Classification of boundary conditions for Friedrichs systems

Sandeep Kumar Soni

Department of Mathematics, Faculty of Science, University of Zagreb, Croatia
Mentors: Nenad Antonić and Marko Erceg

> IP-2018-01-2449 (MiTPDE)

HrZZ Foundation

Motivation

- Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

Motivation

- Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).
- Treating the equations of mixed type, such as the Tricomi equation (transonic flow)

Motivation

- Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).
- Treating the equations of mixed type, such as the Tricomi equation (transonic flow)

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Motivation

- Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).
- Treating the equations of mixed type, such as the Tricomi equation (transonic flow)

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Subsonic Flow

Transonic Flow

Supersonic Flow
Streamlines for three airflow regimes black lines around a nondescript blunt (blue) body.

Motivation

- Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).
- Treating the equations of mixed type, such as the Tricomi equation (transonic flow)

$$
y \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Subsonic Flow

Transonic Flow

Supersonic Flow
Streamlines for three airflow regimes black lines around a nondescript blunt (blue) body.

- unified treatment of equations and systems of different types.

Outline

(1) Classical Friedrichs operators (Introduction)
(2) Example
(3) Classical Friedrichs operators (boundary conditions)
(4) Abstract Friedrichs operators
(5) Expected results
(6) Reference

Classical Friedrichs operators

Assumptions:

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$A_{k} \in W^{1, \infty}\left(\Omega ; M_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $B \in L^{\infty}\left(\Omega ; M_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} \tag{F2}
\end{align*}
$$

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$A_{k} \in W^{1, \infty}\left(\Omega ; M_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $B \in L^{\infty}\left(\Omega ; M_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} . \tag{F2}
\end{align*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u}
$$

This is called Classical Friedrichs system .

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} \tag{F2}
\end{align*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathrm{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathrm{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u}
$$

This is called Classical Friedrichs system .
Aim: impose boundary conditions such that for any $f \in L^{2}(\Omega)^{r}$ we have a unique solution of $\mathcal{L} \mathrm{u}=\mathrm{f}$.
通
K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.

Example

Tricomi equation can be written as

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0 .
$$

Example

Tricomi equation can be written as

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The equation is

- elliptic $\Longleftrightarrow y>0$,
- parabolic $\Longleftrightarrow y=0$,
- hyperbolic $\Longleftrightarrow y<0$.

Example

Tricomi equation can be written as

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The equation is

- elliptic $\Longleftrightarrow y>0$,
- parabolic $\Longleftrightarrow y=0$,
- hyperbolic $\Longleftrightarrow y<0$.

We write:

$$
y \partial_{x}^{2} u-\partial_{y}^{2} u=0
$$

Example

Tricomi equation can be written as

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0 .
$$

The equation is

- elliptic $\Longleftrightarrow y>0$,
- parabolic $\Longleftrightarrow y=0$,
- hyperbolic $\Longleftrightarrow y<0$.

We write:

$$
y \partial_{x}^{2} u-\partial_{y}^{2} u=0
$$

Define, $v_{1}:=e^{-\lambda x} \partial_{x} u$ and $v_{2}:=e^{-\lambda x} \partial_{y} u, v:=\left[v_{1}, v_{2}\right]^{T}$,

Example

Tricomi equation can be written as

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0 .
$$

The equation is

- elliptic $\Longleftrightarrow y>0$,
- parabolic $\Longleftrightarrow y=0$,
- hyperbolic $\Longleftrightarrow y<0$.

We write:

$$
y \partial_{x}^{2} u-\partial_{y}^{2} u=0 .
$$

Define, $v_{1}:=e^{-\lambda x} \partial_{x} u$ and $v_{2}:=e^{-\lambda x} \partial_{y} u, v:=\left[v_{1}, v_{2}\right]^{T}$, we get

$$
\left(\left[\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right] \partial_{x}+\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \partial_{y}+\left[\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right] \lambda\right) v=0
$$

Example

Tricomi equation can be written as

$$
y \partial_{x}^{2} u+\partial_{y}^{2} u=0
$$

The equation is

- elliptic $\Longleftrightarrow y>0$,
- parabolic $\Longleftrightarrow y=0$,
- hyperbolic $\Longleftrightarrow y<0$.

We write:

$$
y \partial_{x}^{2} u-\partial_{y}^{2} u=0
$$

Define, $v_{1}:=e^{-\lambda x} \partial_{x} u$ and $v_{2}:=e^{-\lambda x} \partial_{y} u, v:=\left[v_{1}, v_{2}\right]^{T}$, we get

$$
\left(\left[\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right] \partial_{x}+\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right] \partial_{y}+\left[\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right] \lambda\right) v=0
$$

The equation is symmetric, but not positive (because of change of sign of y).

Example cont...

We multiply by

$$
Z=\left[\begin{array}{ll}
1 & y \\
1 & 1
\end{array}\right]
$$

to get

$$
\mathcal{L}=\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \partial_{x}+\left[\begin{array}{ll}
-y & -1 \\
-1 & -1
\end{array}\right] \partial_{y}+\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \lambda
$$

Example cont...

We multiply by

$$
Z=\left[\begin{array}{ll}
1 & y \\
1 & 1
\end{array}\right]
$$

to get

$$
\mathcal{L}=\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \partial_{x}+\left[\begin{array}{ll}
-y & -1 \\
-1 & -1
\end{array}\right] \partial_{y}+\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \lambda
$$

We write

$$
\mathcal{L}=\partial_{x} \mathrm{~A}_{1}+\partial_{y} \mathrm{~A}_{2}+\mathrm{B},
$$

Example cont...

We multiply by

$$
Z=\left[\begin{array}{ll}
1 & y \\
1 & 1
\end{array}\right]
$$

to get

$$
\mathcal{L}=\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \partial_{x}+\left[\begin{array}{ll}
-y & -1 \\
-1 & -1
\end{array}\right] \partial_{y}+\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \lambda
$$

We write

$$
\mathcal{L}=\partial_{x} \mathrm{~A}_{1}+\partial_{y} \mathrm{~A}_{2}+\mathrm{B}
$$

where,

$$
\mathrm{A}_{1}=\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right], \mathrm{A}_{2}=\left[\begin{array}{cc}
-y & -1 \\
-1 & -1
\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}
1+\lambda y & \lambda y \\
\lambda y & \lambda
\end{array}\right]
$$

Example cont...

We multiply by

$$
Z=\left[\begin{array}{ll}
1 & y \\
1 & 1
\end{array}\right]
$$

to get

$$
\mathcal{L}=\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \partial_{x}+\left[\begin{array}{ll}
-y & -1 \\
-1 & -1
\end{array}\right] \partial_{y}+\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right] \lambda
$$

We write

$$
\mathcal{L}=\partial_{x} \mathrm{~A}_{1}+\partial_{y} \mathrm{~A}_{2}+\mathrm{B}
$$

where,

$$
\mathrm{A}_{1}=\left[\begin{array}{ll}
y & y \\
y & 1
\end{array}\right], \mathrm{A}_{2}=\left[\begin{array}{cc}
-y & -1 \\
-1 & -1
\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}
1+\lambda y & \lambda y \\
\lambda y & \lambda
\end{array}\right]
$$

Here,

$$
\mathrm{B}+\mathrm{B}^{*}+\partial_{x} \mathrm{~A}_{1}+\partial_{y} \mathrm{~A}_{2}=\left[\begin{array}{cc}
1+2 \lambda y & 2 \lambda y \\
2 \lambda y & 2 \lambda
\end{array}\right]
$$

is positive definite for small λ.

Boundary conditions

Via matrix valued boundary fields :

Boundary conditions

Via matrix valued boundary fields :

Assumption: $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right)$ outward unit normal on $\Gamma, \mathrm{M}: \Gamma($ Boundary of $\Omega) \rightarrow \mathrm{M}_{r}$ be given matrix valued boundary field,

$$
\mathrm{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathrm{~A}_{k} \in L^{\infty}\left(\Gamma ; \mathrm{M}_{r}\right)
$$

Boundary conditions

Via matrix valued boundary fields :

Assumption: $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right)$ outward unit normal on $\Gamma, \mathrm{M}: \Gamma($ Boundary of $\Omega) \rightarrow \mathrm{M}_{r}$ be given matrix valued boundary field,

$$
\mathrm{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathrm{~A}_{k} \in L^{\infty}\left(\Gamma ; \mathrm{M}_{r}\right)
$$

for given M-admissible boundary condtion-Friedrichs (for a.e $x \in \Gamma$)

- (FM1)

$$
\left(\forall \xi \in \mathbb{C}^{r}\right) \quad \mathrm{M}(\mathrm{x}) \xi \cdot \xi \geq 0
$$

Boundary conditions

Via matrix valued boundary fields :
Assumption: $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right)$ outward unit normal on $\Gamma, \mathrm{M}: \Gamma($ Boundary of $\Omega) \rightarrow \mathrm{M}_{r}$ be given matrix valued boundary field,

$$
\mathrm{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathrm{~A}_{k} \in L^{\infty}\left(\Gamma ; \mathrm{M}_{r}\right)
$$

for given M-admissible boundary condtion-Friedrichs (for a.e $x \in \Gamma$)

