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Existence of H-measures

Theorem. If un −⇀ 0 in L2
loc(Rd;Rr), then there exists its subsequence

and a complex matrix Radon measure distribution of order zero µ on
Rd × Sd−1 such that for any ϕ1, ϕ2 ∈ Cc(R

d) and ψ ∈ C(Sd−1) one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′ψ(ξ/|ξ|) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .

There are some other variants: (ultra)parabolic, fractional, one-scale, . . .
Multiplication by b ∈ L∞(Rd), a bounded operator Mb on L2(Rd):
(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Aa, for a ∈ L∞(R2): Âau = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1.
We extend it by the projection p: if α is a function defined on a compact
surface, we take a := α ◦ p , i.e.

a(ξ) := α
( ξ

|ξ|

)
The precise scaling is contained in the projections, not the surface.
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Good bounds in the Lp case: the Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd, we can take k = ‖ψ‖Cκ .
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Existence of H-distributions

Theorem. (N.A. & D. Mitrović, 2011) If un −⇀ 0 in Lp(Rd) and vn
∗−−⇀ v

in Lq(Rd) for some q > max{p′, 2}, then there exist subsequences (un′), (vn′)
and a complex valued distribution µ ∈ D′(Rd × Sd−1), such that for every
ϕ1, ϕ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 ,

where Aψ : Lp(Rd)→ Lp(Rd) is the Fourier multiplier operator with symbol
ψ ∈ Cκ(Sd−1).

We call the functional µ the H-distribution corresponding to (a subsequence
of) (un) and (vn).

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix valued
distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and H-distribution would
correspond to non-diagonal blocks for H-measures.
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First commutation lemma

ψ ∈ Cκ(Sd−1) satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, Aψ and B are bounded operators on Lr(Rd), for any r ∈ 〈1,∞〉.
We are interested in the properties of their commutator, C = AψB −BAψ.
If p < r, we can apply the classical interpolation inequality:

‖Cvn‖p 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/p = α/2 + (1− α)/r.
As C is compact on L2(Rd) by Tartar’s First commutation lemma, while it is
bounded on Lr(Rd), we get the claim.

For the most interesting case, where p = r, we need a better result: the
Krasnosel’skij theorem (in fact, its extension to unbounded domains
[N.A., M. Mǐsur, D. Mitrović (2018)]).

Lemma. Assume that linear operator A is compact on L2(Rd) and bounded
on Lr(Rd), for some r ∈ 〈1,∞〉 \ {2}. Then A is also compact on any
Lp(Rd), where 1/p = θ/2 + (1− θ)/r, for a θ ∈ 〈0, 1〉.

Therefore, the commutator C is compact on all Lp(Rd), p ∈ 〈1,∞〉.
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Lemma on bilinear forms

Lemma. Let E, F be separable Banach spaces, (bn) an equibounded
sequence of bilinear forms on E × F (i.e. |bn(ϕ,ψ)| ≤ C‖ϕ‖E‖ψ‖F ).
Then there exists a subsequence (bnk ) and a bilinear form b (with the same
bound C) such that

(∀ϕ ∈ E)(∀ψ ∈ F ) lim
k
bnk (ϕ,ψ) = b(ϕ,ψ) .

CKl(R
d) := {ϕ ∈ C(Rd) : suppϕ ⊆ Kl} and

Cc(R
d) =

⋃
l∈N

CKl(R
d) ,

so we have Bl ∈ L(CKl(R
d); (Cκ(Sd−1))′), and we can keep the convergence

on CKl−1(Rd), in such a way obtaining that Bl is an extension of Bl−1.

Thus define B on Cc(R
d):

for ϕ ∈ Cc(R
d) we take l ∈ N such that suppϕ ⊆ Kl, and set Bϕ := Blϕ.

The definition is good, and we have a bounded operator in uniform norm:

‖Bϕ‖(Cκ(Sd−1))′ 6 C̃‖ϕ‖C0(Rd) .

It can be extended to the completion, the Banach space C0(Rd).
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Complete the proof . . .

Now we can define µ(ϕ,ψ) := 〈Bϕ,ψ〉, which satisfies the Theorem.

