Microlocal defect functionals and applications

Nenad Antonić

Department of Mathematics Faculty of Science University of Zagreb

Time-frequency representations for function spaces Novi Sad, April $11^{\rm th}\text{-}13^{\rm th},\,2022$

http://riemann.math.hr/mitpde/ Joint work with Marko Erceg, Krešimir Burazin and Jelena Jankov

Microlocal defect distributions

Overview Test functions in the dual space Kernel theorem One-scale H-distributions Localisation principle

Small-amplitude homogenisation of elastic plate

Mathematical theory of homogenisation Kirchhoff-Love plate theory Homogenisation of Kirchhoff-Love plates Small-amplitude homogenisation for plates Comparison to the periodic case Microlocal defect distributions

H-measures vs. defect measures

H-measures or microlocal defect measures represent a generalisation of defect measures. Besides the space variables, they depend on the dual variables as well. An H-measure is a Radon measure on the cospherical bundle

 $\Omega \times \mathbf{S}^{d-1} \subseteq T^* \Omega \simeq \Omega \times \mathbf{R}^d$

over a domain $\Omega \subseteq \mathbf{R}^d$, and it is associated to a weakly converging sequence in $L^2_{loc}(\Omega)$.

Consider a plain wave:

$$u_n(\mathbf{x}) = \varphi(\mathbf{x}) e^{2\pi i \frac{\mathbf{x}}{\varepsilon_n} \cdot \mathbf{k}},$$

where $\varphi \in L^2_{loc}(\mathbf{R}^d)$, $\mathbf{k} \in \mathbf{R}^d \setminus \{0\}$, and $\varepsilon_n \to 0^+$. This sequence weakly converges in $L^2_{loc}(\mathbf{R}^d)$ to 0 (but not strongly, except in the trivial case $\varphi = 0$). Defect measure is the limit of $|u_n|^2 = |\varphi|^2$ in the space of (unbounded) Radon measures with respect to the weak-* topology — $|\varphi|^2 \lambda^d$. On the other hand, the H-measure is

$$|arphi|^2 \lambda^d \otimes \delta_{rac{\mathsf{k}}{|\mathsf{k}|}}$$

where $\delta_{\frac{k}{|k|}}$ (the Dirac measure at point k/|k|) is a measures in the dual space (variable $\boldsymbol{\xi}$).

Hence, the direction of oscillation is inherent in the H-measure.

H-measures vs. semiclassical (Wigner) measures

In the example the H-measure does not distinguish between sequences with different frequencies $\frac{1}{\varepsilon_n}$. We need to incorporate a scale. That is the case with *semiclassical measures*; the Radon measures on the cotangential bundle $\Omega \times \mathbf{R}^d$. Since they depend upon a characteristic length $(\omega_n), \omega_n \to 0^+$ in the real line, they are more suitable in situations where such a characteristic length naturally appears, often related to highly oscillating problems for partial differential equations.

However, the scale brings new issues: if the characteristic length (ω_n) of a semiclassical measure is chosen inappropriately, we can lose information.

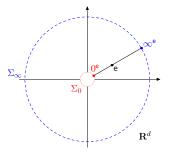
For example, if $\lim_{n} \frac{\omega_n}{\varepsilon_n} = +\infty$, the semiclassical measure associated to the plane wave is equal to zero measure. This in particular implies that, in contrast to H-measures, a zero semiclassical measure does not necessarily guarantee the strong convergence of the associated sequence (the so-called (ω_n) -oscillatory property needs to be satisfied as well).

H-measures and semiclassical measures are in a general relation (neither is a generalisation of the other) and either has some advantages and disadvantages.

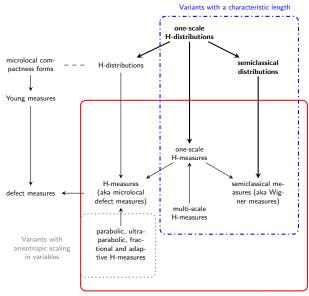
One-scale H-measures

One-scale H-measures are a true extension of H-measures and semiclassical measures. The localisation principles, both for H-measures and semiclassical measures, can be derived from the localisation principle for one-scale H-measures

The main part in their construction is a proper choice of the domain for dual variables. For a fine tuning with characteristic lengths the set has to be *thick* enough, but we need to allow for directions to be detected also at the origin and infinity. This can be achieved with a radial compactification of $\mathbf{R}^d \setminus \{0\}$, denoted by $K_{0,\infty}(\mathbf{R}^d)$, which is homeomorphic to the *d*-dimensional spherical shell.



Overview of MDF



Variants on ${\rm L}^2$ space

Compactification of $\mathbf{R}^d_* = \mathbf{R}^d \setminus \{\mathbf{0}\}$

For the compactifying map \mathcal{J} we take the composition of the translation from the origin in the radial direction for $r_0 > 0$:

$$\mathbf{R}^d_* \ni \boldsymbol{\xi} \stackrel{\mathcal{T}}{\longmapsto} rac{|\boldsymbol{\xi}| + r_0}{|\boldsymbol{\xi}|} \boldsymbol{\xi} \in \mathbf{R}^d \setminus \mathrm{K}[\mathbf{0}, r_0] \;,$$

and a compactifying map of the radial compactification.

For the latter, we first identify \mathbf{R}^d with the hypersurface $\xi_0 = 1$ in $\mathbf{R}_{\xi_0,\boldsymbol{\xi}}^{1+d}$, and then apply the modified stereographic projection based on the line through the origin (instead of the South Pole). More precisely, the radial compactification map \mathcal{R} maps $\boldsymbol{\xi}$ to the intersection of $[0,1] \ni t \mapsto (t,t\boldsymbol{\xi})$ (the line through $(1,\boldsymbol{\xi})$ and (0,0) in \mathbf{R}^{1+d}) and the upper half of the unit sphere centred at the origin: $\mathrm{S}^d_+ := \{(\zeta_0, \boldsymbol{\zeta}) \in \mathrm{S}^d : \zeta_0 > 0\}$. Since the intersection occurs at $t = (1 + |\boldsymbol{\xi}|^2)^{-\frac{1}{2}}$, we have that $\mathcal{R} : \mathbf{R}^d \to \mathrm{S}^d_+$ is given by

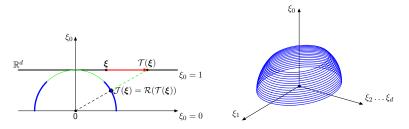
$$\mathcal{R}(\boldsymbol{\xi}) = \left(rac{1}{\sqrt{1+|\boldsymbol{\xi}|^2}}, rac{\boldsymbol{\xi}}{\sqrt{1+|\boldsymbol{\xi}|^2}}
ight)$$

 $\mathcal{J} := \mathcal{R} \circ \mathcal{T} : \mathbf{R}^d_* \to \mathrm{S}^d_{(0,r_1)}$

$$\mathcal{R}(\mathbf{R}^d \setminus \mathrm{K}[\mathbf{0}, r_0]) = \left\{ (\zeta_0, \boldsymbol{\zeta}) \in \mathrm{S}^d : 0 < \zeta_0 < r_1 \right\} =: \mathrm{S}^d_{(0, r_1)}$$

and

$$\mathcal{J}(\boldsymbol{\xi}) = \left(\frac{1}{\sqrt{1 + (|\boldsymbol{\xi}| + r_0)^2}}, \frac{|\boldsymbol{\xi}| + r_0}{\sqrt{1 + (|\boldsymbol{\xi}| + r_0)^2}} \frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right).$$



Fourier multipliers

Functions from $C^{\kappa}(S^{d-1})$, as well as those from $\mathcal{S}(\mathbf{R}^d)$ can be identified as functions on $K_{0,\infty}(\mathbf{R}^d)$.

Theorem. Any function from $C^{\lfloor \frac{d}{2} \rfloor + 1}(K_{0,\infty}(\mathbf{R}^d))$ satisfies Mihlin's condition

$$|\partial^{oldsymbol{lpha}}\psi(oldsymbol{\xi})|\leqslant rac{C}{|oldsymbol{\xi}|^{|oldsymbol{lpha}|}}\;,\quadoldsymbol{\xi}\in\mathbf{R}^d_*\,,$$

for each $|\alpha| \leq \lfloor \frac{d}{2} \rfloor + 1$, when suitably restricted to \mathbf{R}^d_* . In particular, for any $p \in (1, \infty)$, it holds $(\mathcal{A}_{\psi}\mathbf{u} := (\psi \hat{\mathbf{u}})^{\vee})$

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(\mathcal{L}^{p}(\mathbf{R}^{d}))} \leq C_{d,p}C_{d}\|\psi\|_{\mathcal{C}^{\lfloor \frac{d}{2} \rfloor + 1}(\mathcal{K}_{0,\infty}(\mathbf{R}^{d}))},$$

for $\psi \in C^{\lfloor \frac{d}{2} \rfloor + 1}(K_{0,\infty}(\mathbf{R}^d))$, where $C_{d,p}$ is the constant from the Mihlin theorem, while C_d is a constant depending only on d.

