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Weak convergences and partial differential equations

Suppose we want to solve (possibly nonlinear) equation: A[u] = f .

We might try the following procedure:
Approximate A by a sequence An of operators we know how to solve, and also
f by a sequence fn of nicer functions, if needed.

Then solve each of the problems: An[un] = fn, obtaining the solutions un.

It is only natural to expect that the limit u := limun will be a solution of the
original problem.

Of course, this is only a rough idea — in each particular case we have to be
more precise. In particular with the definition of various limits taken.
In the above procedure, one usually only gets weakly converging sequences

un −⇀ u

in some Lp space.

However, one cannot just pass to the weak limit with a nonlinear operator. The
procedure is much more delicate.
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Various approaches used some special tools and objects:
Objects in x space only
◦ defect measures to defect measures

◦ the Tartar programme (Young measures, compactness by compensation)
to Tartar’s programme

Microlocal objects capturing L2 weak convergence
◦ H-measures to H-measures

◦ parabolic H-measures, other variants to Localisation principle

Microlocal objects capturing Lp weak convergence
◦ H-distributions to H-distributions

◦ H-distributions on mixed-norm spaces
◦ microlocal compactness forms

to objects with a characteristic lenght
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Weak convergences and partial differential equations

Suppose we want to solve (possibly nonlinear) equation: A[u] = f .
Here, A is some complicated partial differential operator, and the equation
contains some additional conditions (boundary and/or initial).
We might try the following procedure:
Approximate A by a sequence An of operators we know how to solve, and also
f by a sequence fn of nicer functions, if needed.

Then solve each of the problems: An[un] = fn, obtaining the solutions un.

It is only natural to expect that the limit u := limun will be a solution of the
original problem.

Of course, this is only a rough idea — in each particular case we have to be
more precise. In particular with the definition of various limits taken.
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Weak convergences and defect measures

In the above procedure, one usually only gets weakly converging sequences

un −⇀ u

in some Lp space.
However, one cannot just pass to the weak limit with a nonlinear operator. The
procedure is much more delicate.
One thing that is of interest is to determine how far is the weakly convergent
sequence from a strongly converging one. The simplest tool used for that are
defect measures, the accumulation points of bounded L1 sequences

|un − u|p
∗−−⇀ ν .

This approach was studied by Ron DiPerna, Andrew Majda and
Pierre-Louis Lions in the ∼1980. back to Overview
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Sketch of the Tartar programme ∼1980

Physical laws are often expressed as systems of partial differential equations, of
which some equations can be nonlinear.

It turned out that it is useful to distinguish between two types of physical laws:

(linear) conservation laws . . . mass, energy, momentum, charge etc.
These are generally valid physical laws.

(nonlinear) constitution laws . . . elastic fluids, electrodynamics of continua
These laws characterise particular types of materials.

How to describe the interaction of nonlinear constitutive assumptions and linear
conservation laws?
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Example: electrostatics

D – electric induction, E – total electric field, ρ – charge density

Maxwell: div D = ρ, rot E = 0
These are general conservation laws (system of linear pde-s)

A particular material is characterised by the relation: D = A(E), where A is
generally nonlinear.
In vacuum: A(E) = ε0E, sometimes also linearised A(E) = AE, where matrix
A depends on the space variable.

On a simply connected domain E = −∇u (a gradient of a potential), so by
eliminating D from the system in general we get a nonlinear pde:

−div (A(∇u)) = ρ .
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What can be said about nonlinear constraints?

Weak convergence is well behaved with respect to linear operators. However,
we would like to consider nonlinear laws as well.

For simplicity, take L∞ with weak ∗ topology and F : Rr −→ R continuous
(so that F ◦ un is again a bounded sequence, if un is such in L∞).

Theorem. Let K ⊆ Rr be a bounded set, (un) a sequence in L∞(Ω;K),
un

∗−−⇀ u.
Then u(x) ∈ Cl convK (a.e. x).

Conversely, for u ∈ L∞(Ω; Cl convK) there is a sequence un ∈ L∞(Ω;K) such
that un

∗−−⇀ u.