Indeed, restrict B to C∞c (Rd); the restriction B̃ remains continuous.
(Cκ(Sd−1))′ is a subspace of D′(Sd−1), and we have a continuous operator
from C∞c (Rd) to D′(Sd−1), which by the Schwartz kernel theorem can be
identified to a distribution from D′(Rd × Sd−1).

However, the bounds we had indicate that we should have a better object than
just a distribution, say of order no more than κ = [d/2] + 1.

(Un)fortunately, the situation is much more complicated. Just to mention that
the specific examples of H-distributions that we had (up to recently) were all of
order 0 in both variables.

It remains to:

◦ Make precise the anisotropic order of a distribution.

◦ Get a more precise form of the Schwartz kernel theorem.
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Functions of anisotropic smoothness
Let X and Y be open sets in Rd and Rr (or C∞ manifolds), Ω ⊆ X × Y .

By Cl,m(Ω) we denote the space of functions f on Ω, such that for any
α ∈ Nd

0 and β ∈ Nr
0, if |α| 6 l and |β| 6 m,

∂α,βf = ∂α
x ∂

β
y f ∈ C(Ω) .

Cl,m(Ω) becomes a Fréchet space if we define a sequence of seminorms

pl,mKn (f) := max
|α|6l,|β|6m

‖∂α,βf‖L∞(Kn) ,

where Kn ⊆ Ω are compacts, such that Ω = ∪n∈NKn and Kn ⊆ IntKn+1.

For a compact set K ⊆ Ω we define a subspace of Cl,m(Ω)

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
.

This subspace inherits the topology from Cl,m(Ω), which is, when considered
only on the subspace, a norm topology determined by

‖f‖l,m,K := pl,mK (f) ,

and Cl,mK (Ω) is a Banach space (it can be identified with a proper subspace of
Cl,m(K)). However, if m =∞ (or l =∞), then we shall not get a Banach
space, but a Fréchet space. As in the isotropic case, an increasing sequence of
seminorms that makes Cl,∞Kn (Ω) a Fréchet space is given by (pl,kKn), k ∈ N0.
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Functions of anisotropic smoothness (cont.)

We can also consider the space

Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω) ,

of all functions with compact support in Cl,m(Ω), and equip it by a stronger
topology than the one induced from Cl,m(Ω): by the topology of strict
inductive limit.

More precisely, it can easily be checked that

Cl,mKn (Ω) ↪→ Cl,mKn+1
(Ω) ,

the inclusion being continuous. Also, the topology induced on Cl,mKn (Ω) by that

of Cl,mKn+1
(Ω) coincides with the original one, and Cl,mKn (Ω) (as a Banach space

in that topology) is a closed subspace of Cl,mKn+1
(Ω). Then we have that the

strict inductive limit topology on Cl,mc (Ω) induces on each Cl,mKn (Ω) the original

topology, while a subset of Cl,mc (Ω) is bounded if and only if it is contained in
one Cl,mKn (Ω), and bounded there. Cl,mc (Ω) is a barelled space.

Of course, C∞c (Ω) ↪→ Cl,mc (Ω) is a continuous and dense imbedding.
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Distributions of anisotropic order

Definition. A distribution of order l in x and order m in y is any linear
functional on Cl,mc (Ω), continuous in the strict inductive limit topology. We
denote the space of such functionals by D′l,m(Ω).

Clearly, C∞c (Ω) ↪→ Cl,mc (Ω) ↪→ D′(Ω), with continuous and dense imbeddings,
thus Cl,mc (Ω) is a normal space of distributions, hence its dual D′l,m(Ω) forms a
subspace of D′(Ω). If we equip it with a strong topology, it is even
continuously imbedded in D′(Ω).

Lemma. Let X and Y be C∞ manifolds. For a linear functional u on
Cl,mc (X × Y ), the following statements are equivalent

a) u ∈ D′l,m(X × Y ),

b) (∀K ∈ K(X × Y ))(∃C > 0)(∀Ψ ∈ Cl,mK (X × Y )) |〈u,Ψ〉| 6 Cpl,mK (Ψ).