First commutation lemma

Lema. Let $\psi \in C^{\lfloor \frac{d}{2} \rfloor + 1}(K_{0,\infty}(\mathbf{R}^d))$, $\varphi \in C_0(\mathbf{R}^d)$, $\omega_n \to 0^+$, and denote $\psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$. Then the commutator of multiplication B_{φ} by φ and the Fourier multiplier \mathcal{A}_{ψ_n} can be expressed as a sum

$$C_n := [B_{\varphi}, \mathcal{A}_{\psi_n}] = \tilde{C}_n + K \,,$$

where for any $p \in (1, \infty)$ we have that K is a compact operator on $L^p(\mathbf{R}^d)$, while $\tilde{C}_n \to 0$ in the operator norm on $\mathcal{L}(L^p(\mathbf{R}^d))$.

Test functions

Let
$$\Omega \subseteq \mathbb{R}^d_{\mathbf{x}} \times \mathbb{R}^r_{\mathbf{y}}$$
, and $l, m \in \mathbf{N}_0 \cup \{\infty\}$.
 $\mathbf{C}^{l,m}(\Omega) := \left\{ f \in \mathbf{C}(\Omega) : (\forall \boldsymbol{\alpha} \in \mathbf{N}^d_0) (\forall \boldsymbol{\beta} \in \mathbf{N}^r_0) \\ |\boldsymbol{\alpha}| \leq l \& |\boldsymbol{\beta}| \leq m \implies \partial^{\boldsymbol{\alpha}}_{\mathbf{x}} \partial^{\boldsymbol{\beta}}_{\mathbf{y}} f \in \mathbf{C}(\Omega) \right\},$

In a standard way introduce the seminorms using a nested sequence of compacts ${\cal K}_n.$

$$C_K^{l,m}(\Omega) := \left\{ f \in C^{l,m}(\Omega) : \text{ supp } f \subseteq K \right\}$$

is a Banach space for finite l, m, and a Fréchet space for at least one of them infinite.

$$\mathcal{C}^{l,m}_c(\Omega) := \bigcup_{n \in \mathbf{N}} \mathcal{C}^{l,m}_{K_n}(\Omega)$$

with the topology of strict inductive limit is a complete locally convex topological vector space.

Anisotropic distributions

The space of anisotropic distributions is the dual of $C_c^{l,m}(\Omega)$

$$\mathcal{D}'_{l,m}(\Omega) := (\mathcal{C}^{l,m}_c(\Omega))'$$

In fact

$$T \in \mathcal{D}'_{l,m}(\Omega) \iff \begin{cases} T \in \mathcal{D}'(\Omega) , \text{ and} \\ (\forall K \Subset \Omega) (\exists C > 0) (\forall \varphi \in \mathcal{C}^{\infty}_{K}(\Omega)) \quad |\langle T, \varphi \rangle| \leqslant C p_{K}^{l,m}(\varphi) , \end{cases}$$

The definition can easily be extended to *differential manifolds without boundary of dimension d*:

a locally Euclidean (of the fixed dimension d, i.e. locally diffeomorphic to \mathbf{R}^d) second countable Hausdorff topological space on which an equivalence class of C^{∞} smooth atlases is given.

Kernel theorem on manifolds without boundary

Teorem. Let X and Y be differential manifolds, of dimension d and r, and $l, m \in \mathbf{N}_0 \cup \{\infty\}$. Then the following statements hold:

- i) If $K \in \mathcal{D}'_{l,m}(X \times Y)$, then for each $\varphi \in C^l_c(X)$ the linear form K_{φ} , defined by $\psi \mapsto \langle K, \varphi \otimes \psi \rangle$, is a distribution of order not more than m on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $C^l_c(X)$ with its strict inductive limit topology to $\mathcal{D}'_m(Y)$ with weak * topology, is linear and continuous.
- ii) Let $A : C_c^l(X) \to \mathcal{D}'_m(Y)$ be a continuous linear operator, in the pair of topologies as in (i) above. Then there exists a unique distribution of anisotropic order $K \in \mathcal{D}'_{l,r(m+2)}(X \times Y)$ such that for any $\varphi \in C_c^l(X)$ and $\psi \in C_c^{r(m+2)}(Y)$ one has

$$\langle K, \varphi \otimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Anisotropic distributions on manifolds with boundary

The definition of *differential manifold with boundary* differs from the notion of a differential manifold without boundary only in that the former is diffeomorphic either to \mathbf{R}^d or to the closed half-space $\operatorname{Cl} \mathbf{R}^d_+ = \{\mathbf{x} = (x_1, x_2, \dots, x_d) \in \mathbf{R}^d : x_d \ge 0\}.$

For simplicity, we shall consider only $X = \Omega \subseteq \mathbf{R}^d$ open, and $Y = K_{0,\infty}(\mathbf{R}^d)$. The space of distributions on $K_{0,\infty}(\mathbf{R}^d)$ of order $l \in \mathbf{N} \cup \{\infty\}$ we define by

$$\mathcal{D}'_{l}(K_{0,\infty}(\mathbf{R}^{d})) = \left(C^{l}(K_{0,\infty}(\mathbf{R}^{d}))\right)',$$

where the case $l = \infty$ we shall also denote by $\mathcal{D}'(K_{0,\infty}(\mathbf{R}^d))$. [This corresponds to supported distributions of R. Melrose.] The space of anisotropic distributions on $\Omega \times K_{0,\infty}(\mathbf{R}^d)$ of order $(l,m) \in (\mathbf{N} \cup \{\infty\})^2$ is defined by

$$\mathcal{D}'_{l,m}(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d)) = \left(\mathrm{C}^{l,m}_c(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))\right)'.$$

Kernel theorem on $\Omega \times K_{0,\infty}(\mathbf{R}^d)$

Note that it is sufficient to introduce distributions on $\Omega \times S^d_{[0,r_1]}$ since by applying the pushforward $(\mathcal{J}^{-1})_*$ we have a one-to-one correspondence with distributions on $\Omega \times K_{0,\infty}(\mathbf{R}^d)$.

Corollary. Let $\Omega \subseteq \mathbf{R}^d$ be open and $l, m \in \mathbf{N}_0 \cup \{\infty\}$. Furthermore, let $A : C_c^l(\Omega) \to \mathcal{D}'_m(\mathbf{K}_{0,\infty}(\mathbf{R}^d))$ be a continuous linear operator, taking $C_c^l(\Omega)$ with its inductive limit topology and $\mathcal{D}'_m(\mathbf{K}_{0,\infty}(\mathbf{R}^d))$ with weak * topology. Then there exists a unique distribution of anisotropic order $K \in \mathcal{D}'_{l,d(m+2)}(\Omega \times \mathbf{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi \in C_c^l(X)$ and $\psi \in C^{d(m+2)}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))$ one has

 $\langle K, \varphi \otimes \psi \rangle = \langle A \varphi, \psi \rangle$.

One-scale H-measures

$$\begin{split} &\Omega \subseteq \mathbf{R}^d \text{ open, } p \in \langle 1, \infty \rangle, \ \frac{1}{p} + \frac{1}{p'} = 1 \\ & \textbf{Teorem} \\ & \text{If } u_n \rightharpoonup 0 \text{ in } \mathrm{L}^2_{\mathrm{loc}}(\Omega), \ v_n \rightharpoonup 0 \text{ in } \mathrm{L}^2_{\mathrm{loc}}(\Omega) \text{ and } \omega_n \rightarrow 0^+, \text{ then there exist } (u_{n'}), \\ & (v_{n'}) \text{ and } \mu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})} \in \mathcal{M}(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d)\mathbf{R}^d) \text{ such that for any } \varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega) \\ & \text{and } \psi \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d)\mathbf{R}^d) \end{split}$$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}}(\boldsymbol{\xi}) \overline{\widehat{\varphi_2 v_{n'}}(\boldsymbol{\xi})} \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \langle \mu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \overline{\varphi_2} \boxtimes \psi \rangle \, .$$

The measure $\mu_{K_{0,\infty}}^{(\omega_{n'})}$ is called the one-scale H-measure with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$. $\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$

Determine E such that

 $- \mathcal{A}_{\psi} : L^{p}(\mathbf{R}^{d}) \longrightarrow L^{p}(\mathbf{R}^{d})$ is continuous

