H-distributions and variants

Nenad Antonić

Department of Mathematics Faculty of Science University of Zagreb

 $$\rm ISAAC\ 2019$ Aveiro, $29^{\rm th}$ July 2019

http://riemann.math.hr/mitpde/ Joint work with Marko Erceg (and Marin Mišur)

H-distributions

Existence Distributions of anisotropic order Definition and tensor products Schwartz kernel theorem: consequences for H-distributions An important example

Existence of H-measures

Theorem. If $\mathbf{u}_n \longrightarrow \mathbf{0}$ in $L^2_{loc}(\mathbf{R}^d; \mathbf{R}^r)$, then there exists its subsequence and a complex matrix Radon measure distribution of order zero $\boldsymbol{\mu}$ on $\mathbf{R}^d \times S^{d-1}$ such that for any $\varphi_1, \varphi_2 \in C_c(\mathbf{R}^d)$ and $\psi \in C(S^{d-1})$ one has $\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 \mathbf{u}_{n'}} \otimes \widehat{\varphi_2 \mathbf{u}_{n'}} \psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) d\boldsymbol{\xi} = \langle \boldsymbol{\mu}, (\varphi_1 \bar{\varphi}_2) \boxtimes \psi \rangle$ $= \int_{\mathbf{R}^d \times S^{d-1}} \varphi_1(\mathbf{x}) \bar{\varphi}_2(\mathbf{x}) \psi(\boldsymbol{\xi}) d\bar{\boldsymbol{\mu}}(\mathbf{x}, \boldsymbol{\xi}).$ There are some other variants: (ultra)parabolic, fractional, one-scale, ...

Multiplication by $b \in L^{\infty}(\mathbf{R}^d)$, a bounded operator M_b on $L^2(\mathbf{R}^d)$: $(M_b u)(\mathbf{x}) := b(\mathbf{x})u(\mathbf{x})$, norm equal to $\|b\|_{L^{\infty}(\mathbf{R}^2)}$. Fourier multiplier \mathcal{A}_a , for $a \in L^{\infty}(\mathbf{R}^2)$: $\widehat{\mathcal{A}_a u} = a\hat{u}$. The norm is again equal to $\|a\|_{L^{\infty}(\mathbf{R}^2)}$. Delicate part: a is given only on S^1 . We extend it by the projection p: if α is a function defined on a compact surface, we take $a := \alpha \circ p$, i.e.

$$a(\boldsymbol{\xi}) := \alpha \left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|} \right)$$

The precise scaling is contained in the projections, not the surface.

Good bounds in the L^p case: the Hörmander-Mihlin theorem

 $\psi: \mathbf{R}^d \to \mathbf{C}$ is a Fourier multiplier on $\mathrm{L}^p(\mathbf{R}^d)$ if

$$ar{\mathcal{F}}(\psi\mathcal{F}(\theta))\in \mathrm{L}^p(\mathbf{R}^d)\ ,\qquad ext{for }\theta\in\mathcal{S}(\mathbf{R}^d),$$

and

$$\mathcal{S}(\mathbf{R}^d) \ni \theta \mapsto \bar{\mathcal{F}}(\psi \mathcal{F}(\theta)) \in \mathbf{L}^p(\mathbf{R}^d)$$

can be extended to a continuous mapping $\mathcal{A}_{\psi}: L^p(\mathbf{R}^d) \to L^p(\mathbf{R}^d)$.

Theorem. [Hörmander-Mihlin] Let $\psi \in L^{\infty}(\mathbf{R}^d)$ have partial derivatives of order less than or equal to $\kappa = [\frac{d}{2}] + 1$. If for some k > 0

$$(\forall r > 0)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d) \qquad |\boldsymbol{\alpha}| \leqslant \kappa \implies \int_{\frac{r}{2} \leqslant |\boldsymbol{\xi}| \leqslant r} |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} \leqslant k^2 r^{d-2|\boldsymbol{\alpha}|} ,$$

then for any $p \in \langle 1, \infty \rangle$ and the associated multiplier operator \mathcal{A}_{ψ} there exists a C_d (depending only on the dimension d) such that

$$\|\mathcal{A}_{\psi}\|_{\mathbf{L}^{p}\to\mathbf{L}^{p}} \leqslant C_{d} \max\left\{p, \frac{1}{p-1}\right\} (k+\|\psi\|_{\infty}) .$$

For $\psi \in C^{\kappa}(S^{d-1})$, extended by homogeneity to \mathbf{R}^d , we can take $k = \|\psi\|_{C^{\kappa}}$.