Statement (b) of previous lemma implies:

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∀ϕ ∈ ClK(X))(∀ψ ∈ CmL (Y ))

|〈u, ϕ� ψ〉| 6 CplK(ϕ)pmL (ψ) .

The reverse implication would have significantly greater practical use.
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Schwartz kernel theorem

Theorem. Let X and Y be two differentiable manifolds.
a) Let K ∈ D′l,m(X × Y ). Then for each ϕ ∈ Clc(X) the linear form Kϕ, defined

by ψ 7→ 〈K,ϕ� ψ〉, is a distribution of order not more than m on Y .
Furthermore, the mapping ϕ 7→ Kϕ, taking Clc(X) with its inductive limit
topology to D′m(Y ) with weak ∗ topology, is linear and continuous.

b) Let A : Clc(X)→ D′m(Y ) be a continuous linear operator, in the pair of
topologies as above. Then there exists unique distribution K ∈ D′(X × Y )
such that for any ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y )

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉.

Furthermore, K ∈ D′l,d(m+2)(X × Y ).
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Remarks

Note that in part (b) we did not get K ∈ D′l,m(X × Y ), as one would expect.
The order with respect to x variable remained the same, but the order with
respect to y increased from m to d(m+ 2). Interchanging the roles of X and
Y , the same proof gives K ∈ D′d(l+2),m(X × Y ), where order with respect to y
remained the same, but order with respect to the x variable increased from l to
d(l+ 2). Since uniqueness of K ∈ D′(X × Y ) has already been determined, we
conclude that K ∈ D′l,d(m+2)(X × Y ) ∩ D′d(l+2),m(X × Y ). It might be
interesting to see some additional properties of that intersection.

If one used a more constructive proof of the Schwartz kernel theorem, for
example [Simanca, Theorem 1.3.4], one would end up increasing the order with
respect to both variables x and y. This occurs naturally, because one needs to
secure the integrability of the function which is used to define the kernel
function.
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Consequence for H-distributions

By the previous theorem the H-distribution µ mentioned at the beginning
belongs to the space D′0,d(κ+2)(R

d × Sd−1), i.e. it is a distribution of order 0 in
x and of order not more than d(κ+ 2) in ξ.

Indeed, we already have µ ∈ D′(Rd × Sd−1) and the following bound with
ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| 6 C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl (Rd) ,

where C does not depend on ϕ and ψ.

Now we just need to apply the Schwartz kernel theorem given above to
conclude that µ is a continuous linear functional on C

0,d(κ+2)
c (Rd × Sd−1).
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Example: H-distributions are not measures

In order to explicitly compute the H-distribution in some nontrivial case, it is
advantageous to relate it to only one sequence.

Canonical choice of an Lp
′

sequence corresponding to an Lp, p ∈ 〈1,∞〉,
sequence (un) is given by vn = Φp(un), where Φp is an operator from Lp(Rd)

to Lp
′
(Rd) defined by Φp(u) = |u|p−2u.

Φp is a nonlinear Nemytskij operator, continuous from Lp(Rd) to Lp
′
(Rd) and

additionally we have the following bound

‖Φp(u)‖Lp′ (Rd) 6 ‖u‖
p/p′

Lp(Rd)
.

It maps bounded sets in Lploc(Rd) topology to bounded sets in Lp
′

loc(Rd)
topology. Hence for an Lp bounded sequence (un), we get that (Φp(un)) is

weakly precompact in Lp
′

loc(Rd).

It is continuous from Lploc(Rd) to Lp
′

loc(Rd).
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Example: concentration
u ∈ Lpc(R

d), and define un(x) = n
d
p u(n(x− z)) for some z ∈ Rd.

Simple change of variables: ‖un‖Lp(Rd) = ‖u‖Lp(Rd) and un −⇀ 0 in Lp(Rd).

Indeed, the sequence is bounded, while for ϕ ∈ Cc(R
d)∫

Rd
un(x)ϕ(x)dx =

∫
Rd

nd/pu(n(x− z))ϕ(x)dx

=

∫
Rd

nd/p−du(y)ϕ(y/n+ z)dy

=
1

nd/p′

∫
Rd

u(y)χsuppu(y)ϕ(y/n+ z)dy

6
(vol(suppu)

nd

)1/p′

‖u‖Lp(Rd) max
Rd
|ϕ|.