- The First commutation lemma is valid

Existence of one-scale H-distributions

Teorem. Let $\Omega \subseteq \mathbf{R}^d$ be open. If $u_n \to 0$ in $\mathrm{L}^p_{\mathrm{loc}}(\Omega)$ and (v_n) is bounded in $\mathrm{L}^q_{\mathrm{loc}}(\Omega)$ (for some $p \in (1,\infty)$ and $q \ge p'$, where 1/p + 1/p' = 1), and if $\omega_n \to 0^+$, then there exist subsequences $(u_{n'})$, $(v_{n'})$, and a complex valued (supported) distribution $\nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})} \in \mathcal{D}'_{0,\kappa}(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$, where $\kappa := d(\lfloor \frac{d}{2} \rfloor + 3)$, such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega)$ and $\psi \in \mathrm{C}^{\kappa}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$, one has:

$$\lim_{n' \to \infty} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} \, d\mathbf{x} = \lim_{n' \to \infty} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}_{n'}}(\varphi_2 v_{n'})(\mathbf{x})} \, d\mathbf{x}$$

$$= \left\langle \nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \otimes \psi \right\rangle,$$
(1)

where $\psi_n = \psi(\omega_n \cdot)$. The distribution $\nu_{\mathrm{K}_{0,\infty}}^{(\omega_{n'})}$ we call the one-scale H-distribution (with the characteristic length $(\omega_{n'})$) associated to (sub)sequences $(u_{n'})$ and $(v_{n'})$. Moreover, for p = 2 the one-scale H-distribution above is the one-scale H-measures with characteristic length $(\omega_{n'})$ associated to (sub)sequences $(u_{n'})$ and $(v_{n'})$.

Immediate properties of one-scale H-distributions

Changing the order of sequences; (v_n) and (u_n) determine the distribution

$$\left\langle ar{
u}_{\mathrm{K}_{0,\infty}},\Psi
ight
angle =\left\langle
u_{\mathrm{K}_{0,\infty}},ar{\Psi}
ight
angle \,.$$

Supports: if u_n, v_n are supported in closed sets $F_1, F_2 \subseteq \Omega$, then any one-scale distribution they determine is supported in $(F_1 \cap F_2) \times K_{0,\infty}(\mathbf{R}^d)$.

Lema. Let $u_n \rightarrow 0$ in $L^p_{loc}(\Omega)$, for some $p \in (1, \infty)$. Then the following statements are equivalent:

(a)
$$u_n \to 0$$
 (strongly) in $L^p_{loc}(\Omega)$.

- (b) For every bounded sequence (v_n) in $L_{loc}^{p'}(\Omega)$ and every $\omega_n \to 0^+$, (u_n) and (v_n) form an (ω_n) -pure pair and the corresponding one-scale H-distribution is zero.
- (c) For $v_n = |u_n|^{p-2}u_n$ and some $\omega_n \to 0^+$, (u_n) and (v_n) form an (ω_n) -pure pair and the corresponding one-scale H-distribution is zero.

Localisation principle for one-scale H-distributions

Theorem. Let $u_n \rightarrow 0$ in $L^p_{loc}(\Omega; \mathbf{C}^r)$ satisfy

$$\sum_{|\boldsymbol{\alpha}| \leq m} \varepsilon_n^{|\boldsymbol{\alpha}|} \partial_{\boldsymbol{\alpha}} (\mathbf{A}^{\boldsymbol{\alpha}} \mathbf{u}_n) = \mathbf{f}_n \,,$$

where (ε_n) is a sequence of positive real numbers, $\mathbf{A}_n^{\alpha} \in C(\Omega; M_{q \times r}(\mathbf{C}))$, such that for any $\alpha \in \mathbf{N}_0^d$ the sequence $\mathbf{A}_n^{\alpha} \to \mathbf{A}^{\alpha}$ in the space $C(\Omega; M_{q \times r}(\mathbf{C}))$ (in other words, \mathbf{A}_n^{α} converges locally uniformly to \mathbf{A}^{α}), while (f_n) is a sequence of functions in $W_{loc}^{-m,p}(\Omega; \mathbf{C}^r)$ satisfying (ε_n) -local compactness condition

$$(\forall \varphi \in \mathcal{C}^\infty_c(\Omega)) \qquad \mathcal{A}_{\frac{1}{1+|\varepsilon_n \xi|^m}}(\varphi \mathsf{f}_n) \longrightarrow \mathsf{0} \quad \text{in} \quad \mathcal{L}^p(\mathbf{R}^d;\mathbf{C}^r) \,.$$

Moreover, let (\mathbf{v}_n) be a bounded sequence in $L_{loc}^{p'}(\Omega; \mathbf{C}^r)$ and let $\omega_n \to 0^+$ be a sequence of positive reals such that $c := \lim_{n \to \infty} \frac{\omega_n}{\varepsilon_n}$ exists (in $[0, \infty]$).

Localisation principle for one-scale H-distributions (cont.)

Then any one-scale H-distribution $\nu_{K_{0,\infty}}^{(\omega_n)}$ associated to (sub)sequences (of) (u_n) and (v_n) with characteristic length (ω_n) satisfies:

$$\mathbf{p}_c(\mathbf{x}, \boldsymbol{\xi}) \boldsymbol{\nu}_{\mathrm{K}_{0,\infty}} = \mathbf{0},$$

where, with respect to the value of c, we have

i) c = 0: $\mathbf{p}_0(\mathbf{x}, \boldsymbol{\xi}) = \sum_{|\boldsymbol{\alpha}|=m} (2\pi i)^m \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{1 + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}),$ ii) $c \in (0, \infty)$: $\mathbf{p}_c(\mathbf{x}, \boldsymbol{\xi}) = \sum_{|\boldsymbol{\alpha}| \leq m} \left(\frac{2\pi i}{c}\right)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{1 + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}),$ iii) $c = \infty$: $\mathbf{p}_{\infty}(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{1 + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{0}}(\mathbf{x}).$ Localisation principle for one-scale H-measures (c = 1)

$$\begin{split} &\sum_{l\leqslant |\boldsymbol{\alpha}|\leqslant m} \varepsilon_n^{|\boldsymbol{\alpha}|-l}\partial_{\boldsymbol{\alpha}}(\mathbf{A}^{\boldsymbol{\alpha}}\mathbf{u}_n) = \mathbf{f}_n \quad \text{in } \Omega \,, \\ &(\forall \, \varphi \in \mathbf{C}_c^\infty(\Omega)) \qquad \frac{\widehat{\varphi \mathbf{f}_n}}{1+\sum_{s=l}^m \varepsilon_n^{s-l} |\boldsymbol{\xi}|^s} \longrightarrow \mathbf{0} \quad \text{in } \quad \mathbf{L}^2(\mathbf{R}^d;\mathbf{C}^r) \,. \end{split}$$

Theorem. Under previous assumptions, one-scale H-measure $\mu_{K_{0,\infty}}$ with characteristic length (ε_n) corresponding to (u_n) satisfies

$$\mathbf{p}\boldsymbol{\mu}_{\mathrm{K}_{0,\infty}}=\mathbf{0}\,,$$

where

$$\mathbf{p}(\mathbf{x},\boldsymbol{\xi}) := \sum_{l \leq |\boldsymbol{\alpha}| \leq m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{|\boldsymbol{\xi}|^{l} + |\boldsymbol{\xi}|^{m}} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}).$$

Microlocal defect distributions

Overview Test functions in the dual space Kernel theorem One-scale H-distributions Localisation principle

Small-amplitude homogenisation of elastic plate

Mathematical theory of homogenisation Kirchhoff-Love plate theory Homogenisation of Kirchhoff-Love plates Small-amplitude homogenisation for plates Comparison to the periodic case Small-amplitude homogenisation of elastic plate

Averaging of strongly inhomogeneious materials

First works at the end of 19th century (mathematical physics) Poisson, Maxwell, Rayleigh

Examples of strongly inhomogeneous media:

- fibre reinforced materials (reinforced glass, concrete, fibreglass, ...)
- layered materials (plywood)
- gas concrete
- porous media (interesting e.g. for oil extraction)

– leaf

Inhomogeneous structures are usually better than homogeneous (they better optimise in order to achieve some property).

The notion of effective property:

the simplest structure of inhomogeneities — periodic structure (true for crystals, man-made materials, \ldots)

apply the averaging procedure, which will produce the effective coefficients (constants in this case!)

we replace a strongly inhomogeneious material by a homogeneous one — thus the name *homogenisation* (Ivo Babuška, 1974)

A one-dimensional example

Consider heat conduction in a bar [0,1], made of two materials A and B, with conductivities $0 < \alpha < \beta < \infty$, in proportion $\vartheta : (1 - \vartheta)$ ($\vartheta \in \langle 0,1 \rangle$). We can take

$$a_1(x):=egin{cases} lpha & ext{ for } x\in [0,artheta
angle\ eta & ext{ for } x\in [artheta,1
m eta & ex\in [artheta,1
m eta &$$

extend it periodically to **R**, and then define $a_n(x) := a(nx)$.