Existence of H-distributions

Theorem. (N.A. & D. Mitrović, 2011) If $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$ and $v_n \stackrel{*}{\longrightarrow} v$ in $L^q(\mathbf{R}^d)$ for some $q \ge \max\{p', 2\}$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a complex valued distribution $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$, such that for every $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$ and $\psi \in C^{\kappa}(S^{d-1})$ we have:

$$\begin{split} \lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} &= \lim_{n'} \int_{\mathbf{R}^d} (\varphi_1 u_{n'})(\mathbf{x}) \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})(\mathbf{x})} d\mathbf{x} \\ &= \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle \;, \end{split}$$

where $\mathcal{A}_{\psi} : L^{p}(\mathbf{R}^{d}) \to L^{p}(\mathbf{R}^{d})$ is the Fourier multiplier operator with symbol $\psi \in C^{\kappa}(S^{d-1})$.

We call the functional μ the *H*-distribution corresponding to (a subsequence of) (u_n) and (v_n) .

For applications, of interest is to extend the result to vector-valued functions. For $u_n \in L^p(\mathbf{R}^d; \mathbf{C}^k)$ and $v_n \in L^q(\mathbf{R}^d; \mathbf{C}^l)$, the result is a *matrix valued* distribution $\boldsymbol{\mu} = [\mu^{ij}]$, $i \in 1..k$ and $j \in 1..l$.

In contrast to H-measures, we cannot consider H-distributions corresponding to the same sequence, but only to a pair of sequences, and H-distribution would correspond to non-diagonal blocks for H-measures.

First commutation lemma

 $\psi \in C^{\kappa}(S^{d-1})$ satisfies the conditions of the Hörmander-Mihlin theorem. Therefore, \mathcal{A}_{ψ} and B are bounded operators on $L^{r}(\mathbf{R}^{d})$, for any $r \in \langle 1, \infty \rangle$. We are interested in the properties of their commutator, $C = \mathcal{A}_{\psi}B - B\mathcal{A}_{\psi}$. If p < r, we can apply the classical interpolation inequality:

 $||Cv_n||_p \leq ||Cv_n||_2^{\alpha} ||Cv_n||_r^{1-\alpha}$,

for $\alpha \in \langle 0,1 \rangle$ such that $1/p = \alpha/2 + (1-\alpha)/r$.

As C is compact on $L^2(\mathbf{R}^d)$ by Tartar's First commutation lemma, while it is bounded on $L^r(\mathbf{R}^d)$, we get the claim.

For the most interesting case, where p = r, we need a better result: the Krasnosel'skij theorem (in fact, its extension to unbounded domains [N.A., M. Mišur, D. Mitrović (2018)]).

Lemma. Assume that linear operator A is compact on $L^2(\mathbf{R}^d)$ and bounded on $L^r(\mathbf{R}^d)$, for some $r \in \langle 1, \infty \rangle \setminus \{2\}$. Then A is also compact on any $L^p(\mathbf{R}^d)$, where $1/p = \theta/2 + (1-\theta)/r$, for a $\theta \in \langle 0, 1 \rangle$.

Therefore, the commutator C is compact on all $L^p(\mathbf{R}^d)$, $p \in \langle 1, \infty \rangle$.

Lemma on bilinear forms

Lemma. Let E, F be separable Banach spaces, (b_n) an equibounded sequence of bilinear forms on $E \times F$ (i.e. $|b_n(\varphi, \psi)| \le C ||\varphi||_E ||\psi||_F$). Then there exists a subsequence (b_{n_k}) and a bilinear form b (with the same bound C) such that

$$(\forall \varphi \in E)(\forall \psi \in F)$$
 $\lim_{k} b_{n_k}(\varphi, \psi) = b(\varphi, \psi)$.

$$\mathcal{C}_{K_l}(\mathbf{R}^d) := \{ \varphi \in \mathcal{C}(\mathbf{R}^d) : \operatorname{supp} \varphi \subseteq K_l \}$$
 and
 $\mathcal{C}_c(\mathbf{R}^d) = \bigcup_{l \in \mathbf{N}} \mathcal{C}_{K_l}(\mathbf{R}^d) ,$

so we have $B^l \in \mathcal{L}(\mathcal{C}_{K_l}(\mathbf{R}^d); (\mathcal{C}^{\kappa}(\mathcal{S}^{d-1}))')$, and we can keep the convergence on $\mathcal{C}_{K_{l-1}}(\mathbf{R}^d)$, in such a way obtaining that B^l is an extension of B^{l-1} . Thus define B on $\mathcal{C}_c(\mathbf{R}^d)$: for $\varphi \in \mathcal{C}_c(\mathbf{R}^d)$ we take $l \in \mathbf{N}$ such that $\operatorname{supp} \varphi \subseteq K_l$, and set $B\varphi := B^l \varphi$. The definition is good, and we have a bounded operator in uniform norm:

$$\|B\varphi\|_{(\mathcal{C}^{\kappa}(\mathcal{S}^{d-1}))'} \leqslant \tilde{C} \|\varphi\|_{\mathcal{C}_{0}(\mathbf{R}^{d})}$$

It can be extended to the completion, the Banach space $C_0(\mathbf{R}^d)$.