- (FM1)

$$
\left(\forall \xi \in \mathbb{C}^{r}\right) \quad \mathrm{M}(\mathrm{x}) \xi \cdot \xi \geq 0
$$

- (FM2)

$$
\mathbb{C}^{r}=\operatorname{ker}\left(\mathrm{A}_{\nu}-\mathrm{M}(\mathrm{x})\right)+\operatorname{ker}\left(\mathrm{A}_{\nu}+\mathrm{M}(\mathrm{x})\right)
$$

Boundary conditions

Via matrix valued boundary fields :
Assumption: $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right)$ outward unit normal on $\Gamma, \mathrm{M}: \Gamma($ Boundary of $\Omega) \rightarrow \mathrm{M}_{r}$ be given matrix valued boundary field,

$$
\mathrm{A}_{\nu}:=\sum_{k=1}^{d} \nu_{k} \mathrm{~A}_{k} \in L^{\infty}\left(\Gamma ; \mathrm{M}_{r}\right)
$$

for given M-admissible boundary condtion-Friedrichs (for a.e $x \in \Gamma$)

- (FM1)

$$
\left(\forall \xi \in \mathbb{C}^{r}\right) \quad \mathrm{M}(\mathrm{x}) \xi \cdot \xi \geq 0
$$

- (FM2)

$$
\mathbb{C}^{r}=\operatorname{ker}\left(\mathrm{A}_{\nu}-\mathrm{M}(\mathrm{x})\right)+\operatorname{ker}\left(\mathrm{A}_{\nu}+\mathrm{M}(\mathrm{x})\right)
$$

prescribed boundary condition

$$
\left.\left(\mathrm{A}_{\nu}-\mathrm{M}\right) \mathrm{u}\right|_{\Gamma}=0
$$

Boundary conditions cont...

$$
(N=\{N(x): x \in \Gamma\}) \text { defines maximal boundary condition-Lax (for a.e. } x \in \Gamma)
$$

Boundary conditions cont...

$(N=\{N(x): x \in \Gamma\})$ defines maximal boundary condition-Lax (for a.e. $\mathrm{x} \in \Gamma$) - (FX1)

$$
(\forall \xi \in N(\mathrm{x})) \quad \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0,
$$

Boundary conditions cont...

$(N=\{N(x): x \in \Gamma\})$ defines maximal boundary condition-Lax (for a.e. $\mathrm{x} \in \Gamma$)

- (FX1)

$$
(\forall \xi \in N(\mathrm{x})) \quad \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0,
$$

- (FX2) $N(\mathrm{x})$ is maximal.

Boundary conditions cont...

$(N=\{N(x): x \in \Gamma\})$ defines maximal boundary condition-Lax (for a.e. $x \in \Gamma$)

- (FX1)

$$
(\forall \xi \in N(\mathrm{x})) \quad \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0
$$

- (FX2) $N(x)$ is maximal.

Prescribed boundary value problem

$$
\mathcal{L} \mathrm{u}=\left\{\begin{array}{l}
\mathrm{f} \\
\mathrm{u}(\mathrm{x}) \in N(\mathrm{x}) \quad, \quad \mathrm{x} \in \Gamma .
\end{array}\right.
$$

Boundary conditions cont...

$(N=\{N(x): x \in \Gamma\})$ defines maximal boundary condition-Lax (for a.e. $x \in \Gamma$)

- (FX1)

$$
(\forall \xi \in N(\mathrm{x})) \quad \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0
$$

- (FX2) $N(x)$ is maximal.

Prescribed boundary value problem

$$
\mathcal{L} u=\left\{\begin{array}{l}
\mathrm{f} \\
\mathrm{u}(\mathrm{x}) \in N(\mathrm{x}) \quad, \quad \mathrm{x} \in \Gamma .
\end{array}\right.
$$

Two sets of conditions: $N(\mathrm{x})$ and $\widetilde{N}(\mathrm{x}):=\left(\mathrm{A}_{\nu}(\mathrm{x}) N(\mathrm{x})\right)^{\perp}-[\mathrm{PS}]$

- (FV1)

$$
\begin{array}{ll}
(\forall \xi \in N(x)) & \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0 \\
(\forall \xi \in \widetilde{N}(\mathrm{x})) & \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \leq 0
\end{array}
$$

Boundary conditions cont...

($N=\{N(x): x \in \Gamma\}$) defines maximal boundary condition-Lax (for a.e. $\mathrm{x} \in \Gamma$)

- (FX1)

$$
(\forall \xi \in N(\mathrm{x})) \quad \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0
$$

- (FX2) $N(x)$ is maximal.

Prescribed boundary value problem

$$
\mathcal{L} \mathrm{u}=\left\{\begin{array}{l}
\mathrm{f} \\
\mathrm{u}(\mathrm{x}) \in N(\mathrm{x}) \quad, \quad \mathrm{x} \in \Gamma .
\end{array}\right.
$$

Two sets of conditions: $N(x)$ and $\widetilde{N}(\mathrm{x}):=\left(\mathrm{A}_{\nu}(\mathrm{x}) N(\mathrm{x})\right)^{\perp}-[\mathrm{PS}]$

- (FV1)

$$
\begin{array}{ll}
(\forall \xi \in N(x)) & \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \geq 0 \\
(\forall \xi \in \widetilde{N}(\mathrm{x})) & \mathrm{A}_{\nu}(\mathrm{x}) \xi \cdot \xi \leq 0
\end{array}
$$

- (FV2)

$$
\widetilde{N}(\mathrm{x}):=\left(\mathrm{A}_{\nu}(\mathrm{x}) N(\mathrm{x})\right)^{\perp} \quad \text { and } \quad N(\mathrm{x}):=\left(\mathrm{A}_{\nu}(\mathrm{x}) \widetilde{N}(\mathrm{x})\right)^{\perp}
$$

Classical theory

To sum up:

- (Non unique) positive matrix-valued field on the boundary.

Classical theory

To sum up:

- (Non unique) positive matrix-valued field on the boundary.
- Existence of weak solutions and uniqueness of strong ones.

Classical theory

To sum up:

- (Non unique) positive matrix-valued field on the boundary.
- Existence of weak solutions and uniqueness of strong ones.
- Shortcommings:
- no satisfactory well-posedness result.

Classical theory

To sum up:

- (Non unique) positive matrix-valued field on the boundary.
- Existence of weak solutions and uniqueness of strong ones.
- Shortcommings:
- no satisfactory well-posedness result.
- no intrinsic (unique) way to pose boundary conditions.
\rightsquigarrow development of the abstract theory

Abstract Friedrichs operators

$(\mathscr{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathscr{H}^{\prime} \equiv \mathscr{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathscr{D} \subseteq \mathscr{H}$ dense subspace

Abstract Friedrichs operators

$(\mathscr{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathscr{H}^{\prime} \equiv \mathscr{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathscr{D} \subseteq \mathscr{H}$ dense subspace

Definition (Ern, Guermond, Caplain, 2007)

Let $T, \widetilde{T}: \mathscr{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \varphi, \psi \in \mathscr{D}) & \langle T \varphi \mid \psi\rangle=\langle\varphi \mid \widetilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \varphi \in \mathscr{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathbb{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} . \tag{T3}
\end{align*}
$$

Abstract Friedrichs operators

$(\mathscr{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathscr{H}^{\prime} \equiv \mathscr{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathscr{D} \subseteq \mathscr{H}$ dense subspace

Definition (Ern, Guermond, Caplain, 2007)

Let $T, \widetilde{T}: \mathscr{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \varphi, \psi \in \mathscr{D}) & \langle T \varphi \mid \psi\rangle=\langle\varphi \mid \tilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \varphi \in \mathbb{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathbb{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} . \tag{T3}
\end{align*}
$$

Advantages:

- Hilbert space theory (beyond PDEs).

Abstract Friedrichs operators

$(\mathscr{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathscr{H}^{\prime} \equiv \mathscr{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathscr{D} \subseteq \mathscr{H}$ dense subspace

Definition (Ern, Guermond, Caplain, 2007)

Let $T, \widetilde{T}: \mathscr{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \varphi, \psi \in \mathscr{D}) & \langle T \varphi \mid \psi\rangle=\langle\varphi \mid \tilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \varphi \in \mathscr{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathscr{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} . \tag{T3}
\end{align*}
$$

Advantages:

- Hilbert space theory (beyond PDEs).
- Avoids invoking traces at the boundary (intrinsic way to impose boundary conditions).

Abstract Friedrichs operators

$(\mathscr{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathscr{H}^{\prime} \equiv \mathscr{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathscr{D} \subseteq \mathscr{H}$ dense subspace

Definition (Ern, Guermond, Caplain, 2007)

Let $T, \widetilde{T}: \mathscr{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{align*}
(\forall \varphi, \psi \in \mathscr{D}) & \langle T \varphi \mid \psi\rangle=\langle\varphi \mid \tilde{T} \psi\rangle ; \tag{T1}\\
(\exists c>0)(\forall \varphi \in \mathbb{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathscr{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} . \tag{T3}
\end{align*}
$$

Advantages:

- Hilbert space theory (beyond PDEs).
- Avoids invoking traces at the boundary (intrinsic way to impose boundary conditions).
- A set of geometric conditions (cone-formalism) to ensure well-posedness.