[If K is not bounded, the converse is not true.]
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An example

For the sequence un(x) = sinnx , x ∈ Ω = 〈−π, π〉 we have (in L∞)

un
∗−−⇀ 0

u2
n

∗−−⇀ 1

2

In general, if un
∗−−⇀ u then also F ◦ un

∗−−⇀ F ◦ u for a linear function F ,
but not necessarily for a nonlinear . . . We need Young measures for that.

Another approach is based on the pre-

vious theorem . . . vn :=

[
un
u2
n

]

vn ∈ L∞(Ω;K)

vn
∗−−⇀ ?

K . . . y = x2 , x ∈ 〈−1, 1〉

Cl convK

x

y

1
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Young measures

Theorem. Let (un) be a sequence in L∞(Ω;K).
Then there is a subsequence (unk ) and a weakly ∗ measurable family of
probability measures (νx, x ∈ Ω) supported on ClK, such that for any
continuous function F on ClK one has

F ◦ unk
∗−−⇀ 〈ν·, F 〉 =

∫
ClK

F (λ) dν·(λ) .

If K is bounded, the converse is also true.

(More precisely: ν ∈ L∞∗ (Ω;Mb(ClK)), as Mb(ClK) is not reflexive.)
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Young measures — an application

Let us see how the above can be applied in describing the limit of F ◦ un (at
least on a subsequence). In an earlier example:

En
∗−−⇀ E =⇒ Dn

∗−−⇀
∫

A(λ)dν·(λ) .

On a subsequence we get that

un
∗−−⇀

∫
λdν·(λ) .

Conversely, if for any continuous F holds:

F ◦ un
∗−−⇀

∫
F (λ) dν·(λ) ,

then necessarily νx = δu(x), and the sequence converges strongly.
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div − rot lemma: example in electrostatics

On the microscopic level the fields obey the Maxwell system: div Dn = ρ and
rot En = 0, and we have the electrostatic energy

∫
En · Dn.

What can we say about that energy on the macroscopic scale?

En
L2

−−⇀ E and Dn
L2

−−⇀ D .

En · Dn
Mb∗−−−⇀E · D .

This is the consequence of the famous div-rot lemma (Murat, Tartar), and the
physical meaning is that there is no hidden electrostatic energy.

13



Compactness by compensation

un −⇀ u0 in L2(Ω;Rr), A∇un = Ak∂kun precompact in H−1
loc(Ω;Rr)

(A is a third rank tensor, with constant coefficients).

A characteristic set:

V :=
{

(λ, ξ) ∈ Rr × Sd−1 : A(ξ ⊗ λ) = Akλξk = 0
}
,

and its projection to the physical space:

Λ :=
{
λ ∈ Rr : (∃ ξ ∈ Sd−1) (λ, ξ) ∈ V

}
.

Theorem. For any quadratic form Q, for which Q(Λ) > 0, any weak ∗
accumulation point l of sequence Q(un) satisfies l > Q(u0).

Example. un −⇀ u0 in L2(R2;R2), while (∂1u
1
n) and (∂2u

2
n) are bounded in

L2(R2) (therefore precompact in H−1
loc(R2)). The characteristic set is

V = {(λ, ξ) ∈ R2 × S1 : ξ1λ
1 = ξ2λ

2 = 0}, and its projection
Λ = {λ ∈ R2 : λ1λ2 = 0}.
Q(λ) := λ1λ2 annuls on Λ (±Q(Λ) > 0).
Therefore any accumulation point of u1

nu
2
n is equal to u1

0u
2
0 (weak ∗ in

measures). back to Overview
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What are H-measures?

Mathematical objects introduced by:
◦ Luc Tartar, motivated by intended applications in homogenisation (H), and

◦ Patrick Gérard, whose motivation were certain problems in kinetic theory
(and who called these objects microlocal defect measures).

Start from un −⇀ 0 in L2(Rd), ϕ ∈ Cc(R
d), and take the Fourier transform:

ϕ̂un(ξ) =

∫
Rd

e−2πix·ξ(ϕun)(x)dx .