Complete the proof ...

Now we can define $\mu(\varphi, \psi) := \langle B\varphi, \psi \rangle$, which satisfies the Theorem.

Indeed, restrict B to $C_c^{\infty}(\mathbf{R}^d)$; the restriction \tilde{B} remains continuous. $(C^{\kappa}(S^{d-1}))'$ is a subspace of $\mathcal{D}'(S^{d-1})$, and we have a continuous operator from $C_c^{\infty}(\mathbf{R}^d)$ to $\mathcal{D}'(S^{d-1})$, which by the Schwartz kernel theorem can be identified to a distribution from $\mathcal{D}'(\mathbf{R}^d \times S^{d-1})$.

However, the bounds we had indicate that we should have a better object than just a distribution, say of order no more than $\kappa=[d/2]+1.$

(Un)fortunately, the situation is much more complicated. Just to mention that the specific examples of H-distributions that we had (up to recently) were all of order 0 in both variables.

It remains to:

- $\circ\,$ Make precise the anisotropic order of a distribution.
- $\circ\,$ Get a more precise form of the Schwartz kernel theorem.

Functions of anisotropic smoothness

Let X and Y be open sets in \mathbf{R}^d and \mathbf{R}^r (or \mathbf{C}^{∞} manifolds), $\Omega \subseteq X \times Y$. By $\mathbf{C}^{l,m}(\Omega)$ we denote the space of functions f on Ω , such that for any $\boldsymbol{\alpha} \in \mathbf{N}_0^d$ and $\boldsymbol{\beta} \in \mathbf{N}_0^r$, if $|\boldsymbol{\alpha}| \leq l$ and $|\boldsymbol{\beta}| \leq m$,

$$\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f = \partial^{\boldsymbol{\alpha}}_{\mathbf{x}} \partial^{\boldsymbol{\beta}}_{\mathbf{y}} f \in \mathcal{C}(\Omega)$$

 $\mathrm{C}^{l,m}(\Omega)$ becomes a Fréchet space if we define a sequence of seminorms

$$p_{K_n}^{l,m}(f) := \max_{|\boldsymbol{\alpha}| \leq l, |\boldsymbol{\beta}| \leq m} \|\partial^{\boldsymbol{\alpha},\boldsymbol{\beta}} f\|_{\mathcal{L}^{\infty}(K_n)} ,$$

where $K_n \subseteq \Omega$ are compacts, such that $\Omega = \bigcup_{n \in \mathbb{N}} K_n$ and $K_n \subseteq \operatorname{Int} K_{n+1}$. For a compact set $K \subseteq \Omega$ we define a subspace of $C^{l,m}(\Omega)$

$$\mathcal{C}_{K}^{l,m}(\Omega) := \left\{ f \in \mathcal{C}^{l,m}(\Omega) : \text{ supp } f \subseteq K \right\}.$$

This subspace inherits the topology from $C^{l,m}(\Omega)$, which is, when considered only on the subspace, a norm topology determined by

$$||f||_{l,m,K} := p_K^{l,m}(f)$$

and $C_K^{l,m}(\Omega)$ is a Banach space (it can be identified with a proper subspace of $C^{l,m}(K)$). However, if $m = \infty$ (or $l = \infty$), then we shall not get a Banach space, but a Fréchet space. As in the isotropic case, an increasing sequence of seminorms that makes $C_{K_n}^{l,\infty}(\Omega)$ a Fréchet space is given by $(p_{K_n}^{l,k}), k \in \mathbf{N}_0$.

Functions of anisotropic smoothness (cont.)

We can also consider the space

$$\mathcal{C}^{l,m}_{c}(\Omega) := \bigcup_{n \in \mathbf{N}} \mathcal{C}^{l,m}_{K_n}(\Omega) ,$$

of all functions with compact support in $C^{l,m}(\Omega)$, and equip it by a stronger topology than the one induced from $C^{l,m}(\Omega)$: by the topology of *strict inductive limit*.