Classical is abstract

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} . \tag{F2}
\end{align*}
$$

Classical Friedrichs system is defined as, $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathbf{u}
$$

Classical is abstract

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} \tag{F2}
\end{align*}
$$

Classical Friedrichs system is defined as, $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u} .
$$

$\mathscr{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathcal{H}:=L^{2}(\Omega)^{r}$, and $T \mathrm{u}:=\mathcal{L} \mathrm{u}, \tilde{T} \mathrm{u}:=\widetilde{\mathcal{L}} \mathrm{u}$.

Classical is abstract

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} . \tag{F2}
\end{align*}
$$

Classical Friedrichs system is defined as, $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u} .
$$

$\mathscr{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathscr{H}:=L^{2}(\Omega)^{r}$, and $T \mathrm{u}:=\mathcal{L} \mathrm{u}, \tilde{T} \mathrm{u}:=\widetilde{\mathcal{L}} \mathrm{u}$.
(T1) $\langle T \mathrm{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathrm{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k}^{*} \mathrm{v}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\left\langle\mathrm{u} \mid \tilde{T}_{\mathrm{v}}\right\rangle_{L^{2}}$.

Classical is abstract

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} . \tag{F2}
\end{align*}
$$

Classical Friedrichs system is defined as, $\mathcal{L}, \widetilde{\mathscr{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u} .
$$

$\mathscr{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathscr{H}:=L^{2}(\Omega)^{r}$, and $T \mathrm{u}:=\mathcal{L} \mathrm{u}, \tilde{T} \mathrm{u}:=\widetilde{\mathcal{L}} \mathrm{u}$.
(T1) $\langle T \mathrm{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathrm{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k}^{*} \mathrm{v}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\left\langle\mathrm{u} \mid \tilde{T}_{\mathrm{v}}\right\rangle_{L^{2}}$.
Since $(T+\widetilde{T}) u=\left(B+B^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u}$,

Classical is abstract

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} . \tag{F2}
\end{align*}
$$

Classical Friedrichs system is defined as, $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u} .
$$

$\mathscr{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathscr{H}:=L^{2}(\Omega)^{r}$, and $T \mathrm{u}:=\mathcal{L} \mathrm{u}, \widetilde{T}_{\mathrm{u}}:=\widetilde{\mathcal{L}} \mathrm{u}$.
(T1) $\langle T \mathrm{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathrm{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k}^{*} \mathrm{v}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\left\langle\mathrm{u} \mid \widetilde{T}_{\mathrm{v}}\right\rangle_{L^{2}}$.
Since $(T+\widetilde{T}) \mathrm{u}=\left(\mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u}$,
(T2) $\|(T+\widetilde{T}) \mathrm{u}\|_{L^{2}} \leqslant\left(2\|\mathrm{~B}\|_{L^{\infty}}+\sum_{k=1}^{d}\left\|\mathrm{~A}_{k}\right\|_{W^{\mathbf{1}}, \infty}\right)\|\mathrm{u}\|_{L^{2}}$,

Classical is abstract

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathrm{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathrm{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on $\left.\Omega\right)$:

$$
\begin{align*}
\mathrm{A}_{k} & =\mathrm{A}_{k}^{*} \tag{F1}\\
\left(\exists \mu_{0}>0\right) \quad \mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k} & \geqslant 2 \mu_{0} \mathrm{I} . \tag{F2}
\end{align*}
$$

Classical Friedrichs system is defined as, $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathscr{D}^{\prime}(\Omega)^{r}$

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\mathrm{Bu}, \quad \tilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathbf{u}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u} .
$$

$\mathscr{D}:=C_{c}^{\infty}(\Omega)^{r}, \mathscr{H}:=L^{2}(\Omega)^{r}$, and $T \mathrm{u}:=\mathcal{L} \mathrm{u}, \widetilde{T}_{\mathrm{u}}:=\widetilde{\mathcal{L}} \mathrm{u}$.
(T1) $\langle T \mathrm{u} \mid \mathrm{v}\rangle_{L^{2}}=\left\langle\mathrm{u} \mid-\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k}^{*} \mathrm{v}\right)+\left(\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{v}\right\rangle_{L^{2}} \stackrel{(\mathrm{~F} 1)}{=}\left\langle\mathrm{u} \mid \widetilde{T}_{\mathrm{v}}\right\rangle_{L^{2}}$.
Since $(T+\widetilde{T}) \mathrm{u}=\left(\mathrm{B}+\mathrm{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathrm{~A}_{k}\right) \mathrm{u}$,
(T2) $\|(T+\tilde{T}) \mathrm{u}\|_{L^{2}} \leqslant\left(2\|\mathrm{~B}\|_{L^{\infty}}+\sum_{k=1}^{d}\left\|\mathrm{~A}_{k}\right\|_{W^{\mathbf{1}, \infty}}\right)\|\mathrm{u}\|_{L^{2}}$,
(T3) $\langle(T+\widetilde{T}) \mathrm{u} \mid \mathrm{u}\rangle_{L^{2}} \stackrel{(\mathrm{~F} 2)}{\geqslant} \mu_{0}\|\mathrm{u}\|_{L^{2}}^{2}$.

Characterisation of joint pair abstract Friedrichs operators

Lemma

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \& \widetilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \bar{T} \& \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}
\end{array}\right.
$$

Characterisation of joint pair abstract Friedrichs operators

Lemma

$$
(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}
T \subseteq \widetilde{T}^{*} \quad \& \tilde{T} \subseteq T^{*} ; \\
T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\
\operatorname{dom} \bar{T}=\operatorname{dom} \overline{\widetilde{T}} \& \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*}
\end{array}\right.
$$

By (T1), T and \tilde{T} are closable.

Characterisation of joint pair abstract Friedrichs operators

Lemma

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \text { \& } \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } \mathscr{H} \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \bar{T} \text { \& } \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$
By (T1), T and \widetilde{T} are closable. By (T2), $T+\widetilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\tilde{T}}$ are equivalent.

Characterisation of joint pair abstract Friedrichs operators

Lemma

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \text { \& } \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } \mathscr{H} \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \bar{T} \text { \& } \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$
By (T1), T and \tilde{T} are closable. By (T2) , $T+\widetilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\tilde{T}}$ are equivalent.

$$
\begin{aligned}
\operatorname{dom} \bar{T} & =\operatorname{dom} \widetilde{\widetilde{T}}=: \mathscr{W}_{0}, \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: W^{2},
\end{aligned}
$$

Characterisation of joint pair abstract Friedrichs operators

Lemma

$(T 1)-(T 3) \Longleftrightarrow\left\{\begin{array}{l}T \subseteq \widetilde{T}^{*} \text { \& } \widetilde{T} \subseteq T^{*} ; \\ T+\widetilde{T} \text { bounded self-adjoint in } \mathcal{H} \text { with strictly positive bottom; } \\ \operatorname{dom} \bar{T}=\operatorname{dom} \bar{T} \text { \& } \operatorname{dom} T^{*}=\operatorname{dom} \widetilde{T}^{*} .\end{array}\right.$
By (T1), T and \tilde{T} are closable. By (T2), $T+\tilde{T}$ is a bounded operator, so the graph norms $\|\cdot\|_{T}$ and $\|\cdot\|_{\tilde{T}}$ are equivalent.

$$
\begin{aligned}
\operatorname{dom} \bar{T} & =\operatorname{dom} \overline{\widetilde{T}}=: \mathscr{W}_{0} \\
\operatorname{dom} T^{*} & =\operatorname{dom} \widetilde{T}^{*}=: \mathfrak{W},
\end{aligned}
$$

and $\left.(\overline{T+\widetilde{T}})\right|_{w}=\widetilde{T}^{*}+T^{*}$. So, $(\bar{T}, \overline{\widetilde{T}})$ is also a pair of abstract Friedrichs operators.

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*} .
$$

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
T_{0} \subseteq T_{1} \quad \text { and } \quad \tilde{T}_{0} \subseteq \tilde{T}_{1}
$$

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
T_{0} \subseteq T_{1} \quad \text { and } \quad \tilde{T}_{0} \subseteq \tilde{T}_{1}
$$

$\left(\mathscr{W},\|\cdot\|_{T}\right)$ is the graph space. \mathscr{W}_{0} is a closed subspace of the graph space \mathscr{W}.

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
T_{0} \subseteq T_{1} \quad \text { and } \quad \tilde{T}_{0} \subseteq \tilde{T}_{1}
$$

$\left(\mathscr{W},\|\cdot\|_{T}\right)$ is the graph space. \mathscr{W}_{0} is a closed subspace of the graph space \mathscr{W}.
For, $\mathscr{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathbb{W} and Ψ_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
T_{0} \subseteq T_{1} \quad \text { and } \quad \tilde{T}_{0} \subseteq \tilde{T}_{1}
$$

$\left(\mathscr{W},\|\cdot\|_{T}\right)$ is the graph space. \mathscr{W}_{0} is a closed subspace of the graph space \mathscr{W}.
For, $\mathscr{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathbb{W} and W_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Boundary map (form): $D: \mathfrak{W} \rightarrow \mathfrak{W}^{\prime}$,

$$
[u \mid v]:=w^{\prime}\langle D u, v\rangle_{w}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle
$$

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
T_{0} \subseteq T_{1} \quad \text { and } \quad \tilde{T}_{0} \subseteq \tilde{T}_{1}
$$

$\left(\mathscr{W},\|\cdot\|_{T}\right)$ is the graph space. \mathscr{W}_{0} is a closed subspace of the graph space \mathscr{W}.
For, $\mathscr{D}=C_{c}^{\infty}(\Omega), \mathcal{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathbb{W} and W_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Boundary map (form): $D: \mathfrak{W} \rightarrow \mathfrak{W}^{\prime}$,

$$
[u \mid v]:=w^{\prime}\langle D u, v\rangle_{w}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

Let a pair of operators (T, \tilde{T}) on \mathscr{H} satisfies (T1)-(T2). Then D is continuous and satisfies
i) $(\forall u, v \in \mathscr{W}) \quad[u \mid v]=\overline{[v \mid u]}$,
ii) $\operatorname{ker} D=\mathscr{Y}_{0}$.