We have (for larger n) rapidly changing coefficients a_n . If we assume there are no internal heat sources, then the heat flow obeys the Fourier law, with data at 0 and 1:

$$\begin{cases} -(a_n(x)u'_n(x))' = f(x) \\ u_n(0) = u_n(1) = 0 . \end{cases}$$

The numerical computation of u_n requires very fine mesh, and the solution exhibits rapid oscillation. However, its behaviour above this 1/n scale is much better.

Can we find some effective or averaged coefficients such that the solution of the same equation with those coefficients will be, in a sense, the limit of solutions u_n ?

A one-dimensional example (cont.)

Assume only that $\alpha \leq a_n \leq \beta$ (i.e. $a_n \in L^{\infty}(\langle 0, 1 \rangle)$), and $f \in L^2(\langle 0, 1 \rangle)$ (with no periodicity).

The equation can be written in the variational form:

$$(\forall v \in \mathrm{H}^1_0(\langle 0, 1 \rangle)) \qquad \int_0^1 a_n u'_n v' = \int_0^1 f v \; .$$

LHS: equivalent to the scalar product on $H_0^1((0, 1))$, RHS: a bounded linear functional.

so (for any fixed n) by the Riesz representation theorem there is a unique $u_n \in \mathrm{H}^1_0(\langle 0, 1 \rangle)$ representing the right hand side. Also, u'_n is bounded in $\mathrm{L}^2(\langle 0, 1 \rangle)$, and therefore has a weak accumulation point (say, u_∞). On the other hand, $p_n := a_n u'_n \in \mathrm{L}^2(\langle 0, 1 \rangle)$, while $p'_n = (a_n u'_n)' = -f \in \mathrm{L}^2(\langle 0, 1 \rangle)$, and p_n is bounded in $\mathrm{H}^1_0(\langle 0, 1 \rangle)$.

We can pass to a subsequence once more $p_n \longrightarrow p$ in $H^1(\langle 0, 1 \rangle)$, which by the Rellich compact embedding gives $p_n \longrightarrow p$ in $L^2(\langle 0, 1 \rangle)$.

N.B. we do not explicitly write the subsequences.

A one-dimensional example (cont.)

Writting

$$u_n' = \frac{1}{a_n} p_n \; ,$$

we can pass to the limit in the product (as $\frac{1}{\alpha} \ge \frac{1}{a_n} \ge \frac{1}{\beta}$ and there is a further subsequence such that $\frac{1}{a_n} \xrightarrow{*} \frac{1}{a_{\infty}}$), or after taking the derivative:

$$-\left(\frac{u_{\infty}}{\frac{1}{a_{\infty}}}\right)' = -p' = f \; .$$

Thus the effective coefficients are a_{∞} , as the limit of solutions satisfies the same equation as u_n , but with a_{∞} instead of a_n .

In the periodic case, the limit $1/a_{\infty} = f(1/a_n)$, and it does not depend on the choice of subsequences. Any limit u_{∞} has to satisfy the equation, which has the unique solution—thus the whole sequence u_n converges.

In the general case we only know the result for an accummulation point.

Assumptions for Kirchhoff-Love plates

• the plate is thin, but not very thin

(rougly, the thickness is 1–20% of the leading dimension)

• the plate thickness might vary only slowly

(so that the 3D stress effects are ignored)

- the plate is symmetric about mid-surface
- applied transverse loads are distributed over plate surface areas (no concentrated loads)
- there is no significant extension of the mid-surface

There are no transverse shear deformations.

The variation of vertical displacement in the direction of thickness can be neglected.

The planes perpendicular to the mid-surface will remain plane and perpendicular to the deformed mid-surface.

Kirchhoff-Love plate equation

The above leads to a linear elliptic problem, with homogeneous Dirichlet boundary conditions:

$$\begin{cases} \operatorname{div} \operatorname{div} \left(\mathbf{M} \nabla \nabla u \right) = f & \text{in } \Omega \\ u \in \mathrm{H}^{2}_{0}(\Omega) \,, \end{cases}$$

where:

•
$$\Omega \subseteq \mathbf{R}^d$$
 is a bounded domain $(d = 2 \dots$ for the plate)

- $\circ~f\in {\rm H}^{-2}(\Omega)$ is the external load
- $\circ \ u \in \mathrm{H}^2_0(\Omega)$ is the vertical displacement of the plate
- M describes (non-homogeneous) properties of the material plate is made of. At a point it is a linear operator from symmetric matrices to symmetric matrices, and we take M from the set:

$$\mathfrak{M}_{2}(\alpha,\beta;\Omega) := \left\{ \mathbf{N} \in \mathrm{L}^{\infty}(\Omega;\mathcal{L}(\mathrm{Sym},\mathrm{Sym})) : (\forall \mathbf{S} \in \mathrm{Sym}) \\ \mathbf{N}(\mathbf{x})\mathbf{S} : \mathbf{S} \geqslant \alpha \mathbf{S} : \mathbf{S} \; (\mathrm{ae} \; \mathbf{x}) \; \& \; \mathbf{N}^{-1}(\mathbf{x})\mathbf{S} : \mathbf{S} \geqslant \frac{1}{\beta}\mathbf{S} : \mathbf{S} \; (\mathrm{ae} \; \mathbf{x}) \right\}$$

This ensures the boundedness and coercivity, so we have the existence and uniqueness of solutions via the Lax-Milgram lemma in a standard way.

Homogenisation: H-convergence

A sequence of tensor functions (\mathbf{M}^n) in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ H-converges to $\mathbf{M} \in \mathfrak{M}_2(\alpha',\beta';\Omega)$ if for any $f \in \mathrm{H}^{-2}(\Omega)$ the sequence of solutions u_n of problems

 $\left\{ \begin{array}{ll} \operatorname{div}\operatorname{div}\left(\mathbf{M}^n\nabla\nabla u_n\right)=f \quad \text{in} \quad \Omega\\ u_n\in \mathrm{H}^2_0(\Omega) \end{array} \right.$

coverges weakly to a limit u in $H_0^2(\Omega)$, while the sequence $(\mathbf{M}^n \nabla \nabla u_n)$ converges to $\mathbf{M} \nabla \nabla u$ weakly in the space $L^2(\Omega; \text{Sym})$.

This convergence comes indeed from a weak topology on $X = \bigcup \mathfrak{M}_2(1/n, n; \Omega)$, where we consider the maps $\mathbf{M} \mapsto u$, with weak topology on $\mathrm{H}_0^2(\Omega)$, for any fixed $f \in \mathrm{H}^{-2}(\Omega)$, as well as $\mathbf{M} \mapsto \mathbf{M} \nabla \nabla u$, with weak topology on $\mathrm{L}^2(\Omega; \mathrm{Sym})$.

for second order elliptic equations:

Tartar & Murat, 1977

general form for higher-order elliptic equations:

Žikov, Kozlov, Oleinik, Ngoan, 1979

for plates: N.A. & N. Balenović, 1999-2000

revisited: K. Burazin, J. Jankov (& M. Vrdoljak), 2018-21

Properties: Compactness

Theorem. Let (\mathbf{M}^n) be a sequence in $\mathfrak{M}_2(\alpha, \beta; \Omega)$. Then there is a subsequence (\mathbf{M}^{n_k}) and a tensor function $\mathbf{M} \in \mathfrak{M}_2(\alpha, \beta; \Omega)$ such that (\mathbf{M}^{n_k}) *H*-converges to \mathbf{M} .

Theorem. (compactness by compensation) Let the following convergences be valid:

$$w^n \longrightarrow w^{\infty}$$
 in $\mathrm{H}^2_{\mathrm{loc}}(\Omega)$,
 $\mathbf{D}^n \longrightarrow \mathbf{D}^{\infty}$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathrm{Sym})$.

with an additional assumption that the sequence (div div \mathbf{D}^n) is contained in a precompact (for the strong topology) set of the space $H^{-2}_{loc}(\Omega)$. Then we have

$$\nabla \nabla w^n : \mathbf{D}^n \xrightarrow{*} \nabla \nabla w^\infty : \mathbf{D}^\infty$$

in the space of Radon measures.

to Dependence on parameters

Locality and irrelevance of boundary conditions

Theorem. (locality of H-convergence) Let (\mathbf{M}^n) and (\mathbf{O}^n) be two sequences of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, which H-converge to \mathbf{M} and \mathbf{O} , respectively. Let ω be an open subset compactly embedded in Ω . If $\mathbf{M}^n(\mathbf{x}) = \mathbf{O}^n(\mathbf{x})$ in ω , then $\mathbf{M}(\mathbf{x}) = \mathbf{O}(\mathbf{x})$ in ω .