More precisely, it can easily be checked that

$$\mathcal{C}^{l,m}_{K_n}(\Omega) \hookrightarrow \mathcal{C}^{l,m}_{K_{n+1}}(\Omega) ,$$

the inclusion being continuous. Also, the topology induced on $C^{l,m}_{K_n}(\Omega)$ by that of $C^{l,m}_{K_{n+1}}(\Omega)$ coincides with the original one, and $C^{l,m}_{K_n}(\Omega)$ (as a Banach space in that topology) is a closed subspace of $C^{l,m}_{K_{n+1}}(\Omega)$. Then we have that the strict inductive limit topology on $C^{l,m}_c(\Omega)$ induces on each $C^{l,m}_{K_n}(\Omega)$ the original topology, while a subset of $C^{l,m}_c(\Omega)$ is bounded if and only if it is contained in one $C^{l,m}_{K_n}(\Omega)$, and bounded there. $C^{l,m}_c(\Omega)$ is a barelled space.

Of course, $\mathrm{C}^\infty_c(\Omega) \hookrightarrow \mathrm{C}^{l,m}_c(\Omega)$ is a continuous and dense imbedding.

Distributions of anisotropic order

Definition. A distribution of order l in \mathbf{x} and order m in \mathbf{y} is any linear functional on $C_c^{l,m}(\Omega)$, continuous in the strict inductive limit topology. We denote the space of such functionals by $\mathcal{D}'_{l,m}(\Omega)$.

Clearly, $C_c^{\infty}(\Omega) \hookrightarrow C_c^{l,m}(\Omega) \hookrightarrow \mathcal{D}'(\Omega)$, with continuous and dense imbeddings, thus $C_c^{l,m}(\Omega)$ is a normal space of distributions, hence its dual $\mathcal{D}'_{l,m}(\Omega)$ forms a subspace of $\mathcal{D}'(\Omega)$. If we equip it with a strong topology, it is even continuously imbedded in $\mathcal{D}'(\Omega)$.

Lemma. Let X and Y be C^{∞} manifolds. For a linear functional u on $C_c^{l,m}(X \times Y)$, the following statements are equivalent a) $u \in \mathcal{D}'_{l,m}(X \times Y)$, b) $(\forall K \in \mathcal{K}(X \times Y))(\exists C > 0)(\forall \Psi \in C_K^{l,m}(X \times Y)) \quad |\langle u, \Psi \rangle| \leq C p_K^{l,m}(\Psi).$

Statement (b) of previous lemma implies:

$$\begin{aligned} (\forall K \in \mathcal{K}(X))(\forall L \in \mathcal{K}(Y)(\exists C > 0)(\forall \varphi \in \mathcal{C}_{K}^{l}(X))(\forall \psi \in \mathcal{C}_{L}^{m}(Y)) \\ |\langle u, \varphi \boxtimes \psi \rangle| \leqslant C p_{K}^{l}(\varphi) p_{L}^{m}(\psi) . \end{aligned}$$

The reverse implication would have significantly greater practical use.

Schwartz kernel theorem

Theorem. Let X and Y be two differentiable manifolds.

- a) Let $K \in \mathcal{D}'_{l,m}(X \times Y)$. Then for each $\varphi \in C^l_c(X)$ the linear form K_{φ} , defined by $\psi \mapsto \langle K, \varphi \boxtimes \psi \rangle$, is a distribution of order not more than m on Y. Furthermore, the mapping $\varphi \mapsto K_{\varphi}$, taking $C^l_c(X)$ with its inductive limit topology to $\mathcal{D}'_m(Y)$ with weak * topology, is linear and continuous.
- b) Let $A : C_c^l(X) \to \mathcal{D}'_m(Y)$ be a continuous linear operator, in the pair of topologies as above. Then there exists unique distribution $K \in \mathcal{D}'(X \times Y)$ such that for any $\varphi \in C_c^{\infty}(X)$ and $\psi \in C_c^{\infty}(Y)$

$$\langle K, \varphi \boxtimes \psi \rangle = \langle K_{\varphi}, \psi \rangle = \langle A\varphi, \psi \rangle.$$

Furthermore, $K \in \mathcal{D}'_{l,d(m+2)}(X \times Y)$.

Remarks

Note that in part (b) we did not get $K \in \mathcal{D}'_{l,m}(X \times Y)$, as one would expect. The order with respect to x variable remained the same, but the order with respect to y increased from m to d(m+2). Interchanging the roles of X and Y, the same proof gives $K \in \mathcal{D}'_{d(l+2),m}(X \times Y)$, where order with respect to y remained the same, but order with respect to the x variable increased from l to d(l+2). Since uniqueness of $K \in \mathcal{D}'(X \times Y)$ has already been determined, we conclude that $K \in \mathcal{D}'_{l,d(m+2)}(X \times Y) \cap \mathcal{D}'_{d(l+2),m}(X \times Y)$. It might be interesting to see some additional properties of that intersection.