Notation

Notation :

$$
T_{0}:=\bar{T}, \quad \widetilde{T}_{0}:=\overline{\widetilde{T}}, \quad T_{1}:=\widetilde{T}^{*}, \quad \widetilde{T}_{1}:=T^{*}
$$

Therefore, we have

$$
T_{0} \subseteq T_{1} \quad \text { and } \quad \tilde{T}_{0} \subseteq \widetilde{T}_{1} .
$$

$\left(W_{,}\|\cdot\|_{T}\right)$ is the graph space. W_{0} is a closed subspace of the graph space W.
For, $\mathscr{D}=C_{c}^{\infty}(\Omega), \mathscr{H}=L^{2}(\Omega)$ and a certain choice of operators it could be that \mathbb{W} and W_{0} are Sobolev spaces $H^{1}(\Omega)$ and $H_{0}^{1}(\Omega)$, respectively.

Boundary map (form): $D: W \rightarrow W^{\prime}$,

$$
[u \mid v]:=w_{w}\langle D u, v\rangle_{w}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

Let a pair of operators (T, \widetilde{T}) on \mathscr{H} satisfies (T1)-(T2). Then D is continuous and satisfies
i) $(\forall u, v \in W) \quad[u \mid v]=\overline{[v \mid u]}$,
ii) $\operatorname{ker} D=\omega_{0}$.

Remark: ($\mathfrak{W},[\cdot \mid \cdot]$) is indefinite inner product space.

Well-posedness result

For $V, \widetilde{v} \subseteq \mathscr{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0}
\end{array}
$$

Well-posedness result

For $V, \widetilde{v} \subseteq \mathscr{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in V) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{V}) & {[v \mid v] \leqslant 0}
\end{array}
$$

(V2)

$$
v^{[\perp]}=\widetilde{v}, \tilde{v}^{[\perp]}=v .
$$

Well-posedness result

For $V, \widetilde{v} \subseteq \mathscr{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in V) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{V}) & {[v \mid v] \leqslant 0} \\
 \tag{V2}\\
v
\end{array}
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-(V 2) \Longrightarrow T_{1}\left|v, \widetilde{T}_{1}\right|_{\tilde{v}}$ bijective realisations .

Well-posedness result

For $V, \widetilde{V} \subseteq \mathscr{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{V}) & {[v \mid v] \leqslant 0} \\
V^{[\perp]}=\widetilde{V}, \widetilde{V}^{[L]}=V . \tag{V2}
\end{array}
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-(V 2) \Longrightarrow T_{1}\left|v, \widetilde{T}_{1}\right|_{\tilde{v}}$ bijective realisations .
Remark: Corresponding three equivalent boundary conditions in abstract setting (Kreǐn space).

Well-posedness result

For $V, \widetilde{V} \subseteq \mathscr{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0} \\
V^{[\perp]}=\widetilde{V}, \widetilde{V}^{[\perp]}=V . \tag{V2}
\end{array}
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-(V 2) \Longrightarrow T_{1}\left|v, \widetilde{T}_{1}\right|_{\tilde{v}}$ bijective realisations .
Remark: Corresponding three equivalent boundary conditions in abstract setting (Kreǐn space).
A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

Well-posedness result

For $V, \widetilde{V} \subseteq \mathscr{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in V) & {[u \mid u] \geqslant 0} \\
(\forall v \in \widetilde{V}) & {[v \mid v] \leqslant 0}
\end{array}
$$

$$
\begin{equation*}
v^{[\perp]}=\widetilde{v}, \tilde{V}^{[\perp]}=V . \tag{V2}
\end{equation*}
$$

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-\left.(V 2) \Longrightarrow T_{1}\right|_{\nu},\left.\widetilde{T}_{1}\right|_{\tilde{v}}$ bijective realisations.

Remark: Corresponding three equivalent boundary conditions in abstract setting (Kreǐn space).
A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
T- N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
-\Delta u+\mu u=f
$$

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\Delta u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T v:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{Bv}=\mathrm{g},
\end{aligned}
$$

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\Delta u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T v:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{Bv}=\mathrm{g}
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{pu}]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathrm{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathrm{~B}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$.

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\Delta u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T v:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{Bv}=\mathrm{g}
\end{aligned}
$$

where $v:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathrm{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathrm{~B}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\Delta u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T v:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{B} v=\mathrm{g}
\end{aligned}
$$

where $\mathrm{v}:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathrm{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathrm{~B}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.
$\mathscr{H}=L^{2}(\Omega)^{d+1}, \mathscr{W}=L_{\text {div }}^{2}(\Omega) \times H^{1}(\Omega)$ and $\mathscr{W}_{0}=L_{\text {div }, 0}^{2}(\Omega) \times H_{0}^{1}(\Omega)$

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\triangle u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T \mathrm{v}:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{B} v=\mathrm{g},
\end{aligned}
$$

where $v:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathrm{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathrm{~B}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.
$\mathscr{H}=L^{2}(\Omega)^{d+1}, \mathscr{\not}=L_{\text {div }}^{2}(\Omega) \times H^{1}(\Omega)$ and $\psi_{0}=L_{\text {div }, 0}^{2}(\Omega) \times H_{0}^{1}(\Omega)$

- $V=L_{\text {div }}^{2}(\Omega) \times H_{0}^{1}(\Omega) \ldots$ Dirichelt boundary condition $(u=0$ on $\Gamma)$

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\triangle u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T v:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{B} v=\mathrm{g}
\end{aligned}
$$

where $v:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathrm{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathrm{~B}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.
$\mathscr{H}=L^{2}(\Omega)^{d+1}, \mathscr{W}=L_{\text {div }}^{2}(\Omega) \times H^{1}(\Omega)$ and $\mathscr{W}_{0}=L_{\text {div }, 0}^{2}(\Omega) \times H_{0}^{1}(\Omega)$

- $V=L_{\text {div }}^{2}(\Omega) \times H_{0}^{1}(\Omega) \ldots$ Dirichelt boundary condition $(u=0$ on $\Gamma)$
- $V=L_{\text {div }, 0}^{2}(\Omega) \times H^{1}(\Omega) \ldots$ Neumann boundary condition

Scalar elliptic PDE

$\Omega \subseteq \mathbb{R}^{d}, \mu>0$ and $f \in L^{2}(\Omega)$ given.

$$
\begin{aligned}
-\triangle u+\mu u=f & \Longleftrightarrow-\operatorname{div} \nabla u+\mu u=f \\
& \Longleftrightarrow\left\{\begin{array}{c}
\nabla u+\mathrm{p}=0 \\
\operatorname{div} \mathrm{p}+\mu u=f
\end{array}\right. \\
& \Longleftrightarrow T v:=\sum_{k=1}^{d} \partial_{k}\left(\mathrm{~A}_{k} \mathrm{v}\right)+\mathrm{B} v=\mathrm{g}
\end{aligned}
$$

where $v:=[\mathrm{p} u]^{\top}, \mathrm{g}:=[0 f]^{\top},\left(\mathrm{A}_{k}\right)_{i j}:=\delta_{i, k} \delta_{j, d+1}+\delta_{i, d+1} \delta_{j, k}, \mathrm{~B}:=\operatorname{diag}\{1, \ldots, 1, \mu\}$. Assumtions (F1) and (F2) are satisfied.
$\mathscr{H}=L^{2}(\Omega)^{d+1}, \mathscr{W}=L_{\text {div }}^{2}(\Omega) \times H^{1}(\Omega)$ and $\mathscr{W}_{0}=L_{\text {div }, 0}^{2}(\Omega) \times H_{0}^{1}(\Omega)$

- $V=L_{\text {div }}^{2}(\Omega) \times H_{0}^{1}(\Omega) \ldots$ Dirichelt boundary condition $(u=0$ on $\Gamma)$
- $V=L_{\text {div }, 0}^{2}(\Omega) \times H^{1}(\Omega) \ldots$ Neumann boundary condition $(\mathrm{p} \cdot \nu=\nabla u \cdot \nu=0$ on Γ)

Existence, multiplicity and classification

Lemma

If (T, \widetilde{T}) satisfies (T1)-(T2), then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathscr{D} \subseteq V, \widetilde{\mathcal{V}} \subseteq \mathfrak{W} \\
V \text { and } \widetilde{V} \text { closed in } W \\
\left(\left.T_{1}\right|_{v}\right)^{*}=\left.\widetilde{T}_{1}\right|_{\tilde{V}} \\
\left(\widetilde{\left.\left.T_{1}\right|_{\tilde{V}}\right)^{*}=\left.T_{1}\right|_{V} .}\right.
\end{array}\right.
$$