Theorem. (irrelevance of boundary conditions) Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converges to \mathbf{M} . For any sequence (z_n) such that

$$\begin{aligned} z_n &\longrightarrow z & \text{in } \mathrm{H}^2_{\mathrm{loc}}(\Omega) \\ \operatorname{\mathsf{div}}\operatorname{\mathsf{div}}(\mathbf{M}^n \nabla \nabla z_n) &= f_n &\longrightarrow f & \text{in } \mathrm{H}^{-2}_{\mathrm{loc}}(\Omega), \end{aligned}$$

the weak convergence $\mathbf{M}^n \nabla \nabla z_n \rightharpoonup \mathbf{M} \nabla \nabla z$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathrm{Sym})$ holds.

Convergence of energies

Theorem. Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that *H*-converges to **M**. For any $f \in \mathrm{H}^{-2}(\Omega)$, the sequence (u_n) of solutions of

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}\nabla\nabla u_{n}\right)=f \quad \text{in} \quad \Omega\\ u_{n}\in H_{0}^{2}(\Omega) \end{cases}$$

satisfies $\mathbf{M}^n \nabla \nabla u_n : \nabla \nabla u_n \to \mathbf{M} \nabla \nabla u : \nabla \nabla u$ weakly-* in the space of Radon measures and $\int_{\Omega} \mathbf{M}^n \nabla \nabla u_n : \nabla \nabla u_n \, d\mathbf{x} \to \int_{\Omega} \mathbf{M} \nabla \nabla u : \nabla \nabla u \, d\mathbf{x}$, where u is the solution of the homogenised equation

$$\begin{cases} \operatorname{div}\operatorname{div}(\mathbf{M}\nabla\nabla u) = f \quad \text{in} \quad \Omega\\ u \in \operatorname{H}_0^2(\Omega) \,. \end{cases}$$

Ordering property for symmetric tensors ...

Theorem. Let (\mathbf{M}^n) and (\mathbf{O}^n) be two sequences of symmetric tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converge to the homogenised tensors \mathbf{M} and \mathbf{O} , respectively. Furthermore, assume that, for any n,

 $(\forall \boldsymbol{\xi} \in \operatorname{Sym}) \qquad \mathbf{M}^n \boldsymbol{\xi} : \boldsymbol{\xi} \leqslant \mathbf{O}^n \boldsymbol{\xi} : \boldsymbol{\xi} .$

Then the homogenised limits are also ordered:

 $(\forall \, \boldsymbol{\xi} \in \operatorname{Sym}) \qquad \mathsf{M} \boldsymbol{\xi} : \boldsymbol{\xi} \leqslant \mathsf{O} \boldsymbol{\xi} : \boldsymbol{\xi} \; .$

Theorem. Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that either converges strongly to a limit tensor \mathbf{M} in $L^1(\Omega; \mathcal{L}(Sym, Sym))$, or converges to \mathbf{M} almost everywhere in Ω . Then, \mathbf{M}^n also H-converges to \mathbf{M} .

... and metrisability

Theorem. Let $F = \{f_n : n \in \mathbf{N}\}$ be a countable dense family in $\mathrm{H}^{-2}(\Omega)$, **M** and **O** tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$, and (u_n) , (v_n) sequences of solutions to

$$\begin{cases} \operatorname{div}\operatorname{div}(\mathbf{M}\nabla\nabla u_n) = f_n \\ u_n \in \mathrm{H}^2_0(\Omega) \end{cases}$$

and

$$\begin{cases} \operatorname{div}\operatorname{div}(\mathbf{O}\nabla\nabla v_n) = f_n \\ v_n \in \mathrm{H}^2_0(\Omega) \end{cases}$$

٠

Then,

$$d(\mathbf{M}, \mathbf{O}) := \sum_{n=1}^{\infty} 2^{-n} \frac{\|u_n - v_n\|_{L^2(\Omega)} + \|\mathbf{M}\nabla\nabla u_n - \mathbf{O}\nabla\nabla v_n\|_{H^{-1}(\Omega; \text{Sym})}}{\|f_n\|_{H^{-2}(\Omega)}}$$

is a metric on $\mathfrak{M}_2(\alpha,\beta;\Omega)$ and H-convergence is equivalent to the convergence with respect to d.

Correctors

Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha,\beta;\Omega)$ that H-converges to a limit \mathbf{M} , and $(w_n^{ij})_{1\leqslant i,j\leqslant d}$ a family of test functions satisfying

$$\begin{split} w_n^{ij} &\rightharpoonup \frac{1}{2} x_i x_j \quad \text{in} \quad \mathrm{H}^2(\Omega) \\ \mathbf{M}^n \nabla \nabla w_n^{ij} &\rightharpoonup \cdots & \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\Omega; \mathsf{Sym}) \\ \mathrm{div} \operatorname{div} (\mathbf{M}^n \nabla \nabla w_n^{ij}) &\to \cdots & \text{in} \quad \mathrm{H}^{-2}_{\mathrm{loc}}(\Omega). \end{split}$$

The sequence of tensors \mathbf{W}^n defined by $W_{ijkm}^n = [\nabla \nabla w_n^{km}]_{ij}$ is called the sequence of correctors.

It is unique, indeed:

Theorem. Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ that H-converges to a tensor \mathbf{M} . A sequence of correctors (\mathbf{W}^n) is unique in the sense that, if there exist two sequences of correctors (\mathbf{W}^n) and $(\tilde{\mathbf{W}^n})$, their difference $(\mathbf{W}^n - \tilde{\mathbf{W}^n})$ converges strongly to zero in $L^2_{loc}(\Omega; \mathcal{L}(Sym, Sym))$.

Corrector result

Theorem. Let (\mathbf{M}^n) be a sequence of tensors in $\mathfrak{M}_2(\alpha, \beta; \Omega)$ which *H*-converges to \mathbf{M} . For $f \in \mathrm{H}^{-2}_{\mathrm{loc}}(\Omega)$, let (u_n) be the solution of

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}\nabla\nabla u_{n}\right)=f \quad \text{in} \quad \Omega\\ u_{n}\in \mathrm{H}_{0}^{2}(\Omega), \end{cases}$$

and let u be the weak limit of (u_n) in $H^2_0(\Omega)$, i.e. the solution of the homogenised equation

$$\begin{cases} \operatorname{div} \operatorname{div} \left(\mathbf{M} \nabla \nabla u \right) = f & \text{in } \Omega \\ u \in \mathrm{H}^2_0(\Omega) \,. \end{cases}$$

Then $\mathbf{R}_n := \nabla \nabla u_n - \mathbf{W}^n \nabla \nabla u \to \mathbf{0}$ strongly in $\mathrm{L}^1_{\mathrm{loc}}(\Omega; \mathrm{Sym})$.

Smoothness with respect to a parameter $p \in P$

Theorem. Let $\mathbf{M}^n : \Omega \times P \to \mathcal{L}(\text{Sym}, \text{Sym})$ be a sequence of tensors, such that $\mathbf{M}^n(\cdot, p) \in \mathfrak{M}_2(\alpha, \beta; \Omega)$, for $p \in P$. Assume that $p \mapsto \mathbf{M}^n(\cdot, p)$ is of class \mathbb{C}^k from P to $\mathbb{L}^{\infty}(\Omega; \mathcal{L}(\text{Sym}, \text{Sym}))$, with derivatives (up to order k) being equicontinuous on every compact set $K \subseteq P$:

$$\begin{aligned} (\forall K \in \mathcal{K}(P))(\forall \varepsilon > 0)(\exists \delta > 0)(\forall p, q \in K)(\forall n \in \mathbf{N})(\forall i \le k) \\ |p - q| < \delta \Rightarrow \|(\mathbf{M}^n)^{(i)}(\cdot, p) - (\mathbf{M}^n)^{(i)}(\cdot, q)\|_{\mathbf{L}^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))} < \varepsilon. \end{aligned}$$

Then there is a subsequence (\mathbf{M}^{n_k}) such that for every $p \in P$

$$\mathbf{M}^{n_k}(\cdot, p) \xrightarrow{H} \mathbf{M}(\cdot, p)$$
 in $\mathfrak{M}_2(\alpha, \beta; \Omega)$

and $p \mapsto \mathbf{M}(\cdot, p)$ is a \mathbf{C}^k mapping from P to $\mathbf{L}^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))$.

In particular, the above is valid for $k = \infty$ and $k = \omega$ (the analytic functions).