If one used a more constructive proof of the Schwartz kernel theorem, for example [Simanca, Theorem 1.3.4], one would end up increasing the order with respect to both variables x and y. This occurs naturally, because one needs to secure the integrability of the function which is used to define the kernel function.

Consequence for H-distributions

By the previous theorem the H-distribution μ mentioned at the beginning belongs to the space $\mathcal{D}'_{0,d(\kappa+2)}(\mathbf{R}^d \times S^{d-1})$, i.e. it is a distribution of order 0 in \mathbf{x} and of order not more than $d(\kappa+2)$ in $\boldsymbol{\xi}$.

Indeed, we already have $\mu \in \mathcal{D}'(\mathbf{R}^d \times S^{d-1})$ and the following bound with $\varphi := \varphi_1 \overline{\varphi_2}$:

$$|\langle \mu, \varphi \boxtimes \psi \rangle| \leqslant C \|\psi\|_{\mathcal{C}^{\kappa}(\mathcal{S}^{d-1})} \|\varphi\|_{\mathcal{C}_{K_{l}}(\mathbf{R}^{d})},$$

where C does not depend on φ and ψ .

Now we just need to apply the Schwartz kernel theorem given above to conclude that μ is a continuous linear functional on $C_c^{0,d(\kappa+2)}(\mathbf{R}^d \times S^{d-1})$.

Example: H-distributions are not measures

In order to explicitly compute the H-distribution in some nontrivial case, it is advantageous to relate it to only one sequence.

Canonical choice of an $L^{p'}$ sequence corresponding to an L^p , $p \in \langle 1, \infty \rangle$, sequence (u_n) is given by $v_n = \Phi_p(u_n)$, where Φ_p is an operator from $L^p(\mathbf{R}^d)$ to $L^{p'}(\mathbf{R}^d)$ defined by $\Phi_p(u) = |u|^{p-2}u$.

 Φ_p is a nonlinear Nemytskij operator, continuous from $L^p(\mathbf{R}^d)$ to $L^{p'}(\mathbf{R}^d)$ and additionally we have the following bound

$$\|\Phi_p(u)\|_{L^{p'}(\mathbf{R}^d)} \leq \|u\|_{L^p(\mathbf{R}^d)}^{p/p'}.$$

It maps bounded sets in $L_{loc}^{p}(\mathbf{R}^{d})$ topology to bounded sets in $L_{loc}^{p'}(\mathbf{R}^{d})$ topology. Hence for an L^{p} bounded sequence (u_{n}) , we get that $(\Phi_{p}(u_{n}))$ is weakly precompact in $L_{loc}^{p'}(\mathbf{R}^{d})$.

It is continuous from $L_{loc}^{p}(\mathbf{R}^{d})$ to $L_{loc}^{p'}(\mathbf{R}^{d})$.

Example: concentration

 $u \in L^p_c(\mathbf{R}^d)$, and define $u_n(\mathbf{x}) = n^{\frac{d}{p}} u(n(\mathbf{x} - \mathbf{z}))$ for some $\mathbf{z} \in \mathbf{R}^d$. Simple change of variables: $||u_n||_{L^p(\mathbf{R}^d)} = ||u||_{L^p(\mathbf{R}^d)}$ and $u_n \longrightarrow 0$ in $L^p(\mathbf{R}^d)$. Indeed, the sequence is bounded, while for $\varphi \in C_c(\mathbf{R}^d)$

$$\begin{split} \int_{\mathbf{R}^d} u_n(\mathbf{x})\varphi(\mathbf{x})d\mathbf{x} &= \int_{\mathbf{R}^d} n^{d/p} u(n(\mathbf{x} - \mathbf{z}))\varphi(\mathbf{x})d\mathbf{x} \\ &= \int_{\mathbf{R}^d} n^{d/p-d} u(\mathbf{y})\varphi(\mathbf{y}/n + \mathbf{z})d\mathbf{y} \\ &= \frac{1}{n^{d/p'}} \int_{\mathbf{R}^d} u(\mathbf{y})\chi_{\mathrm{supp}\,u}(\mathbf{y})\varphi(\mathbf{y}/n + \mathbf{z})d\mathbf{y} \\ &\leqslant \left(\frac{\mathrm{vol}(\mathrm{supp}\,u)}{n^d}\right)^{1/p'} \|u\|_{\mathrm{L}^p(\mathbf{R}^d)} \max_{\mathbf{R}^d} |\varphi|. \end{split}$$

Passing to the limit, we get our claim.