Existence, multiplicity and classification

Lemma

If (T, \widetilde{T}) satisfies (T1)-(T2), then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathscr{D} \subseteq V, \tilde{V} \subseteq \mathfrak{W} \\
V \text { and } \widetilde{\mathcal{V}} \text { closed in } W \\
\left(\left.T_{1}\right|_{V}\right)^{*}=\left.\widetilde{T}_{1}\right|_{\tilde{V}} \\
\left(\left.\widetilde{T}_{1}\right|_{\tilde{V}}\right)^{*}=\left.T_{1}\right|_{v}
\end{array}\right.
$$

We seek for bijective closed operators $\left.S \equiv T_{1}\right|_{v}$ such that

$$
T_{0} \subseteq S \subseteq T_{1}
$$

Existence, multiplicity and classification

Lemma

If (T, \widetilde{T}) satisfies (T1)-(T2), then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathscr{D} \subseteq V, \tilde{V} \subseteq \mathfrak{W} \\
V \text { and } \widetilde{\mathcal{V}} \text { closed in } W \\
\left(\left.T_{1}\right|_{V}\right)^{*}=\left.\widetilde{T}_{1}\right|_{\tilde{V}} \\
\left(\left.\widetilde{T}_{1}\right|_{\tilde{V}}\right)^{*}=\left.T_{1}\right|_{v}
\end{array}\right.
$$

We seek for bijective closed operators $\left.S \equiv T_{1}\right|_{v}$ such that

$$
T_{0} \subseteq S \subseteq T_{1}
$$

and thus also S^{*} is bijective and $\widetilde{T}_{0} \subseteq S^{*} \subseteq \widetilde{T}_{1}$.

Existence, multiplicity and classification

Lemma

If (T, \widetilde{T}) satisfies (T1)-(T2), then

$$
(V 2) \Longleftrightarrow\left\{\begin{array}{l}
\mathscr{D} \subseteq V, \tilde{V} \subseteq \mathfrak{W} \\
V \text { and } \widetilde{\mathcal{V}} \text { closed in } W \\
\left(\left.T_{1}\right|_{V}\right)^{*}=\left.\widetilde{T}_{1}\right|_{\tilde{V}} \\
\left(\left.\widetilde{T}_{1}\right|_{\tilde{V}}\right)^{*}=\left.T_{1}\right|_{V}
\end{array}\right.
$$

We seek for bijective closed operators $\left.S \equiv T_{1}\right|_{v}$ such that

$$
T_{0} \subseteq S \subseteq T_{1}
$$

and thus also S^{*} is bijective and $\widetilde{T}_{0} \subseteq S^{*} \subseteq \widetilde{T}_{1}$. We call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations relative to (T, \widetilde{T}).

Existence, multiplicity and classification

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Existence, multiplicity and classification

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification: $T_{0} \subseteq T_{1}, \widetilde{T}_{0} \subseteq \widetilde{T}_{1}$ and there exists a bijection $T_{r}: \operatorname{dom} T_{\mathrm{r}} \rightarrow \mathscr{H}$ with bounded inverse

Existence, multiplicity and classification

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification: $T_{0} \subseteq T_{1}, \widetilde{T}_{0} \subseteq \widetilde{T}_{1}$ and there exists a bijection T_{r} : dom $T_{\mathrm{r}} \rightarrow \mathscr{H}$ with bounded inverse and

$$
T_{0} \subseteq T_{\mathrm{r}} \subseteq T_{1}\left(\Longleftrightarrow \widetilde{T}_{0} \subseteq T_{\mathrm{r}}^{*} \subseteq \widetilde{T}_{1}\right)
$$

Existence, multiplicity and classification

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification: $T_{0} \subseteq T_{1}, \widetilde{T}_{0} \subseteq \widetilde{T}_{1}$ and there exists a bijection T_{r} : dom $T_{\mathrm{r}} \rightarrow \mathcal{H}$ with bounded inverse and

$$
T_{0} \subseteq T_{\mathrm{r}} \subseteq T_{1}\left(\Longleftrightarrow \widetilde{T}_{0} \subseteq T_{\mathrm{r}}^{*} \subseteq \widetilde{T}_{1}\right)
$$

Thus, we can apply a universal classification (classification of dual (adjoint) pairs).

Abstract theory

N. Antonić, M. Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differ. Equ. 263 (2017) 8264-8294.

Abstract theory

园
N. Antonić, M. Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differ. Equ. 263 (2017) 8264-8294.
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

Abstract theory

宣
N. Antonić, M. Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differ. Equ. 263 (2017) 8264-8294.
曷
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

To sum up: in abstract theory, we have

- well-posedness result and existence of one pair satisfying the conditions $(V 1)-(V 2)$.

Abstract theory

宣
N. Antonić, M. Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differ. Equ. 263 (2017) 8264-8294.
曷
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

To sum up: in abstract theory, we have

- well-posedness result and existence of one pair satisfying the conditions (V1) - (V2).
- classification of all adjoint pairs of bijective realisations with signed boundary map.

Abstract theory

固
N. Antonić, M. Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differ. Equ. 263 (2017) 8264-8294.

曷
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

To sum up: in abstract theory, we have

- well-posedness result and existence of one pair satisfying the conditions (V1) - (V2).
- classification of all adjoint pairs of bijective realisations with signed boundary map.
goal: further study of classical theory, using the results from the abstract theory.

Expected results

1. Decomposition of the graph space.

Expected results

1. Decomposition of the graph space.
2. For any Friedrichs operators an explicit pair of (V, \widetilde{V}) (as a consequence of (1).

Expected results

1. Decomposition of the graph space.
2. For any Friedrichs operators an explicit pair of (V, \widetilde{V}) (as a consequence of (1).
3. Classification of classical Friedrichs operators in $1 d$ case.

Expected results

1. Decomposition of the graph space.
2. For any Friedrichs operators an explicit pair of (V, \widetilde{V}) (as a consequence of (1).
3. Classification of classical Friedrichs operators in $1 d$ case.
4. Necessary condition for $V=\widetilde{V}$ and a sufficient condition for the same.

Expected results

1. Decomposition of the graph space.
2. For any Friedrichs operators an explicit pair of (V, \widetilde{V}) (as a consequence of (1).
3. Classification of classical Friedrichs operators in $1 d$ case.
4. Necessary condition for $\mathcal{V}=\widetilde{V}$ and a sufficient condition for the same.
5. Hard to expect to explicitly write all possible boundary conditions. So, we hope to treat and study certain familty of boundary conditions.

Expected results

1. Decomposition of the graph space.
2. For any Friedrichs operators an explicit pair of (V, \widetilde{V}) (as a consequence of (1).
3. Classification of classical Friedrichs operators in $1 d$ case.
4. Necessary condition for $\mathcal{V}=\widetilde{V}$ and a sufficient condition for the same.
5. Hard to expect to explicitly write all possible boundary conditions. So, we hope to treat and study certain familty of boundary conditions.
6. Some applications to PDEs of interest.

Decomposition

Theorem (Decomposition of the graph space)

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
W=W_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Decomposition

Theorem (Decomposition of the graph space)

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
W=W_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{W_{0}+\operatorname{ker}} \tilde{T}_{1},\left.\tilde{T}_{1}\right|_{W_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).

Decomposition

Theorem (Decomposition of the graph space)

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
W=W_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{W_{0}+\operatorname{ker} \tilde{T}_{1}},\left.\tilde{T}_{1}\right|_{W_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).
proof:

- $W_{0} \dot{+}$ ker $T_{1} \dot{+} \operatorname{ker} \tilde{T}_{1}$ is direct and closed in W.

Decomposition

Theorem (Decomposition of the graph space)

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathfrak{W}=W_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{W_{0}+\operatorname{ker} \tilde{T}_{1}},\left.\tilde{T}_{1}\right|_{W_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).
proof:

- $W_{0} \dot{+} \operatorname{ker} T_{1}+\operatorname{ker} \widetilde{T}_{1}$ is direct and closed in \mathscr{W}.
- For any bijective realisation T_{r},

$$
\mathfrak{W}=\mathscr{W}_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\mathscr{W}_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1} .
$$

Decomposition

Theorem (Decomposition of the graph space)

(T_{0}, \widetilde{T}_{0}) is a joint pair of closed abstract Friedrichs operators then

$$
\mathfrak{W}=W_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

Corollary

$\left(\left.T_{1}\right|_{W_{0}+\operatorname{ker} \tilde{T}_{1}},\left.\tilde{T}_{1}\right|_{W_{0}+\operatorname{ker} T_{1}}\right)$ is a pair of mutually adjoint pair of bijective realisations relative to (T, \tilde{T}).
proof:

- $W_{0} \dot{+}$ ker $T_{1} \dot{+} \operatorname{ker} \tilde{T}_{1}$ is direct and closed in W.
- For any bijective realisation T_{r},

$$
W=\varphi_{0} \dot{+} T_{\mathrm{r}}^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1}=\varphi_{0} \dot{+}\left(T_{\mathrm{r}}^{*}\right)^{-1}\left(\operatorname{ker} \widetilde{T}_{1}\right) \dot{+} \operatorname{ker} T_{1} .
$$

- $W=\left(W_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}\right)^{[\perp][\perp]}$.