Passing to the limit, we get our claim.

The H-distribution corresponding to sequences (un) and (Φp(un)) is given by
δz � ν, where ν is a continuous functional on Cκ(Sd−1) defined for
ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫
Rd

u(x)Aψ̄(|u|p−2u)(x)dx.

This distribution might be a Radon measure, or not.
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The operators ζp,n
For p ∈ 〈1,∞〉, z ∈ Rd, and n ∈ N, define a linear operator ζp,n on Lp(Rd)

ζp,nu(x) = n
d
p u(n(x− z)) .

◦ It is a linear isometry on Lp(Rd), i.e.

‖ζp,nu‖Lp(Rd) = ‖u‖Lp(Rd) .

◦ For any u ∈ Lp(Rd) the sequence (ζp,nu) weakly converges to 0 in Lp(Rd).
Indeed, for u with a compact support, since (ζp,nu) is bounded, it is sufficient
to take a continuous test function ϕ with compact support∫

Rd
ζp,nu(x)ϕ(x) dx =

∫
Rd

nd/pu(n(x− z))ϕ(x) dx

=

∫
Rd

nd/p−du(y)ϕ(y/n+ z) dy

=
1

nd/p′

∫
suppu

u(y)ϕ(y/n+ z) dy

6
(vol(suppu)

nd

)1/p′

‖u‖Lp(Rd) max
Rd
|ϕ| ,

where we have used the change of variables y = n(x− z) in the second
equality and the Hölder inequality in the last step. Passing to the limit, we get
our claim.
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Φp and ζp,n commute
For arbitrary u ∈ Lp(Rd) and v ∈ Lp

′
(Rd), 1/p+ 1/p′ = 1, we will show that

the H-distribution corresponding to sequences (ζp,nu) and (ζp′,nv) is given by
δz � ν, where ν is a functional on Cκ(Sd−1) defined for ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫
Rd

u(x)Aψ̄v(x) dx .

Φp and ζp,n commute in the following sense: for u ∈ Lp(Rd)

Φp(ζp,nu)(x) = |n
d
p u(n(x− z))|p−2n

d
p u(n(x− z))

= n
d(p−1)
p |u(n(x− z))|p−2u(n(x− z)) = ζp′,nΦp(u)(x) ,

by taking v = Φp(u) we reveal the canonical choice of the Lp
′

sequence
corresponding to (ζp,nu), i.e. ζp′,nv = Φp(ζp,nu).

Before we proceed, we need two lemmata:

Lemma. Let p ∈ 〈1,∞〉 and z ∈ Rd. For any u ∈ Lp(Rd) and ϕ ∈ Cc(R
d) it

holds
ϕζp,nu− ϕ(z)ζp,nu −→ 0 in Lp(Rd) .
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. . . and the second lemma

Lemma. For any ψ ∈ Cκ(Sd−1), p ∈ 〈1,∞〉, z ∈ Rd, and n ∈ N, the
operators Aψ and ζp,n commute on Lp(Rd).

For v ∈ S(Rd), we have

Aψ(ζp,nv)(x) = n
d
p F̄
(
ψ(ξ/|ξ|)

∫
Rd

e−2πiy·ξv(n(y − z)) dy
)

(x)

= n
d
p F̄
(
n−de−2πiz·ξψ(ξ/|ξ|)

∫
Rd

e−2πiw
n
·ξv(w) dw

)
(x)

= n
d
p n−dF̄

(
e−2πiz·ξψ(ξ/|ξ|)v̂(ξ/n)

)
(x)

= n
d
p n−d

∫
Rd

e2πi(x−z)·ξψ(ξ/|ξ|)v̂(ξ/n) dξ

= n
d
p

∫
Rd

e2πiη·(n(x−z))ψ(η/|η|)v̂(η) dη = ζp,n(Aψv)(x) .