The H-distribution corresponding to sequences (u_n) and $(\Phi_p(u_n))$ is given by $\delta_z \boxtimes \nu$, where ν is a continuous functional on $C^{\kappa}(S^{d-1})$ defined for $\psi \in C^{\kappa}(S^{d-1})$ by

$$\langle \nu, \psi \rangle = \int_{\mathbf{R}^d} u(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(|u|^{p-2}u)(\mathbf{x})} d\mathbf{x}.$$

This distribution might be a Radon measure, or not.

The operators $\zeta_{p,n}$

For $p \in \langle 1, \infty \rangle$, $\mathbf{z} \in \mathbf{R}^d$, and $n \in \mathbf{N}$, define a linear operator $\zeta_{p,n}$ on $L^p(\mathbf{R}^d)$

$$\zeta_{p,n}u(\mathbf{x}) = n^{\frac{d}{p}}u(n(\mathbf{x} - \mathbf{z})).$$

 \circ It is a linear isometry on $\mathrm{L}^p(\mathbf{R}^d),$ i.e.

$$\|\zeta_{p,n}u\|_{\mathrm{L}^p(\mathbf{R}^d)} = \|u\|_{\mathrm{L}^p(\mathbf{R}^d)}.$$

 \circ For any $u \in L^p(\mathbf{R}^d)$ the sequence $(\zeta_{p,n}u)$ weakly converges to 0 in $L^p(\mathbf{R}^d)$. Indeed, for u with a compact support, since $(\zeta_{p,n}u)$ is bounded, it is sufficient to take a continuous test function φ with compact support

$$\begin{split} \int_{\mathbf{R}^d} \zeta_{p,n} u(\mathbf{x}) \varphi(\mathbf{x}) \, d\mathbf{x} &= \int_{\mathbf{R}^d} n^{d/p} u(n(\mathbf{x} - \mathbf{z})) \varphi(\mathbf{x}) \, d\mathbf{x} \\ &= \int_{\mathbf{R}^d} n^{d/p-d} u(\mathbf{y}) \varphi(\mathbf{y}/n + \mathbf{z}) \, d\mathbf{y} \\ &= \frac{1}{n^{d/p'}} \int_{\operatorname{supp} u} u(\mathbf{y}) \varphi(\mathbf{y}/n + \mathbf{z}) \, d\mathbf{y} \\ &\leqslant \left(\frac{\operatorname{\mathsf{vol}}(\operatorname{supp} u)}{n^d}\right)^{1/p'} \|u\|_{\mathrm{L}^p(\mathbf{R}^d)} \max_{\mathbf{R}^d} |\varphi| \, , \end{split}$$

where we have used the change of variables $\mathbf{y} = n(\mathbf{x} - \mathbf{z})$ in the second equality and the Hölder inequality in the last step. Passing to the limit, we get our claim.

Φ_p and $\zeta_{p,n}$ commute

For arbitrary $u \in L^{p}(\mathbf{R}^{d})$ and $v \in L^{p'}(\mathbf{R}^{d})$, 1/p + 1/p' = 1, we will show that the H-distribution corresponding to sequences $(\zeta_{p,n}u)$ and $(\zeta_{p',n}v)$ is given by $\delta_{\mathbf{z}} \boxtimes \nu$, where ν is a functional on $C^{\kappa}(S^{d-1})$ defined for $\psi \in C^{\kappa}(S^{d-1})$ by

$$\langle \nu, \psi \rangle = \int_{\mathbf{R}^d} u(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}} v(\mathbf{x})} \, d\mathbf{x}$$

 Φ_p and $\zeta_{p,n}$ commute in the following sense: for $u \in L^p(\mathbf{R}^d)$

$$\Phi_p(\zeta_{p,n}u)(\mathbf{x}) = |n^{\frac{d}{p}}u(n(\mathbf{x}-\mathbf{z}))|^{p-2}n^{\frac{d}{p}}u(n(\mathbf{x}-\mathbf{z}))$$

= $n^{\frac{d(p-1)}{p}}|u(n(\mathbf{x}-\mathbf{z}))|^{p-2}u(n(\mathbf{x}-\mathbf{z})) = \zeta_{p',n}\Phi_p(u)(\mathbf{x}),$

by taking $v = \Phi_p(u)$ we reveal the canonical choice of the $L^{p'}$ sequence corresponding to $(\zeta_{p,n}u)$, i.e. $\zeta_{p',n}v = \Phi_p(\zeta_{p,n}u)$.