1d scalar $(r=1)$ case

$$
\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) .
$$

1d scalar $(r=1)$ case

$$
\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:
$$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \tilde{T}_{\varphi}:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

1d scalar $(r=1)$ case

$$
\begin{aligned}
& \Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}: \\
& T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
\end{aligned}
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$

1d scalar $(r=1)$ case

$$
\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:
$$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \tilde{T}_{\varphi}:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.

1d scalar $(r=1)$ case

$$
\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:
$$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \tilde{T}_{\varphi}:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathscr{W}=\left\{u \in \mathscr{H}:(\alpha u)^{\prime} \in \mathscr{H}\right\}, \quad\|u\|_{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\| .
$$

1d scalar $(r=1)$ case

$$
\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:
$$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \tilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space:

$$
\mathscr{W}=\left\{u \in \mathscr{H}:(\alpha u)^{\prime} \in \mathscr{H}\right\}, \quad\|u\|_{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\| .
$$

Equivalently,

$$
u \in \mathscr{W} \Longleftrightarrow \alpha u \in H^{1}(a, b) .
$$

1d scalar $(r=1)$ case

$$
\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b) \text { and } \mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:
$$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \tilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.

The graph space :

$$
\mathscr{W}=\left\{u \in \mathscr{H}:(\alpha u)^{\prime} \in \mathscr{H}\right\}, \quad\|u\|_{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\| .
$$

Equivalently,

$$
u \in W \Longleftrightarrow \alpha u \in H^{1}(a, b) .
$$

So, by Sobolev embedding $\alpha u \in C[a, b]$. Implies the evaluation $(\alpha u)(x)$ is well defined.

1d scalar $(r=1)$ case

$\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b)$ and $\mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \tilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathscr{W}=\left\{u \in \mathscr{H}:(\alpha u)^{\prime} \in \mathscr{H}\right\}, \quad\|u\|_{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\| .
$$

Equivalently,

$$
u \in W \Longleftrightarrow \alpha u \in H^{1}(a, b) .
$$

So, by Sobolev embedding $\alpha u \in C[a, b]$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, \boldsymbol{u} is not necessarily continuous so $\alpha(x) u(x)$ is not meaningful.

1d scalar ($r=1$) case

$\Omega=(a, b), a<b, \mathscr{D}=C_{c}^{\infty}(a, b)$ and $\mathscr{H}=L^{2}(a, b) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi .
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.

The graph space :

$$
\mathscr{W}=\left\{u \in \mathscr{H}:(\alpha u)^{\prime} \in \mathscr{H}\right\}, \quad\|u\|_{w}:=\|u\|+\left\|(\alpha u)^{\prime}\right\| .
$$

Equivalently,

$$
u \in \mathbb{W} \Longleftrightarrow \alpha u \in H^{1}(a, b)
$$

So, by Sobolev embedding $\alpha u \in C[a, b]$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x) u(x)$ is not meaningful.

Lemma

Let $I:=[a, b] \backslash \alpha^{-1}(\{0\})$. Then $\mathfrak{W} \subseteq H_{\mathrm{loc}}^{1}(I)$, i.e. for any $u \in \mathbb{W}$ and $[c, d] \subseteq I, c<d$, we have $\left.u\right|_{([c, d])} \in H^{1}(c, d)$.

1d scalar case cont...

The boundary operator can be written explicitly as

$$
w_{\psi}\langle D u, v\rangle_{w}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathscr{W},
$$

1d scalar case cont...

The boundary operator can be written explicitly as

$$
w_{\hookleftarrow}\langle D u, v\rangle_{w}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathbb{W},
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

1d scalar case cont...

The boundary operator can be written explicitly as

$$
w_{w}\langle D u, v\rangle_{W}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathscr{W},
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{lll}
0 & , & \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , & \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} is characterised by $\mathscr{W}_{0}=\operatorname{cl}_{\mathscr{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

1d scalar case cont...

The boundary operator can be written explicitly as

$$
w_{\hookleftarrow}\langle D u, v\rangle_{w}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathbb{W},
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} is characterised by $\mathscr{\vartheta}_{0}=\operatorname{cl}_{\mathscr{N}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathscr{W}_{0}=\{u \in \mathscr{W}:(\alpha u)(a)=(\alpha u)(b)=0\} .
$$

1d scalar case cont...

The boundary operator can be written explicitly as

$$
{ }_{w}\langle D u, v\rangle_{W}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathscr{W},
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} is characterised by $\mathscr{W}_{0}=\operatorname{cl}_{\mathscr{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathscr{W}_{0}=\{u \in \mathscr{W}:(\alpha u)(a)=(\alpha u)(b)=0\} .
$$

Lemma

$$
\operatorname{dim}\left(W / W_{0}\right)= \begin{cases}2 & , \quad \alpha(a) \alpha(b) \neq 0 \\ 1 & , \quad(\alpha(a)=0 \wedge \alpha(b) \neq 0) \vee(\alpha(a) \neq 0 \wedge \alpha(b)=0) \\ 0 \quad, \quad \alpha(a)=\alpha(b)=0\end{cases}
$$

1d scalar case cont...

From the decomposition: $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} W / \bigoplus_{0}$.

1d scalar case cont...

From the decomposition: $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathscr{W} / \mathscr{W}_{0}$.

- $\alpha(a) \alpha(b)=0 \Longrightarrow$ only one bijective realisation.

1d scalar case cont...

From the decomposition: $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} W / \mathscr{W}_{0}$.

- $\alpha(a) \alpha(b)=0 \Longrightarrow$ only one bijective realisation.
- $\alpha(a) \alpha(b)<0 \Longrightarrow$ only one bijective realisation.

1d scalar case cont...

From the decomposition: $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} W / \mathscr{W}_{0}$.

- $\alpha(a) \alpha(b)=0 \Longrightarrow$ only one bijective realisation.
- $\alpha(a) \alpha(b)<0 \Longrightarrow$ only one bijective realisation.
- $\alpha(a) \alpha(b)>0 \Longrightarrow$ infinitely many bijective realisations.

1d scalar case cont...

From the decomposition: $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathscr{W} / \mathscr{W}_{0}$.

- $\alpha(a) \alpha(b)=0 \Longrightarrow$ only one bijective realisation.
- $\alpha(a) \alpha(b)<0 \Longrightarrow$ only one bijective realisation.
- $\alpha(a) \alpha(b)>0 \Longrightarrow$ infinitely many bijective realisations.

Summary :

α at end-points	No. of bij. realisations	(V, \widetilde{V})	
$\alpha(a) \alpha(b) \leq 0$	1	$\frac{\alpha(a) \geq 0 \wedge \alpha(b) \leq 0}{\alpha(a) \leq 0 \wedge \alpha(b) \geq 0}$	$\left(W_{0}, \mathscr{W}\right)$
$\alpha(a) \alpha(b)>0$	∞	explicit formulae	

1d vectorial case

$$
\Omega=(a, b), a<b . \text { Then } \mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right) \text { and } \mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right)
$$

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \tilde{T}: \mathscr{D} \rightarrow \mathscr{H}$:

$$
T \mathrm{u}:=(\mathrm{A} u)^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T}_{\mathrm{u}}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u}
$$

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}$:

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T} \mathrm{u}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u}
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $B^{*}+B+A^{\prime} \geq 2 \mu_{0} I>0$.

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \tilde{T}: \mathscr{D} \rightarrow \mathscr{H}:$

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T}_{\mathrm{u}}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u},
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $B^{*}+B+A^{\prime} \geq 2 \mu_{0} \mathrm{l}>0$.
The graph space:

$$
w=\left\{u \in \mathscr{H}:(A u)^{\prime} \in \mathscr{H}\right\}=\left\{u \in \mathscr{H}: A u \in H^{1}(a, b)\right\} .
$$

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \tilde{T}: \mathscr{D} \rightarrow \mathscr{H}$:

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T} \mathrm{u}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u}
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $B^{*}+B+A^{\prime} \geq 2 \mu_{0} l>0$.
The graph space:

$$
\mathfrak{W}=\left\{\mathbf{u} \in \mathscr{H}:(\mathrm{Au})^{\prime} \in \mathscr{H}\right\}=\left\{\mathbf{u} \in \mathscr{H}: \mathrm{Au} \in H^{1}(a, b)\right\} .
$$

By some assumption on eigenvectors of A, we define the boundary map as

$$
w^{\prime}\langle D u, v\rangle_{w}=(A u \cdot v)(b)-(A u \cdot v)(a), \quad u, v \in \mathscr{W} .
$$

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \tilde{T}: \mathscr{D} \rightarrow \mathscr{H}$:

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T}_{\mathrm{u}}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u}
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $B^{*}+B+A^{\prime} \geq 2 \mu_{0} l>0$.
The graph space:

$$
\mathfrak{W}=\left\{\mathbf{u} \in \mathscr{H}:(\mathrm{Au})^{\prime} \in \mathscr{H}\right\}=\left\{\mathbf{u} \in \mathscr{H}: \mathrm{Au} \in H^{1}(a, b)\right\} .
$$