As ϕun is supported on a fixed compact set K, so |ϕ̂un(ξ)| 6 C.
Furthermore, un −⇀ 0, and from the definition ϕ̂un(ξ) −→ 0 pointwise.

By the Lebesgue dominated convergence theorem applied on bounded sets

ϕ̂un −→ 0 strong, i.e. strongly in L2
loc(Rd) .

On the other hand, by the Plancherel theorem: ‖ϕ̂un‖L2(Rd) = ‖ϕun‖L2(Rd).

If ϕun 6⇀ 0 in L2(Rd), then ϕ̂un 6⇀ 0; some information must go to infinity.

How does it go to infinity in various directions?
We can look along rays, or some other curves (like parabolas).
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Rough geometric idea
Take a sequence un −⇀ 0 in L2(R2), and integrate |ϕ̂un|2 along

rays and project onto S1 parabolas and project onto P 1

τ

ξ1

T

T0

τ

ξ

T

T0

√
2

1

O

In R2 we have a compact curve (a surface in higher dimensions):

S1 . . . r2(τ, ξ) := τ2 + ξ2 = 1 P 1 . . . ρ2(τ, ξ) := (ξ/2)2 +
√

(ξ/2)4 + τ2 = 1

and projection of R2
∗ = R2 \ {0} onto the curve (surface):

p(τ, ξ) :=
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)
π(τ, ξ) :=

( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
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Analytic picture

Multiplication by b ∈ L∞(R2), a bounded operator Mb on L2(R2):
(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Pa, for a ∈ L∞(R2): P̂au = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1 or P 1.
We extend it by the projections, p or π: if α is a function defined on a
compact surface, we take a := α ◦ p or a := α ◦ π, i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)
a(τ, ξ) := α

( τ

ρ2(τ, ξ)
,

ξ

ρ(τ, ξ)

)
The precise scaling is contained in the projections, not the surface.

The surface is chosen to be orthogonal to the curves we are projecting along,
allowing for easier integration by parts.
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Existence of H-measures

Theorem. If un −⇀ 0 in L2
loc(Rd;Rr), then there exists its subsequence and

a complex matrix Radon measure µ onRadon measure µ on distribution of
order zero µ on

Rd × Sd−1 Rd × P d−1

such that for any ϕ1, ϕ2 ∈ C0(Rd) and

ψ ∈ C(Sd−1) ψ ∈ C(P d−1)

one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′(ψ ◦ pπ) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) =

∫
Rd×Pd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .

There are some other variants: ultraparabolic, fractional, . . .
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First commutation lemma

Lemma. (general form of the first commutation lemma — Luc Tartar)
If b ∈ C0(Rd) and a ∈ L∞(Rd) satisfy the condition

(∀ ρ, ε ∈ R+)(∃M ∈ R+) |a(ξ)− a(η)| 6 ε (a.e. (ξ,η) ∈ Y (M,ρ)) ,

then C := [Aa,Mb] is a compact operator on L2(Rd).

For given M,ρ ∈ R+ denote the set

Y = Y (M,ρ) = {(ξ,η) ∈ R2d : |ξ|, |η| >M & |ξ − η| 6 ρ} .

η

ξ

%

Y
M

[older results by H. O. Cordes (JFA, 1975)]
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The importance of First commutation lemma

If we take un = (un, vn), and consider µ = µ12, we have

lim
n′

∫
Rd

ϕ̂1un′ ϕ̂2vn′ψ dξ = lim
n′
〈Aψ(ϕ1un′)|ϕ2vn′〉

= lim
n′

∫
Rd
Aψ(ϕ1un′)ϕ2vn′ dx

= lim
n′

∫
Rd
Aψ(un′)ϕ1ϕ2vn′ dx = 〈µ, (ϕ1ϕ̄2)� ψ〉 .

Thus the limit is a bilinear functional in ϕ1ϕ̄2 and ψ, and we have the bound:∣∣∣ ∫
Rd
Aψ(un′)ϕ1ϕ2vn′dx

∣∣∣ 6 C‖ψ‖C(Sd−1)‖ϕ1ϕ2‖C0(Rd) .