Before we proceed, we need two lemmata:

Lemma. Let $p \in \langle 1, \infty \rangle$ and $z \in \mathbf{R}^d$. For any $u \in L^p(\mathbf{R}^d)$ and $\varphi \in C_c(\mathbf{R}^d)$ it holds

$$\varphi \zeta_{p,n} u - \varphi(\mathbf{z}) \zeta_{p,n} u \longrightarrow 0 \text{ in } \mathbf{L}^p(\mathbf{R}^d).$$

... and the second lemma

Lemma. For any $\psi \in C^{\kappa}(S^{d-1})$, $p \in \langle 1, \infty \rangle$, $z \in \mathbf{R}^d$, and $n \in \mathbf{N}$, the operators \mathcal{A}_{ψ} and $\zeta_{p,n}$ commute on $L^p(\mathbf{R}^d)$.

For $v \in \mathcal{S}(\mathbf{R}^d)$, we have

$$\begin{aligned} \mathcal{A}_{\psi}(\zeta_{p,n}v)(\mathbf{x}) &= n^{\frac{d}{p}} \bar{\mathcal{F}}\Big(\psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) \int_{\mathbf{R}^{d}} e^{-2\pi i \mathbf{y}\cdot\boldsymbol{\xi}} v(n(\mathbf{y}-\mathbf{z})) \, d\mathbf{y}\Big)(\mathbf{x}) \\ &= n^{\frac{d}{p}} \bar{\mathcal{F}}\Big(n^{-d} e^{-2\pi i \mathbf{z}\cdot\boldsymbol{\xi}} \psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) \int_{\mathbf{R}^{d}} e^{-2\pi i \frac{\mathbf{w}}{n}\cdot\boldsymbol{\xi}} v(\mathbf{w}) \, d\mathbf{w}\Big)(\mathbf{x}) \\ &= n^{\frac{d}{p}} n^{-d} \bar{\mathcal{F}}\Big(e^{-2\pi i \mathbf{z}\cdot\boldsymbol{\xi}} \psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) \hat{v}(\boldsymbol{\xi}/n)\Big)(\mathbf{x}) \\ &= n^{\frac{d}{p}} n^{-d} \int_{\mathbf{R}^{d}} e^{2\pi i (\mathbf{x}-\mathbf{z})\cdot\boldsymbol{\xi}} \psi(\boldsymbol{\xi}/|\boldsymbol{\xi}|) \hat{v}(\boldsymbol{\xi}/n) \, d\boldsymbol{\xi} \\ &= n^{\frac{d}{p}} \int_{\mathbf{R}^{d}} e^{2\pi i \boldsymbol{\eta} \cdot (n(\mathbf{x}-\mathbf{z}))} \psi(\boldsymbol{\eta}/|\boldsymbol{\eta}|) \hat{v}(\boldsymbol{\eta}) \, d\boldsymbol{\eta} = \zeta_{p,n}(\mathcal{A}_{\psi}v)(\mathbf{x}). \end{aligned}$$

Since $S(\mathbf{R}^d)$ is dense in $L^p(\mathbf{R}^d)$, while \mathcal{A}_{ψ} and $\zeta_{n,p}$ are continuous on $L^p(\mathbf{R}^d)$, we get the claim.

H-distribution corresponding to sequences $(\zeta_{p,n}u)$ and $(\zeta_{p',n}v)$

Let us show that $(\zeta_{p,n}u)$ and $(\zeta_{p',n}v)$ form a pure pair (for arbitrary u and v). Taking $\varphi_1, \varphi_2 \in C_c^{\infty}(\mathbf{R}^d)$, we get

$$\lim_{\substack{n \\ \mathbf{R}^d}} \int \varphi_1(\mathbf{x})(\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\varphi_2\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x} = \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z}) \lim_{\substack{n \\ \mathbf{R}^d}} \int (\zeta_{p,n}u)(\mathbf{x}) \overline{\mathcal{A}_{\bar{\psi}}(\zeta_{p',n}v)(\mathbf{x})} d\mathbf{x}$$

$$= \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z})\lim_n \int_{\mathbf{R}^d} (\zeta_{p,n}u)(\mathbf{x})\overline{\zeta_{p',n}}\mathcal{A}_{\bar{\psi}}(v)(\mathbf{x}) \, d\mathbf{x}$$

$$= \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z})\lim_n \int_{\mathbf{R}^d} n^d u(n(\mathbf{x}-\mathbf{z}))\overline{\mathcal{A}_{\bar{\psi}}(v)(n(\mathbf{x}-\mathbf{z}))} \, d\mathbf{x}$$

$$= \varphi_1(\mathbf{z})\bar{\varphi}_2(\mathbf{z})\lim_n \int_{\mathbf{R}^d} u(\mathbf{y})\overline{\mathcal{A}_{\bar{\psi}}(v)(\mathbf{y})} \, d\mathbf{y}$$

$$= \left\langle u, \mathcal{A}_{\overline{\varphi_1(\mathbf{z})}\bar{\varphi_2}(\mathbf{z})\psi}(v) \right\rangle.$$