Since S(Rd) is dense in Lp(Rd), while Aψ and ζn,p are continuous on Lp(Rd),
we get the claim.
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H-distribution corresponding to sequences (ζp,nu) and (ζp′,nv)
Let us show that (ζp,nu) and (ζp′,nv) form a pure pair (for arbitrary u and v).
Taking ϕ1, ϕ2 ∈ C∞c (Rd), we get

lim
n

∫
Rd

ϕ1(x)(ζp,nu)(x)Aψ̄(ϕ2ζp′,nv)(x)dx = ϕ1(z)ϕ̄2(z) lim
n

∫
Rd

(ζp,nu)(x)Aψ̄(ζp′,nv)(x)dx

= ϕ1(z)ϕ̄2(z) lim
n

∫
Rd

(ζp,nu)(x)ζp′,nAψ̄(v)(x) dx

= ϕ1(z)ϕ̄2(z) lim
n

∫
Rd

ndu(n(x− z))Aψ̄(v)(n(x− z)) dx

= ϕ1(z)ϕ̄2(z) lim
n

∫
Rd

u(y)Aψ̄(v)(y) dy

=
〈
u,Aϕ1(z)ϕ̄2(z)ψ(v)

〉
.

The last expression can be extended by density to the whole C0,κ
c (Rd × Sd−1),

thus we finally get that (ζp,nu) and (ζp′,nv) form a pure pair, and the
H-distribution is given by

〈µ,Ψ〉 =
〈
u,AΨ̄(z,·)(v)

〉
, Ψ ∈ C0,κ

c (Rd × Sd−1) .
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Its properties

In the example we got better (lower) order than those provided by the Theorem.
In fact, the order (0, κ), which is achieved in this example, is the best we can
hope for H-distributions (exactly the bounds we have). The question of optimal
κ, which is dictated by the Hörmander-Mihlin theorem, remains open.

Concering the value of κ, the case κ = 0 is particularly desirable since in that
case we would have that H-distributions are Radon measures.

However, we shall show that there are u ∈ Lp(Rd) and v ∈ Lp
′
(Rd) such that

the H-distribution above is not a Radon measure.

Indeed, take ψ ∈ C∞(Sd−1) such that ‖ψ‖L∞(Sd−1) = 1. Then for any n ∈ N

we have ψn ∈ C∞(Sd−1) and ‖ψn‖L∞(Sd−1) = 1. By the Banach-Steinhaus

theorem the uniform boundedness in n of (Aψ̄n) in L(Lp(Rd); Lp(Rd)) (here

we assume that ψ̄n is extended to Rd \ {0} along rays through the origin, as

usual) is equivalent to the propery that for any u ∈ Lp(Rd) and v ∈ Lp
′
(Rd)

the sequence
(
|〈u,Aψ̄nv〉|

)
is bounded.

The first implication is trivial, while to prove the latter we first apply the
uniform boundedness principle to v 7→ 〈u,Aψ̄nv〉 (for an arbitrary u), and then
to Aψ̄n .
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Ahlfros-Beurling operator

Thus, it is sufficient to find ψ ∈ C∞(Sd−1), ‖ψ‖L∞(Sd−1) = 1, such that

(Aψ̄n) is not uniformly bounded in L(Lp(Rd); Lp(Rd)), as then by the above

equivalence the mapping ψ 7→ 〈u,Aψ̄v〉 cannot be continuous on C(Sd−1),
implying that the H-distribution above is not a Radon measure.

For an example of such ψ in two space dimensions (d = 2) one can consider
the symbol of the Ahlfros-Beurling operator (Dragičević, 2011) which is given
by ψ(ξ1, ξ2) = ξ1 + iξ2 since it is know that ‖Aψ̄n‖L(Lp(Rd);Lp(Rd)) goes to
infinity as n tends to infinity (loc.cit.).
For a counterexample in higher dimensions, one could apply the method of
dilatations (Oşekowski, 2012).

To conclude, with the argument above we have proved that there exist
H-distributions which are not Radon measures. Therefore, our kernel theorem
is really meaningful when applied on H-distributions.

Nevertheless, one could still think of whether the order can be improved when
for the Lp

′
sequence (vn) one takes precisely the canonical choice (Φp(un)).

Although the above counterexample does not say anything for this specific
case, webelieve that even for such (vn)-s in general H-distributions are not
Radon measures.
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Thank you for your attention!
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