Small-amplitude homogenisation

Consider a sequence of problems

$$\begin{cases} \operatorname{div} \operatorname{div} \left(\mathbf{M}^{n}(\cdot ; \gamma) \nabla \nabla u_{n} \right) = f \quad \text{in} \quad \Omega \\ u_{n} \in \mathrm{H}_{0}^{2}(\Omega) , \end{cases}$$

where we assume that the coefficients are a small perturbation of a given continuous tensor function ${\bf A}_0,$ for small γ

$$\mathbf{M}^{n}(\cdot;\gamma) := \mathbf{A}_{0} + \gamma \mathbf{B}^{n} + \gamma^{2} \mathbf{C}^{n} + o(\gamma^{2}) + o(\gamma^{2$$

where $\mathbf{B}^n, \mathbf{C}^n \xrightarrow{*} \mathbf{O}$ in $L^{\infty}(\Omega; \mathcal{L}(\mathrm{Sym}, \mathrm{Sym}))$. For small γ we, in fact, we can assume that the function is analytic in γ . Then (after passing to a subsequence if needed)

$$\mathbf{M}^{n}(\cdot\,;\gamma) \xrightarrow{H} \mathbf{M}(\cdot\,;\gamma) = \mathbf{A}_{0} + \gamma \mathbf{B}_{0} + \gamma^{2}\mathbf{C}_{0} + o(\gamma^{2})\;;$$

the limit being measurable in \mathbf{x} , and analytic in γ .

The goal is to obtain the explicit formula for the leading terms \mathbf{B}_0 and \mathbf{C}_0 in the expansion of the homogenisation limit.

Small-amplitude homogenisation procedure

Take $u \in \mathrm{H}_{0}^{2}(\Omega)$ and define $f_{\gamma} := \operatorname{div} \operatorname{div} (\mathbf{M}(\cdot; \gamma) \nabla \nabla u)$, depending analytically on γ . Using f_{γ} , let u_{γ}^{n} be the solution (for each n and γ) of

$$\left\{ \begin{aligned} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}(\cdot\,;\gamma)\nabla\nabla u_{\gamma}^{n}\right) &= f_{\gamma} \text{ in }\Omega\\ & u_{\gamma}^{n}\in\operatorname{H}^{2}_{0}(\Omega)\,, \end{aligned} \right.$$

which analytically depends on γ , hence one can write

$$u_{\gamma}^{n} := u_{0}^{n} + \gamma u_{1}^{n} + \gamma^{2} u_{2}^{n} + o(\gamma^{2}) .$$

As $\mathbf{M}^{n}(\cdot;\gamma) \xrightarrow{H} \mathbf{M}(\cdot;\gamma)$, we have weak convergences in $L^{2}(\Omega; \operatorname{Sym})$:

(*)
$$\begin{aligned} \mathbf{E}_{\gamma}^{n} &:= \nabla \nabla u_{\gamma}^{n} \longrightarrow \nabla \nabla u \\ \mathbf{D}_{\gamma}^{n} &:= \mathbf{M}^{n}(\cdot ; \gamma) \mathbf{E}_{\gamma}^{n} \longrightarrow \mathbf{M}(\cdot ; \gamma) \nabla \nabla u . \end{aligned}$$

 \mathbf{E}_{γ}^{n} and \mathbf{D}_{γ}^{n} are analytic in γ and consequently each can be expanded in the Taylor series:

$$\mathbf{E}_{\gamma}^{n} = \mathbf{E}_{0}^{n} + \gamma \mathbf{E}_{1}^{n} + \gamma^{2} \mathbf{E}_{2}^{n} + o(\gamma^{2})$$
$$\mathbf{D}_{\gamma}^{n} = \mathbf{D}_{0}^{n} + \gamma \mathbf{D}_{1}^{n} + \gamma^{2} \mathbf{D}_{2}^{n} + o(\gamma^{2})$$

For $\gamma=0,$ the uniqueness of solution implies $u_0^n=u.$ Moreover, this gives us

$$\mathbf{E}_0^n = \nabla \nabla u$$
 and $\mathbf{D}_0^n = \mathbf{A}_0 \nabla \nabla u$.

Small-amplitude homogenisation procedure (cont.)

After inserting the above expansions into (*) and equating the terms with equal powers of γ , one can conclude that $\mathbf{E}_1^n, \mathbf{E}_2^n \longrightarrow \mathbf{0}$ in $\mathrm{L}^2(\Omega; \mathrm{Sym})$, and

$$\mathbf{D}_1^n = \mathbf{A}_0 \mathbf{E}_1^n + \mathbf{B}^n \nabla \nabla u.$$

Since $\mathbf{E}_1^n \longrightarrow \mathbf{0}$ in $L^2(\Omega; \operatorname{Sym})$, while $\mathbf{B}^n \stackrel{*}{\longrightarrow} \mathbf{0}$ in $L^{\infty}(\Omega; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym}))$: $\mathbf{D}_1^n \longrightarrow \mathbf{0}$ in $L^2(\Omega; \operatorname{Sym})$.

Similarly, by using

$$\mathbf{D}_{\gamma}^{n} = \mathbf{M}^{n}(\cdot;\gamma)\mathbf{E}_{\gamma}^{n} \longrightarrow \mathbf{M}(\cdot;\gamma)\nabla\nabla u = (\mathbf{A}_{0} + \gamma\mathbf{B}_{0} + \gamma^{2}\mathbf{C}_{0} + o(\gamma^{2}))\nabla\nabla u ,$$

after equating the terms standing by $\gamma^1,$ we obtain that

$$\mathbf{D}_1^n \longrightarrow \mathbf{B}_0 \nabla \nabla u$$
 in $\mathbf{L}^2(\Omega; \operatorname{Sym})$

The limits are equal, so $\mathbf{B}_0 \nabla \nabla u = \mathbf{0}$. Since $u \in \mathrm{H}^2_0(\Omega)$ can be arbitrary, we conclude that $\mathbf{B}_0 = \mathbf{0}$.

The corrector can be expressed by H-measure

Analogously, equating the terms standing by γ^2 gives:

$$\mathbf{D}_2^n = \mathbf{A}_0 \mathbf{E}_2^n + \mathbf{B}^n \mathbf{E}_1^n + \mathbf{C}^n \nabla \nabla u \longrightarrow \mathbf{C}_0 \nabla \nabla u \quad \text{in} \quad \mathbf{L}^2(\Omega; \text{Sym}) .$$

On the other hand, as $\mathbf{E}_2^n \longrightarrow \mathbf{0}$ in $L^2(\Omega; \operatorname{Sym})$ and $\mathbf{C}^n \stackrel{*}{\longrightarrow} \mathbf{0}$ in $L^{\infty}(\Omega; \mathcal{L}(\operatorname{Sym}, \operatorname{Sym}))$, we have

$$\mathbf{D}_2^n \longrightarrow \lim_n \mathbf{B}^n \mathbf{E}_1^n = \mathbf{C}_0 \nabla \nabla u \quad \text{in} \quad \mathbf{L}^2(\Omega; \operatorname{Sym}) \;.$$

Obviously, identifying the corrector of order 2 in γ requires the computation of the weak limit of $(\mathbf{B}^n \mathbf{E}_1^n)$, the product of two weakly convergent sequences.

And such limits can be expressed by using H-measures.

For a physical plate, we assume that Ω is a bounded region, so L^∞ weak * topology is stronger than L^2 weak, and we are indeed in the situation where both sequences converge weakly in L^2 to zero.

The H-measure

Let $\tilde{\mu}$ be the H-measure corresponding to the sequence $[\mathbf{B}^n \ \mathbf{E}_1^n]^T$:

$$ilde{\mu} = \left[egin{array}{cc} \mu & \sigma \
ho &
u \end{array}
ight],$$

which is defined as a $(d^4+d^2)\times (d^4+d^2)$ Hermitian nonnegative matrix Radon measure.

More precisely, block μ is the H-measure associated to (a subsequence of) (\mathbf{B}^n), while $\sigma = \boldsymbol{\rho}^*$ is the H-measure corresponding to the product $\mathbf{B}^n \mathbf{E}_1^n$. For simplicity, by $\mathbf{v}^n := [\mathbf{B}^n \ \mathbf{E}_1^n]^T$ we denote the $(d^4 + d^2) \times 1$ column matrix, but we still use the original four indices for \mathbf{B}^n and two for \mathbf{E}_1^n , avoiding explicit writing of the appropriate bijection from $\{1, \ldots, d\}^4 \bigcup \{1, \ldots, d\}^2$ to $\{1, \ldots, d^4 + d^2\}$, as such notation will be needed again for interpretation of the limit. All indices have range in $\{1, \ldots, d\}$.

After computing this limit, we write it as $C_0 \nabla \nabla u$, and thus identify C_0 . Our goal is to use the localisation principle for H-measures to express that limit, i.e. the measure σ , from the H-measure μ . To this end we need to choose certain expressions relating E_1^n and B^n .

