and we shall consider them in the sequel. We denote by B_s^p the space

 $B_s^p = \{ u \in \mathcal{S}'(\mathbb{R}^d) : \hat{u} \text{ is a function and } \langle \cdot \rangle^s \hat{u} \in L^p(\mathbb{R}^d) \}.$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Algebra property of Hörmander spaces

A basic example of weight functions are functions $k_s(\xi) = (1 + |\xi|^2)^{s/2} = \langle \xi \rangle^s$, $s \in \mathbb{R}$ and we shall consider them in the sequel. We denote by B_s^p the space

 $B_s^p = \{ u \in \mathcal{S}'(\mathbb{R}^d) : \hat{u} \text{ is a function and } \langle \cdot \rangle^s \hat{u} \in L^p(\mathbb{R}^d) \}.$

Lemma

If $u, v \in B_s^p$ for $1 and <math>s > \frac{d}{q}$, then $uv \in B_s^p$ and for some C > 0 it holds

$$\|uv\|_{B_s^p} \leq C \|u\|_{B_s^p} \|v\|_{B_s^p}.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Symbol space and existence theorem

Let $m \in \mathbb{R}$ and $N \in \mathbb{N}_0$. Consider the space of all $\psi \in C^N(\mathbb{R}^d)$ for which the norm

$$\|\psi\|_{\mathbf{s}_{\infty,N}^{m}} := \max_{|\alpha| \le N} \|\partial_{\xi}^{\alpha} \psi(\xi) \langle \xi \rangle^{-m+|\alpha|}\|_{\infty}$$
(2)

is finite. This is a Banach space.

Ivana Vojnović	(University of Novi Sad)
----------------	--------------------------

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Symbol space and existence theorem

Let $m \in \mathbb{R}$ and $N \in \mathbb{N}_0$. Consider the space of all $\psi \in C^N(\mathbb{R}^d)$ for which the norm

$$\|\psi\|_{\mathbf{s}_{\infty,N}^{m}} := \max_{|\alpha| \le N} \|\partial_{\xi}^{\alpha}\psi(\xi)\langle\xi\rangle^{-m+|\alpha|}\|_{\infty}$$
(2)

is finite. This is a Banach space. If we fix $\psi \in s^m_{\infty,N}$ we can prove the existence of a distribution $\mu_{\psi} \in \mathcal{S}'(\mathbb{R}^d)$. The following theorem holds.

イロト イポト イヨト イヨト

Symbol space and existence theorem

Let $m \in \mathbb{R}$ and $N \in \mathbb{N}_0$. Consider the space of all $\psi \in C^N(\mathbb{R}^d)$ for which the norm

$$|\psi|_{\mathbf{s}_{\infty,N}^{m}} := \max_{|\alpha| \le N} \|\partial_{\xi}^{\alpha} \psi(\xi) \langle \xi \rangle^{-m+|\alpha|}\|_{\infty}$$
(2)

is finite. This is a Banach space. If we fix $\psi \in s^m_{\infty,N}$ we can prove the existence of a distribution $\mu_{\psi} \in \mathcal{S}'(\mathbb{R}^d)$. The following theorem holds.

Theorem

Let $1 , <math>m, s \in \mathbb{R}$, $N \ge 15d + 2|s| + 25$, $\psi \in s_{\infty,N}^m$ and $u_n \rightharpoonup 0$ in B_s^p , $v_n \rightharpoonup 0$ in B_{-s+m}^q . Then, up to subsequences, there exists a distribution $\mu_{\psi} \in \mathcal{S}'(\mathbb{R}^d)$ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$ we have

$$\lim_{n\to\infty} \langle \varphi_1 \boldsymbol{u}_n, \mathcal{A}_{\psi}(\varphi_2 \boldsymbol{v}_n) \rangle = \langle \mu_{\psi}, \varphi_1 \varphi_2 \rangle.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem

Let $u_n
ightarrow 0$ in B_s^p , $s \in \mathbb{R}$ and assume that

$$\lim_{n\to\infty} \langle u_n, \mathcal{A}_{\langle\xi\rangle^m}(\varphi v_n) \rangle = 0, \qquad (3)$$

for every sequence $v_n \rightarrow 0$ in $B^q_{\rho-s+m}$, $m \in \mathbb{R}$ and every $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Then for every $\theta \in \mathcal{S}(\mathbb{R}^d)$, $\theta u_n \rightarrow 0$ in B^ρ_s .