By some assumption on eigenvectors of A, we define the boundary map as

$$
w^{\prime}\langle D \mathbf{u}, \mathrm{v}\rangle_{w}=(\mathrm{Au} \cdot \mathrm{v})(b)-(\mathrm{Au} \cdot \mathrm{v})(a), \quad \mathrm{u}, \mathrm{v} \in \mathfrak{W} .
$$

and the minimal space

$$
\mathscr{W}_{0}=\{u \in \mathscr{W}:(\mathrm{Au})(a)=(\mathrm{Au})(b)=0\} .
$$

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \tilde{T}: \mathscr{D} \rightarrow \mathscr{H}$:

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T} \mathrm{u}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u}
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $B^{*}+B+A^{\prime} \geq 2 \mu_{0} I>0$.
The graph space:

$$
\mathfrak{W}=\left\{\mathbf{u} \in \mathscr{H}:(\mathrm{Au})^{\prime} \in \mathscr{H}\right\}=\left\{\mathbf{u} \in \mathscr{H}: \mathrm{Au} \in H^{1}(a, b)\right\} .
$$

By some assumption on eigenvectors of A, we define the boundary map as

$$
w^{\prime}\langle D \mathbf{u}, \mathrm{v}\rangle_{w}=(\mathrm{Au} \cdot \mathrm{v})(b)-(\mathrm{Au} \cdot \mathrm{v})(a), \quad \mathrm{u}, \mathrm{v} \in \mathfrak{W} .
$$

and the minimal space

$$
\mathscr{W}_{0}=\{u \in \mathscr{W}:(\mathrm{Au})(a)=(\mathrm{Au})(b)=0\} .
$$

A is diagonalizable, $\mathrm{A}=\mathrm{Q} \wedge \mathrm{Q}^{*}$, orthogonal matrix $\mathrm{Q}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right]^{T}, \Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{r}\right]$.

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \tilde{T}: \mathscr{D} \rightarrow \mathscr{H}$:

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T}_{\mathrm{u}}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u}
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $\mathrm{B}^{*}+\mathrm{B}+\mathrm{A}^{\prime} \geq 2 \mu_{0} \mathrm{I}>0$.
The graph space:

$$
\mathfrak{W}=\left\{u \in \mathscr{H}:(\mathrm{Au})^{\prime} \in \mathscr{H}\right\}=\left\{\mathrm{u} \in \mathscr{H}: \mathrm{Au} \in H^{1}(a, b)\right\} .
$$

By some assumption on eigenvectors of A, we define the boundary map as

$$
w^{\prime}\langle D \mathbf{u}, \mathrm{v}\rangle_{w}=(\mathrm{Au} \cdot \mathrm{v})(b)-(\mathrm{Au} \cdot \mathrm{v})(a), \quad \mathrm{u}, \mathrm{v} \in \mathfrak{W} .
$$

and the minimal space

$$
\mathscr{W}_{0}=\{u \in \mathscr{W}:(\mathrm{Au})(a)=(\mathrm{Au})(b)=0\} .
$$

A is diagonalizable, $\mathrm{A}=\mathrm{Q} \wedge \mathrm{Q}^{*}$, orthogonal matrix $\mathrm{Q}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right]^{T}, \Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{r}\right]$. The boundary map: Set, $\hat{\mathrm{u}}=\left(\hat{u}_{1}, \ldots, \hat{u}_{r}\right)^{T}:=\mathrm{Q}^{*} \mathrm{u}$ and $\hat{\mathrm{v}}=\left(\hat{v}_{1}, \ldots, \hat{v}_{r}\right)^{T}:=\mathrm{Q}^{*} \mathrm{v}$.

1d vectorial case

$\Omega=(a, b), a<b$. Then $\mathscr{D}=C_{c}^{\infty}\left((a, b), \mathbb{C}^{r}\right)$ and $\mathscr{H}=L^{2}\left((a, b), \mathbb{C}^{r}\right) . T, \widetilde{T}: \mathscr{D} \rightarrow \mathscr{H}:$

$$
T \mathrm{u}:=(\mathrm{Au})^{\prime}+\mathrm{Bu} \quad \text { and } \quad \widetilde{T}_{\mathrm{u}}:=-(\mathrm{A} \varphi)^{\prime}+\left(\mathrm{B}^{*}+\mathrm{A}^{\prime}\right) \mathrm{u},
$$

where $\mathrm{A} \in W^{1, \infty}\left((a, b) ; \mathrm{M}_{r}\right), \mathrm{B} \in L^{\infty}\left((a, b) ; \mathbb{C}^{r}\right)$ and for some $\mu_{0}>0$ we have $B^{*}+B+A^{\prime} \geq 2 \mu_{0} \mathrm{l}>0$.
The graph space:

$$
\mathfrak{w}=\left\{u \in \mathscr{H}:(\mathrm{Au})^{\prime} \in \mathscr{H}\right\}=\left\{u \in \mathscr{H}: A u \in H^{1}(a, b)\right\} .
$$

By some assumption on eigenvectors of A, we define the boundary map as

$$
w_{w}\langle D u, v\rangle_{w}=(A u \cdot v)(b)-(A u \cdot v)(a), \quad u, v \in w .
$$

and the minimal space

$$
W_{0}=\{u \in W:(A u)(a)=(A u)(b)=0\} .
$$

A is diagonalizable, $\mathrm{A}=\mathrm{Q} \wedge \mathrm{Q}^{*}$, orthogonal matrix $\mathrm{Q}=\left[\mathrm{v}_{1}, \ldots, \mathrm{v}_{r}\right]^{\top}, \Lambda=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{r}\right]$. The boundary map: Set, $\hat{u}=\left(\hat{u}_{1}, \ldots, \hat{u}_{r}\right)^{T}:=Q^{*} u$ and $\hat{\mathrm{v}}=\left(\hat{v}_{1}, \ldots, \hat{v}_{r}\right)^{T}:=\mathrm{Q}^{*} \mathrm{v}$.
$\forall u, v \in \mathbb{W}:[u \mid v]=(\Lambda \hat{u} \cdot \hat{v})(b)-(\Lambda \hat{u} \cdot \hat{v})(a)=\sum_{k=1}^{r}\left(\lambda_{k}(b) \hat{u}_{k}(b) \overline{\hat{v}}_{k}(b)-\lambda_{k}(a) \hat{u}_{k}(a) \overline{\hat{v}}_{k}(a)\right)$
And, $\mathscr{W}_{0}=\{u \in \mathscr{W}:(\Lambda \hat{u})(b)=(\Lambda \hat{v})(a)=0\}$.

Construction of a pair $(\mathcal{V}, \widetilde{\mathcal{V}})$

We first define the subspaces $\left\{V_{k, j}\right\}_{k=1, . ., r}^{j=1,2}$ and $\left\{\widetilde{V}_{k, j}\right\}_{k=1, \ldots, r}^{j=1,2}$ of \mathscr{W}

Construction of a pair (V, \widetilde{V})

We first define the subspaces $\left\{V_{k, j}\right\}_{k=1, . ., r}^{j=1,2}$ and $\left\{\widetilde{V}_{k, j}\right\}_{k=1, \ldots, r}^{j=1,2}$ of \mathfrak{W} as follows:

Sign of $\lambda_{k}(a)$	$V_{k, 1}$	$\widetilde{V}_{k, 1}$
$\lambda_{k}(a)=0$	\mathscr{W}	\mathscr{W}
$\lambda_{k}(a)>0$	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(a)=0\right\}$	\mathscr{W}
$\lambda_{k}(a)<0$	\mathscr{W}	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(a)=0\right\}$

Construction of a pair (V, \widetilde{V})

We first define the subspaces $\left\{\vartheta_{k, j}\right\}_{k=1, \ldots, r}^{j=1,2}$ and $\left\{\tilde{V}_{k, j}\right\}_{k=1, \ldots, r}^{j=1,2}$ of \mathbb{W} as follows:

Sign of $\lambda_{k}(a)$	$\hat{U}_{k, 1}$	$\tilde{V}_{k, 1}$
$\lambda_{k}(a)=0$	\mathscr{W}	\mathscr{W}
$\lambda_{k}(a)>0$	$\left\{u \in \mathscr{W}: \hat{u}_{k}(a)=0\right\}$	\mathscr{W}
$\lambda_{k}(a)<0$	\mathscr{W}	$\left\{u \in \mathscr{W}: \hat{u}_{k}(a)=0\right\}$

and

Sign of $\lambda_{k}(b)$	$V_{k, 2}$	$\tilde{\psi}_{k, 2}$
$\lambda_{k}(b)=0$	W	\mathscr{W}
$\lambda_{k}(b)>0$	W	$\left\{\mathbf{W} \in W: \hat{u}_{k}(b)=0\right\}$
$\lambda_{k}(b)<0$	$\left\{\mathbf{u} \in W: \hat{u}_{k}(b)=0\right\}$	\mathscr{W}

Construction of a pair (V, \widetilde{V})

We first define the subspaces $\left\{V_{k, j}\right\}_{k=1, . ., r}^{j=1,2}$ and $\left\{\widetilde{V}_{k, j}\right\}_{k=1, \ldots, r}^{j=1,2}$ of \mathbb{W} as follows:

Sign of $\lambda_{k}(a)$	$V_{k, 1}$	$\widetilde{V}_{k, 1}$
$\lambda_{k}(a)=0$	\mathscr{W}	\mathscr{W}
$\lambda_{k}(a)>0$	$\left\{\mathbf{u} \in \mathbb{W}: \hat{u}_{k}(a)=0\right\}$	\mathscr{W}
$\lambda_{k}(a)<0$	\mathscr{W}	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(a)=0\right\}$

and

Sign of $\lambda_{k}(b)$	$V_{k, 2}$	$\widetilde{V}_{k, 2}$
$\lambda_{k}(b)=0$	\mathscr{W}	\mathscr{W}
$\lambda_{k}(b)>0$	\mathscr{W}	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(b)=0\right\}$
$\lambda_{k}(b)<0$	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(b)=0\right\}$	\mathscr{W}

Define,

$$
V:=\bigcap_{k=1}^{r} \bigcap_{j=1}^{2} V_{k, j} \quad \text { and } \quad \tilde{V}:=\bigcap_{k=1}^{r} \bigcap_{j=1}^{2} \tilde{V}_{k, j} .
$$

Construction of a pair (V, \widetilde{V})

We first define the subspaces $\left\{V_{k, j}\right\}_{k=1, . ., r}^{j=1,2}$ and $\left\{\widetilde{V}_{k, j}\right\}_{k=1, \ldots, r}^{j=1,2}$ of \mathbb{W} as follows:

Sign of $\lambda_{k}(a)$	$V_{k, 1}$	$\widetilde{V}_{k, 1}$
$\lambda_{k}(a)=0$	\mathscr{W}	\mathscr{W}
$\lambda_{k}(a)>0$	$\left\{\mathbf{u} \in \mathbb{W}: \hat{u}_{k}(a)=0\right\}$	\mathscr{W}
$\lambda_{k}(a)<0$	\mathscr{W}	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(a)=0\right\}$

and

Sign of $\lambda_{k}(b)$	$V_{k, 2}$	$\widetilde{V}_{k, 2}$
$\lambda_{k}(b)=0$	\mathscr{W}	\mathscr{W}
$\lambda_{k}(b)>0$	\mathscr{W}	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(b)=0\right\}$
$\lambda_{k}(b)<0$	$\left\{\mathbf{u} \in \mathscr{W}: \hat{u}_{k}(b)=0\right\}$	\mathscr{W}

Define,

$$
V:=\bigcap_{k=1}^{r} \bigcap_{j=1}^{2} V_{k, j} \quad \text { and } \quad \tilde{V}:=\bigcap_{k=1}^{r} \bigcap_{j=1}^{2} \tilde{V}_{k, j} .
$$

Lemma

(V, \widetilde{V}) satisfy the conditions $(V 1)-(V 2)$.

Result on kernels

Theorem

$$
\operatorname{dim} \operatorname{ker} T_{1}=n_{a}^{+}+n_{b}^{-} \text {and } \operatorname{dim} \operatorname{ker} \widetilde{T}_{1}=n_{a}^{-}+n_{b}^{+}
$$

Where, n_{a}^{+}, n_{a}^{-}are the number of positive and negative eigenvalues of the matrix $\mathrm{A}(a)$ respectively and similarly, n_{b}^{+}, n_{b}^{-}are the number of positive and negative eigenvalues of the matrix $\mathrm{A}(b)$ respectively.

Result on kernels

Theorem

$$
\operatorname{dim} \operatorname{ker} T_{1}=n_{a}^{+}+n_{b}^{-} \text {and } \operatorname{dim} \operatorname{ker} \widetilde{T}_{1}=n_{a}^{-}+n_{b}^{+}
$$

Where, n_{a}^{+}, n_{a}^{-}are the number of positive and negative eigenvalues of the matrix $\mathrm{A}(a)$ respectively and similarly, n_{b}^{+}, n_{b}^{-}are the number of positive and negative eigenvalues of the matrix $\mathrm{A}(b)$ respectively.

Corollary

$$
\operatorname{dim}\left(W / W_{0}\right)=\operatorname{rank}(A(a))+\operatorname{rank}(A(b))
$$

$v=\widetilde{v}$

Lemma

For existence of $\mathcal{V}=\widetilde{V}$, we have

- a necessary condition

$$
\operatorname{ker} T_{1} \cong \operatorname{ker} \widetilde{T}_{1}
$$

$V=\widetilde{V}$

Lemma

For existence of $\mathcal{V}=\widetilde{V}$, we have

- a necessary condition

$$
\operatorname{ker} T_{1} \cong \operatorname{ker} \widetilde{T}_{1}
$$

- a sufficient condition

$$
n_{a}^{+}=n_{b}^{+}, n_{a}^{-}=n_{b}^{-} \text {and } n_{a}^{0}=n_{b}^{0}
$$

Here, n_{a}^{0}, n_{b}^{0} are the number of zero eigenvalues of $A(a)$ and $A(b)$ respectively.
$v=\widetilde{v}$

Lemma

For existence of $\mathcal{V}=\widetilde{V}$, we have

- a necessary condition

$$
\operatorname{ker} T_{1} \cong \operatorname{ker} \widetilde{T}_{1}
$$

- a sufficient condition

$$
n_{a}^{+}=n_{b}^{+}, n_{a}^{-}=n_{b}^{-} \text {and } n_{a}^{0}=n_{b}^{0}
$$

Here, n_{a}^{0}, n_{b}^{0} are the number of zero eigenvalues of $A(a)$ and $A(b)$ respectively.
$\left(\mathscr{W}_{0}+\operatorname{ker} \widetilde{T}_{1}, \mathscr{W}_{0}+\operatorname{ker} T_{1}\right)$ is an admissible pair.
$v=\widetilde{v}$

Lemma

For existence of $\mathcal{V}=\widetilde{V}$, we have

- a necessary condition

$$
\operatorname{ker} T_{1} \cong \operatorname{ker} \widetilde{T}_{1}
$$

- a sufficient condition

$$
n_{a}^{+}=n_{b}^{+}, n_{a}^{-}=n_{b}^{-} \text {and } n_{a}^{0}=n_{b}^{0}
$$

Here, n_{a}^{0}, n_{b}^{0} are the number of zero eigenvalues of $A(a)$ and $A(b)$ respectively.
$\left(W_{0}+\operatorname{ker} \widetilde{T}_{1}, \mathscr{W}_{0} \dot{+} \operatorname{ker} T_{1}\right)$ is an admissible pair. So, for any other pair $(\mathcal{V}, \widetilde{V})$, we have

$$
V / \bigoplus_{0} \cong \operatorname{ker} T_{1}, \text { and } \widetilde{V} / \bigoplus_{0} \cong \operatorname{ker} \widetilde{T}_{1} .
$$

Lemma

For existence of $\mathcal{V}=\widetilde{V}$, we have

- a necessary condition

$$
\operatorname{ker} T_{1} \cong \operatorname{ker} \widetilde{T}_{1}
$$

- a sufficient condition

$$
n_{a}^{+}=n_{b}^{+}, n_{a}^{-}=n_{b}^{-} \text {and } n_{a}^{0}=n_{b}^{0}
$$

Here, n_{a}^{0}, n_{b}^{0} are the number of zero eigenvalues of $A(a)$ and $A(b)$ respectively.
$\left(W_{0}+\operatorname{ker} \widetilde{T}_{1}, \mathscr{W}_{0} \dot{+} \operatorname{ker} T_{1}\right)$ is an admissible pair. So, for any other pair $(\mathcal{V}, \widetilde{V})$, we have

$$
V / \mathscr{W}_{0} \cong \operatorname{ker} T_{1}, \text { and } \widetilde{V} / \mathscr{W}_{0} \cong \operatorname{ker} \widetilde{T}_{1}
$$

So,

$$
V=\widetilde{V} \Longrightarrow \operatorname{ker} T_{1} \cong \widetilde{T}_{1}
$$

Lemma

For existence of $\mathcal{V}=\widetilde{V}$, we have

- a necessary condition

$$
\operatorname{ker} T_{1} \cong \operatorname{ker} \widetilde{T}_{1}
$$

- a sufficient condition

$$
n_{a}^{+}=n_{b}^{+}, n_{a}^{-}=n_{b}^{-} \text {and } n_{a}^{0}=n_{b}^{0}
$$

Here, n_{a}^{0}, n_{b}^{0} are the number of zero eigenvalues of $A(a)$ and $A(b)$ respectively.
$\left(W_{0}+\operatorname{ker} \widetilde{T}_{1}, \mathscr{W}_{0} \dot{+} \operatorname{ker} T_{1}\right)$ is an admissible pair. So, for any other pair $(\mathcal{V}, \widetilde{V})$, we have

$$
V / \mathscr{W}_{0} \cong \operatorname{ker} T_{1}, \text { and } \widetilde{V} / \mathscr{W}_{0} \cong \operatorname{ker} \widetilde{T}_{1}
$$

So,

$$
V=\widetilde{V} \Longrightarrow \operatorname{ker} T_{1} \cong \widetilde{T}_{1}
$$

For the other part we follow the construction.

Reference

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.
A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.
目 N. Antonić, M. Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differ. Equ. 263 (2017) 8264-8294.
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.
M. Jensen: Discontinuous Galerkin methods for Friedrichs systems with irregular solutions, Ph.D. thesis, University of Oxford, 2004, http://sro.sussex.ac.uk/45497/1/thesisjensen.pdf