Computing the H-measure

Firstly, we insert the expansions for $\mathbf{M}^n(\cdot;\gamma), \mathbf{M}(\cdot;\gamma)$ and u_{γ}^n into BVP

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}^{n}(\cdot\,;\gamma)\nabla\nabla u_{\gamma}^{n}\right)=f_{\gamma}=\operatorname{div}\operatorname{div}\left(\mathbf{M}(\cdot\,;\gamma)\nabla\nabla u\right) \text{ in }\Omega\\ u_{\gamma}^{n}\in \operatorname{H}_{0}^{2}(\Omega) \ , \end{cases}$$

and after comparing expressions corresponding to the first power of $\boldsymbol{\gamma},$ we obtain

div div $(\mathbf{A}_0 \mathbf{E}_1^n + \mathbf{B}^n \nabla \nabla u) = \operatorname{div} \operatorname{div} (\mathbf{B}_0 \nabla \nabla u).$

Due to $\mathbf{B}_0 = \mathbf{O}$ we have

(+) $\operatorname{div}\operatorname{div}\left(\mathbf{A}_{0}\mathbf{E}_{1}^{n}+\mathbf{B}^{n}\nabla\nabla u\right)=0,$

as well as Schwarz's symmetries:

(++) $\partial_r \partial_s (\mathbf{E}_1^n)_{kl} - \partial_k \partial_l (\mathbf{E}_1^n)_{rs} = 0.$

Additionally assume that $\nabla \nabla u$ is continuous, and apply the Localisation principle to relations (+) and (++).

Localisation on (+)

For chosen $i, j \in \{1, ..., d\}$, after defining matrix $\mathbf{A}^{ij} \in M_{1 \times (d^4+d^2)}(\mathbf{R})$ by

$$\mathbf{A}^{ij} := \left[\mathbf{A}^{\mathbf{B}^{ij}}, \mathbf{A}^{\mathbf{E}^{ij}_1}
ight] \; ,$$

where each $\mathbf{A}^{\mathbf{B}^{ij}}$ is a $1\times d^4$ matrix with entries

$$\begin{bmatrix} \mathbf{A}^{\mathbf{B}^{ij}} \end{bmatrix}_{vwkl} := \begin{cases} \partial_k \partial_l u, & \text{if } (v, w) = (i, j) \\ 0, & \text{otherwise ,} \end{cases}$$

and each $\mathbf{A}^{\mathbf{E}_{1}^{ij}}$ is a $1\times d^{2}$ matrix with entries given by

$$\left[\mathbf{A}^{\mathbf{E}_1^{ij}}\right]_{kl} := [\mathbf{A}_0]_{ijkl}.$$

It is easy to check that the assumptions of Theorem are fulfilled for $h=2. \label{eq:heorem}$ Therefore

$$\left(\sum_{i,j=1}^{d} (2\pi i)^2 \frac{\xi_i \xi_j}{|\boldsymbol{\xi}|^2} \mathbf{A}^{ij}(\mathbf{x})\right) \tilde{\boldsymbol{\mu}}^T = \mathbf{0}$$

and from here we can conclude that

$$\sum_{i,j,k,l=1}^{d} \xi_i \xi_j \boldsymbol{\mu}_{ijkl}^{pqrs} \partial_k \partial_l u + \sum_{i,j,k,l=1}^{d} \xi_i \xi_j \bar{\boldsymbol{\rho}}_{pqrs}^{kl} [\mathbf{A}_0]_{ijkl} = 0 \; .$$

Localisation on (++)

For fixed $k, l, r, s \in \{1, \dots, d\}$, $(k, l) \neq (r, s)$, define $\mathbf{A}^{ij} \in M_{1 \times (d^4 + d^2)}(\mathbf{R})$ by $\mathbf{A}^{ij} := \begin{bmatrix} \mathbf{0}, \mathbf{A}^{\mathbf{E}_1^{ij}} \end{bmatrix} ,$

where $\mathbf{A}^{\mathbf{E}_1^{ij}}$ is a $1 imes d^2$ matrix whose entries are given by

$$\begin{bmatrix} \mathbf{A}^{\mathbf{E}_{1}^{ij}} \end{bmatrix}_{vw} = \begin{cases} 1, & \text{if } (i, j, v, w) = (r, s, k, l) \\ -1, & \text{if } (i, j, v, w) = (k, l, r, s) \\ 0, & \text{otherwise} \end{cases}$$

Again, the Localisation principle with h=2 gives us

$$\left(\sum_{i,j=1}^d (2\pi i)^2 \, \frac{\xi_i \xi_j}{|\boldsymbol{\xi}|^2} \, \mathbf{A}^{ij}(\mathbf{x})\right) \tilde{\boldsymbol{\mu}}^T = \mathbf{0} \; ,$$

which yields

$$\xi_r \xi_s ar{oldsymbol{
ho}}_{pqrs}^{kl} = \xi_k \xi_l ar{oldsymbol{
ho}}_{pqrs}^{rs}$$
 .

The above is trivially satisfied for (k,l) = (r,s).

Combining two relations

By multiplying the relation obtained from (+) by $\xi_r \xi_s$ and summing over r, s

$$\sum_{i,j,k,l,r,s=1}^{d} \xi_i \xi_j \xi_r \xi_s \boldsymbol{\mu}_{ijkl}^{pqrs} \partial_k \partial_l u + \sum_{i,j,k,l,r,s=1}^{d} \xi_i \xi_j \xi_r \xi_s \bar{\boldsymbol{\rho}}_{pqrs}^{kl} [\mathbf{A}_0]_{ijkl} = 0.$$

By using the other relation, we can rewrite it in an equivalent form

$$\sum_{i,j,k,l,r,s=1}^{d} \xi_i \xi_j \xi_r \xi_s \boldsymbol{\mu}_{ijkl}^{pqrs} \partial_k \partial_l u + \sum_{i,j,k,l,r,s=1}^{d} \xi_i \xi_j \xi_k \xi_l \bar{\boldsymbol{\rho}}_{pqrs}^{rs} [\mathbf{A}_0]_{ijkl} = 0 ,$$

which, after division by

$$\sum_{i,j,k,l=1}^{d} [\mathbf{A}_0]_{ijkl} \xi_i \xi_j \xi_k \xi_l = \mathbf{A}_0(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) : (\boldsymbol{\xi} \otimes \boldsymbol{\xi}) > 0$$

yields

$$\sum_{r,s=1}^{d} \bar{\boldsymbol{\rho}}_{pqrs}^{rs} = -\sum_{i,j,k,l,r,s=1}^{d} \frac{\xi_i \xi_j \xi_r \xi_s}{\boldsymbol{\mathsf{A}}_0(\boldsymbol{\boldsymbol{\xi}}\otimes\boldsymbol{\boldsymbol{\xi}}):(\boldsymbol{\boldsymbol{\xi}}\otimes\boldsymbol{\boldsymbol{\xi}})} \boldsymbol{\mu}_{ijkl}^{pqrs} \partial_k \partial_l u \ .$$

Recall that $\lim_{n} \mathbf{B}^{n} \mathbf{E}_{1}^{n} = \mathbf{C}_{0} \nabla \nabla u$ weakly in $L^{2}(\Omega)$, and thus also weak * in the space of Radon measures.

Hermitian character of H-measures

As $\sigma = \rho^*$ is the H-measure corresponding to the product $\mathbf{B}^n \mathbf{E}_1^n$, for an arbitrary $\varphi \in C_c(\Omega)$, we have in components

$$\begin{split} \int_{\Omega} \varphi(\mathbf{x}) \sum_{r,s=1}^{d} [\mathbf{C}_{0}(\mathbf{x})]_{pqrs} \partial_{r} \partial_{s} u(\mathbf{x}) \, d\mathbf{x} &= \left\langle \sum_{r,s=1}^{d} \overline{[\mathbf{C}_{0}]_{pqrs}} \partial_{r} \partial_{s} u, \varphi \right\rangle \\ &= \left\langle \sum_{r,s=1}^{d} \overline{\sigma}_{rs}^{pqrs}, \varphi \boxtimes 1 \right\rangle \\ &= \int_{\Omega \times S^{d-1}} \varphi(\mathbf{x}) d\left(\sum_{r,s=1}^{d} \sigma_{rs}^{pqrs} \right) (\mathbf{x}, \boldsymbol{\xi}) \\ &= \int_{\Omega \times S^{d-1}} \varphi(\mathbf{x}) d\left(\sum_{r,s=1}^{d} \left(\overline{\rho}^{T} \right)_{rs}^{pqrs} \right) (\mathbf{x}, \boldsymbol{\xi}) \\ &= \int_{\Omega \times S^{d-1}} \varphi(\mathbf{x}) d\left(\sum_{r,s=1}^{d} \overline{\rho}_{pqrs}^{rs} \right) (\mathbf{x}, \boldsymbol{\xi}) . \end{split}$$

The result

Finally, inserting the expression for $\sum_{r,s=1}^{d} \bar{\pmb{\rho}}_{pqrs}^{rs}$ from before

$$\sum_{r,s=1}^{d} \int_{\Omega} [\mathbf{C}_{0}]_{pqrs} \varphi \partial_{r} \partial_{s} u \, d\mathbf{x} = -\int_{\Omega \times S^{d-1}} \sum_{i,j,k,l,r,s=1}^{d} \frac{\xi_{i}\xi_{j}\xi_{k}\xi_{l}}{\mathbf{A}_{0}(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) : (\boldsymbol{\xi} \otimes \boldsymbol{\xi})} \varphi \partial_{r} \partial_{s} u \, d\boldsymbol{\mu}_{ijrs}^{pqkl}(\mathbf{x}, \boldsymbol{\xi}).$$

By varying $u \in C^2(\Omega)$ (e.g. choosing $\nabla \nabla u$ constant on the support of φ), one easily deduces the result which is stated in the following theorem.