This bilinear functional can be related to a kernel distribution, which is
positive. Thus, the distribution is in fact a Radon measure, giving the result.

Luc Tartar usually preferred to prove this result without referring to the
Kernel theorem.
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Symmetric systems ∑
k

Ak∂ku + Bu = f , Ak Hermitian

Assume:

un
L2

−−⇀ 0 (weakly),

fn
H−1

loc−−→ 0 (strongly).

If supports of un, fn are contained inside Ω, we can extend them by zero to Rd.

Theorem. (localisation property) If un −⇀ 0 in L2(Rd)
r

defines µ,
and if un satisfies:

∂k
(
Akun

)
→ 0 in the space H−1

loc(Rd)r ,

then for P(x, ξ) := ξkA
k(x) on Ω× Sd−1 it holds:

P(x, ξ)µ> = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.)

back to Overview
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Good bounds: the Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd, we can take k = ‖ψ‖Cκ .
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Existence of H-distributions (main theorem)

Theorem. If un −⇀ 0 in Lp(Rd) and vn
∗−−⇀ v in Lq(Rd) for some

q > max{p′, 2}, then there exist subsequences (un′), (vn′) and a complex
valued distribution µ ∈ D′(Rd × Sd−1), such that for every ϕ1, ϕ2 ∈ C∞c (Rd)
and ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 ,

where Aψ : Lp(Rd)→ Lp(Rd) is the Fourier multiplier operator with symbol
ψ ∈ Cκ(Sd−1).

We call the functional µ the H-distribution corresponding to (a subsequence
of) (un) and (vn).

Of course, for q ∈ 〈1,∞〉 the weak ∗ convergence coincides with the weak
convergence.

In fact, µ ∈ D′0,d(κ+2)(R
d × Sd−1).
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Some remarks

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

In Theorem we distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2
and we can take q > 2; this covers the L2 case (including un = vn).
The assumptions of Theorem imply that un, vn −⇀ 0 in L2

loc(Rd), resulting in
a distribution µ of order zero (a Radon measure, not necessary bounded),
instead of a more general distribution.
The real improvement in Theorem is for p < 2.

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix valued
distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and H-distribution would
correspond to non-diagonal blocks for H-measures.
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First commutation lemma

ψ ∈ Cκ(Sd−1) satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, Aψ and B are bounded operators on Lr(Rd), for any r ∈ 〈1,∞〉.
We are interested in the properties of their commutator, C = AψB −BAψ.
If p < r, we can apply the classical interpolation inequality:

‖Cvn‖p 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/p = α/2 + (1− α)/r.
As C is compact on L2(Rd) by Tartar’s First commutation lemma, while it is
bounded on Lr(Rd), we get the claim.

For the most interesting case, where p = r, we need a better result: the
Krasnosel’skij theorem (in fact, its extension to unbounded domains
[N.A., M. Mǐsur, D. Mitrović (2018)]).

Lemma. Assume that linear operator A is compact on L2(Rd) and bounded
on Lr(Rd), for some r ∈ 〈1,∞〉 \ {2}. Then A is also compact on any
Lp(Rd), where 1/p = θ/2 + (1− θ)/r, for a θ ∈ 〈0, 1〉.

Therefore, the commutator C is compact on all Lp(Rd), p ∈ 〈1,∞〉.
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A particular Nemyckij operator

Canonical choice of Lp
′

sequence corresponding to an Lp, p ∈ 〈1,∞〉, sequence
(un) is given by vn = Φp(un), where Φp is an operator from Lp(Rd) to

Lp
′
(Rd) defined by Φp(u) = |u|p−2u.

Φp is a nonlinear Nemytskij operator, continuous from Lp(Rd) to Lp
′
(Rd) and

additionally we have the following bound

‖Φp(u)‖Lp′ (Rd) 6 ‖u‖
p/p′

Lp(Rd)
.