The last expression can be extended by density to the whole $C_c^{0,\kappa}(\mathbf{R}^d \times S^{d-1})$, thus we finally get that $(\zeta_{p,n}u)$ and $(\zeta_{p',n}v)$ form a pure pair, and the H-distribution is given by

$$\langle \mu, \Psi \rangle = \left\langle u, \mathcal{A}_{\bar{\Psi}(\mathbf{z}, \cdot)}(v) \right\rangle, \quad \Psi \in \mathcal{C}_{c}^{0, \kappa}(\mathbf{R}^{d} \times \mathcal{S}^{d-1}).$$

Its properties

In the example we got better (lower) order than those provided by the Theorem. In fact, the order $(0, \kappa)$, which is achieved in this example, is the best we can hope for H-distributions (exactly the bounds we have). The question of optimal κ , which is dictated by the Hörmander-Mihlin theorem, remains open.

Concering the value of κ , the case $\kappa=0$ is particularly desirable since in that case we would have that H-distributions are Radon measures.

However, we shall show that there are $u \in L^p(\mathbf{R}^d)$ and $v \in L^{p'}(\mathbf{R}^d)$ such that the H-distribution above is not a Radon measure.

Indeed, take $\psi \in C^{\infty}(S^{d-1})$ such that $\|\psi\|_{L^{\infty}(S^{d-1})} = 1$. Then for any $n \in \mathbf{N}$ we have $\psi^n \in C^{\infty}(S^{d-1})$ and $\|\psi^n\|_{L^{\infty}(S^{d-1})} = 1$. By the Banach-Steinhaus theorem the uniform boundedness in n of $(\mathcal{A}_{\bar{\psi}^n})$ in $\mathcal{L}(L^p(\mathbf{R}^d); L^p(\mathbf{R}^d))$ (here we assume that $\bar{\psi}^n$ is extended to $\mathbf{R}^d \setminus \{0\}$ along rays through the origin, as usual) is equivalent to the property that for any $u \in L^p(\mathbf{R}^d)$ and $v \in L^{p'}(\mathbf{R}^d)$ the sequence $\left(|\langle u, \mathcal{A}_{\bar{\psi}^n} v \rangle|\right)$ is bounded.

The first implication is trivial, while to prove the latter we first apply the uniform boundedness principle to $v \mapsto \langle u, \mathcal{A}_{\bar{\psi}^n} v \rangle$ (for an arbitrary u), and then to $\mathcal{A}_{\bar{\psi}^n}$.

Ahlfros-Beurling operator

Thus, it is sufficient to find $\psi \in C^{\infty}(S^{d-1})$, $\|\psi\|_{L^{\infty}(S^{d-1})} = 1$, such that $(\mathcal{A}_{\bar{\psi}^n})$ is not uniformly bounded in $\mathcal{L}(L^p(\mathbf{R}^d); L^p(\mathbf{R}^d))$, as then by the above equivalence the mapping $\psi \mapsto \langle u, \mathcal{A}_{\bar{\psi}}v \rangle$ cannot be continuous on $C(S^{d-1})$, implying that the H-distribution above is not a Radon measure.

For an example of such ψ in two space dimensions (d = 2) one can consider the symbol of the Ahlfros-Beurling operator (Dragičević, 2011) which is given by $\psi(\xi_1, \xi_2) = \xi_1 + i\xi_2$ since it is know that $\|\mathcal{A}_{\bar{\psi}^n}\|_{\mathcal{L}(L^p(\mathbf{R}^d); L^p(\mathbf{R}^d))}$ goes to infinity as n tends to infinity (loc.cit.).

For a counterexample in higher dimensions, one could apply the method of dilatations (Oşekowski, 2012).

To conclude, with the argument above we have proved that there exist H-distributions which are not Radon measures. Therefore, our kernel theorem is really meaningful when applied on H-distributions.

Nevertheless, one could still think of whether the order can be improved when for the $L^{p'}$ sequence (v_n) one takes precisely the canonical choice $(\Phi_p(u_n))$. Although the above counterexample does not say anything for this specific case, webelieve that even for such (v_n) -s in general H-distributions are not Radon measures.

Thank you for your attention!