Theorem. The tensor $M(\cdot; \gamma)$ admits the expansion

$$\mathbf{M}(\cdot\,;\gamma):=\mathbf{A}_0+\gamma^2\mathbf{C}_0+o(\gamma^2)\;,$$

where the second-order H-correction $C_0 \in L^{\infty}(\Omega; \mathcal{L}(Sym, Sym))$ satisfies

$$\int_{\Omega} [\mathbf{C}_0]_{pqrs} \varphi \, d\mathbf{x} = -\sum_{i,j,k,l=1}^d \left\langle \boldsymbol{\mu}_{pqkl}^{ijrs}, \frac{\varphi \xi_i \xi_j \xi_k \xi_l}{\mathbf{A}_0(\boldsymbol{\xi} \otimes \boldsymbol{\xi}) : (\boldsymbol{\xi} \otimes \boldsymbol{\xi})} \right\rangle$$

If we take $\mathbf{B}^n \xrightarrow{*} \mathbf{B}^0$ in $L^{\infty}(\Omega; \mathcal{L}(Sym, Sym))$ and $\mathbf{C}^n \xrightarrow{*} \mathbf{C}^0$ in $L^{\infty}(\Omega; \mathcal{L}(Sym, Sym))$, we get

$$\mathbf{M}(\cdot;\gamma) := \mathbf{A}_0 + \gamma \mathbf{B}^0 + \gamma^2 (\mathbf{C}^0 + \mathbf{C}_0) + o(\gamma^2),$$

where \mathbf{C}_0 is given in the Theorem.

Periodic case

- Let Y be the d-dimensional torus, $\mathbf{M} \in L^{\infty}(Y; \mathcal{L}(Sym, Sym)) \cap \mathfrak{M}_{2}(\alpha, \beta; Y)$
- Assume $\mathbf{M}^n(\mathbf{x}) := \mathbf{M}(n\mathbf{x}), \mathbf{x} \in \Omega \subseteq \mathbf{R}^d$ (projection of \mathbf{R}^d to Y assumed)
- $\circ\ {\rm H}^2(Y)$ consists of 1-periodic functions, with the norm taken over the fundamental period
- $\circ \operatorname{H}^2(Y)/\mathbf{R}$ is equipped with the norm $\|\nabla \nabla \cdot\|_{\operatorname{L}^2(Y)}$
- $\circ~\mathbf{E}_{ij}, 1\leqslant i,j\leqslant d$ are $\mathrm{M}_{d\times d}$ matrices defined as

$$[\mathbf{E}_{ij}]_{kl} = \begin{cases} 1, & \text{if } i = j = k = l \\ \frac{1}{2}, & \text{if } i \neq j, (k,l) \in \{(i,j), (j,i)\} \\ 0, & \text{otherwise.} \end{cases}$$

Theorem. (\mathbf{M}^n) H-converges to a constant tensor $\mathbf{M}^\infty \in \mathfrak{M}_2(\alpha,\beta;\Omega)$ defined as

$$m_{klij}^{\infty} = \int_{Y} \mathbf{M}(\mathbf{x}) (\mathbf{E}_{ij} + \nabla \nabla w_{ij}(\mathbf{x})) : (\mathbf{E}_{kl} + \nabla \nabla w_{kl}(\mathbf{x})) \, d\mathbf{x},$$

where (w_{ij}) is the family of unique solutions in $\mathrm{H}^2(Y)/\mathbf{R}$ of

$$\begin{cases} \operatorname{div}\operatorname{div}\left(\mathbf{M}(\mathbf{x})(\mathbf{E}_{ij} + \nabla \nabla w_{ij}(\mathbf{x}))\right) = 0 \text{ in } Y \\ \mathbf{x} \to w_{ij}(\mathbf{x}) \quad is \ Y\text{-periodic.} \end{cases}$$

52

Small-amplitude assumptions

Theorem. Let $\mathbf{A}_0 \in \mathcal{L}(\operatorname{Sym}; \operatorname{Sym})$ be a constant coercive tensor, $\mathbf{B}^n(\mathbf{x}) := \mathbf{B}(n\mathbf{x}), \mathbf{x} \in \Omega$, where $\Omega \subseteq \mathbf{R}^d$ is a bounded, open set, and \mathbf{B} is a *Y*-periodic, L^∞ tensor function, satisfying $\int_Y \mathbf{B}(\mathbf{x}) d\mathbf{x} = 0$. Then $\mathbf{M}_n^n(\mathbf{x}) := \mathbf{A}_0 + \gamma \mathbf{B}^n(\mathbf{x}), \quad \mathbf{x} \in \Omega$

H-converges (for any small γ) to a tensor $\mathbf{M}_{\gamma} := \mathbf{A}_0 + \gamma^2 \mathbf{C}_0 + o(\gamma^2)$, where

$$\mathbf{C}_{0}\mathbf{E}_{mn}:\mathbf{E}_{rs} = (2\pi i)^{2} \sum_{\mathbf{k}\in J} a_{-\mathbf{k}}^{mn} \mathbf{B}_{\mathbf{k}}(\mathbf{k}\otimes\mathbf{k}):\mathbf{E}_{rs} + (2\pi i)^{4} \sum_{\mathbf{k}\in J} a_{\mathbf{k}}^{mn} a_{-\mathbf{k}}^{rs} \mathbf{A}_{0}(\mathbf{k}\otimes\mathbf{k}):\mathbf{k}\otimes\mathbf{k} + (2\pi i)^{2} \sum_{\mathbf{k}\in J} a_{-\mathbf{k}}^{rs} \mathbf{B}_{\mathbf{k}} \mathbf{E}_{mn}:\mathbf{k}\otimes\mathbf{k},$$

with $m, n, r, s \in \{1, 2, \cdots, d\}$, $J := \mathbb{Z}^d \setminus \{0\}$, and

$$a_{\mathbf{k}}^{mn} = -\frac{\mathbf{B}_{\mathbf{k}}\mathbf{E}_{mn}\mathbf{k}\cdot\mathbf{k}}{(2\pi i)^{2}\mathbf{A}_{0}(\mathbf{k}\otimes\mathbf{k}):(\mathbf{k}\otimes\mathbf{k})}, \quad \mathbf{k}\in J,$$

and B_k are the Fourier coefficients of function B.

Result by applying H-measures

The corresponding H-measure of the sequence (\mathbf{B}^n) can be explicitly computed

$$\boldsymbol{\mu}_{ijrs}^{pqkl} = \lambda(\mathbf{x}) \sum_{\mathbf{k} \in \mathbf{Z}^d} [\mathbf{B}_{\mathbf{k}}]_{pqkl} [\overline{\mathbf{B}}_{\mathbf{k}}]_{ijrs} \, \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}}(\boldsymbol{\xi}),$$

where λ denotes the Lebesgue measure on \mathbf{R}^d and $\mathbf{B}_{\mathbf{k}}$, $\mathbf{k} \in \mathbf{Z}^d$, are Fourier coefficients of function **B**. After inserting this expression in the formula in the Theorem, we can easily calculate \mathbf{C}_0 explicitly:

$$\mathbf{C}_0 = -\sum_{\mathbf{k}\in\mathbf{Z}^d} rac{\mathbf{B}_{\mathbf{k}}(\mathbf{k}\otimes\mathbf{k})\otimes\mathbf{B}_{\mathbf{k}}^T(\mathbf{k}\otimes\mathbf{k})}{\mathbf{A}_0(\mathbf{k}\otimes\mathbf{k}):(\mathbf{k}\otimes\mathbf{k})},$$

where the tensor product of two matrices $\mathbf{A}, \mathbf{B} \in M_d(\mathbf{C})$ is the fourth-order tensor with entries

$$[\mathbf{A}\otimes\mathbf{B}]_{ijkl}=a_{ij}\overline{b}_{kl}.$$

This coincides with the result obtained via explicit formula for the homogenisation limit of a periodic sequence of tensors describing material properties in the Kirchhoff-Love model.

Thank you for your attention!