Let $1 , <math>s > \frac{d}{q}$, m > 0 and consider semilinear pseudodifferential equation of the form

$$T_{\sigma}(u) = u^2, \tag{4}$$

where $\sigma(x,\xi)$ is an elliptic symbol and assume that a solution $u \in B_s^p$ exists. Here

$$\mathcal{T}_{\sigma}u(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi) \ d\xi.$$

Let $1 , <math>s > \frac{d}{a}$, m > 0 and consider semilinear pseudodifferential equation of the form

$$T_{\sigma}(u) = u^2, \tag{4}$$

where $\sigma(x,\xi)$ is an elliptic symbol and assume that a solution $u \in B_s^p$ exists. Here

$$T_{\sigma}u(x)=\int_{\mathbb{R}^d}e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi)\ d\xi.$$

More precisely, $\sigma \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ and $|\partial_{\mathbf{x}}^{\alpha}\partial_{\boldsymbol{\epsilon}}^{\beta}\sigma(\mathbf{x},\xi)| \leq C_{\alpha,\beta}(1+|\mathbf{x}|)^{-|\alpha|}(1+|\xi|)^{m-|\beta|}, \ \mathbf{x},\xi\in\mathbb{R}^{d}$ and there exist positive constants c, r such that

$$|\sigma(x,\xi)| \ge c(1+|\xi|)^m, \quad |x|+|\xi| \ge r.$$

Let $1 , <math>s > \frac{d}{a}$, m > 0 and consider semilinear pseudodifferential equation of the form

$$T_{\sigma}(u) = u^2, \tag{4}$$

where $\sigma(x,\xi)$ is an elliptic symbol and assume that a solution $u \in B_s^p$ exists. Here

$$T_{\sigma}u(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi) \ d\xi.$$

More precisely, $\sigma \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ and $|\partial_{\mathbf{x}}^{\alpha}\partial_{\boldsymbol{\varepsilon}}^{\beta}\sigma(x,\xi)| \leq C_{\alpha,\beta}(1+|x|)^{-|\alpha|}(1+|\xi|)^{m-|\beta|}, x,\xi \in \mathbb{R}^{d}$ and there exist positive constants c. r such that

$$|\sigma(x,\xi)| \ge c(1+|\xi|)^m, |x|+|\xi| \ge r.$$

Let $u_n \rightarrow 0$ in B_{s+m}^p satisfy equation (4) for some elliptic σ . Then $T_{\sigma}(u_n) = u_n^2 \rightarrow 0$ in B_s^p as $n \rightarrow \infty$.

Let $1 , <math>s > \frac{d}{q}$, m > 0 and consider semilinear pseudodifferential equation of the form

$$T_{\sigma}(u) = u^2, \tag{4}$$

where $\sigma(x,\xi)$ is an elliptic symbol and assume that a solution $u \in B_s^p$ exists. Here

$$T_{\sigma}u(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi) \ d\xi.$$

More precisely, $\sigma \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ and $|\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma(x,\xi)| \leq C_{\alpha,\beta}(1+|x|)^{-|\alpha|}(1+|\xi|)^{m-|\beta|}, x, \xi \in \mathbb{R}^d$ and there exist positive constants c, r such that

$$|\sigma(x,\xi)| \ge c(1+|\xi|)^m, |x|+|\xi| \ge r.$$

Let $u_n \rightarrow 0$ in B_{s+m}^{ρ} satisfy equation (4) for some elliptic σ . Then $T_{\sigma}(u_n) = u_n^2 \rightarrow 0$ in B_s^{ρ} as $n \rightarrow \infty$. Denote by $\tilde{u_n} = T_{\sigma}(u_n) = u_n^2 \rightarrow 0$ in B_s^{ρ} and let $v_n \rightarrow 0$ in B_{-s}^q . If $\psi(\xi) = 1$ and if $\mu_1 = 0$, then

$$\theta u_n^2 \to 0$$
 in B_s^p for every $\theta \in \mathcal{S}(\mathbb{R}^d)$.

Bibliography

- Aleksić J.; Pilipović S.; Vojnović I., *H-distributions via Sobolev spaces*, Mediterr. J. Math. 13(5), 3499-3512 (2016)
- Hörmander L., The Analysis of Linear Partial Differential Operators II. Differential Operators with Constant Coefficients. Berlin, Springer-Verlag (1983)
- Iancu G.M., Boundedness of Pseudo-Differential Operators on Hörmander Spaces. In: Gilbert R.P., Kajiwara J., Xu Y.S. (eds) Direct and Inverse Problems of Mathematical Physics. International Society for Analysis, Applications and Computation, vol 5. (2000)
- Ivec I., Vojnović I. H-distributions on Hörmander spaces, J. Math.Anal.Appl. (2021)
- Tartar, L. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 115, no. 3-4, 193–230 (1990)

Thank you for your attention!

Ivana Vojnović	(University of Novi Sad)
----------------	--------------------------

< 3 >

Image: A match a ma