It maps bounded sets in Lploc(Rd) topology to bounded sets in Lp
′

loc(Rd)
topology. Hence for an Lp bounded sequence (un), we get that (Φp(un)) is

weakly precompact in Lp
′

loc(Rd).

It is continuous from Lploc(Rd) to Lp
′

loc(Rd).
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Example: concentration

u ∈ Lpc(R
d), and define un(x) = n

d
p u(n(x− z)) for some z ∈ Rd.

Simple change of variables: ‖un‖Lp(Rd) = ‖u‖Lp(Rd) and un −⇀ 0 in Lp(Rd).

Indeed, the sequence is bounded, while for ϕ ∈ Cc(R
d)∫

Rd
un(x)ϕ(x)dx =

∫
Rd

nd/pu(n(x− z))ϕ(x)dx

=

∫
Rd

nd/p−du(y)ϕ(y/n+ z)dy

=
1

nd/p′

∫
Rd

u(y)χsuppu(y)ϕ(y/n+ z)dy

6
(vol(suppu)

nd

)1/p′

‖u‖Lp(Rd) max
Rd
|ϕ|.

Passing to the limit, we get our claim.

The H-distribution corresponding to sequences (un) and (Φp(un)) is given by
δz � ν, where ν is a distribution on Cκ(Sd−1) defined for ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫
Rd

u(x)Aψ̄(|u|p−2u)(x)dx.

This distribution is not a Radon measure.
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Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

In order to prove the theorem, we need a particular multiplier, the so called
(Marcel) Riesz potential I1 := A|2πξ|−1 , and the Riesz transforms Rj := A ξj

i|ξ|
.

Note that ∫
I1(φ)∂jg =

∫
(Rjφ)g, g ∈ S(Rd).

Using the density argument and that Rj is bounded on Lp(Rd), we conclude
∂jI1(φ) = −Rj(φ), for φ ∈ Lp(Rd).
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Compactness by compensation: L2 case

It is well known that weak convergences are ill behaved under nonlinear
transformations. Only in some particular cases of compensation it is even
possible to pass to the limit in a product of two weakly converging sequences.

The prototype of this compensation effect is Murat-Tartar’s div-rot lemma.

For simplicity consider 2D case, (u1
n, u

2
n) and (v1

n, v
2
n) converging to zero

weakly in L2(R2), such that (∂xu
1
n + ∂yu

2
n) and (∂yv

1
n − ∂xv2

n) are both
contained in a compact set of H−1

loc(R
2) (which then implies that they converge

to zero strongly in H−1
loc(R

2)).

We can define Un :=

[
un
vn

]
, which (on a subsequence) defines a 4× 4

H-measure µ. By the localisation principle, as the above relations can be
written in the form (A1,A2 are 4× 4 constant matrices with all entries zero
except A1

11 = A2
12 = A2

33 = 1 and A1
34 = −1)

A1∂1Un + A2∂2Un → 0 strongly in H−1
loc(R

2)4 ,

the corresponding H-measure satisfies (ξ1A
1 + ξ2A

2)µ = 0. After
straightforward calculations this shows that u1

nv
1
n + u2

nv
2
n −⇀ 0 weak ∗ in the

sense of Radon measures (and therefore in the sense of distributions as well).
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What for sequences in Lp?
For the above we have used only the non-diagonal blocks µ12 = µ∗21 of

µ =

[
µ11 µ12

µ21 µ22

]
,

corresponding to products of uin and vjn; in fact, the calculation shows that
µ11

12 + µ22
12 = 0, which gives the above result.

Assume now (u1
n, u

2
n) and (v1

n, v
2
n) converging to zero weakly in Lp(R2) and

Lp
′
(R2), and (∂1u

1
n + ∂2u

2
n) bounded in Lp(R2), while (∂2v

1
n − ∂1v

2
n) in

Lp
′
(R2) (thus precompact in W−1,p

loc (R2), and W−1,p′

loc (R2)).

Then (u1
nv

1
n + u2

nv
2
n) is bounded in L1(R2), so also in Mb (Radon measures),

and by weak ∗ compactness it has a weakly converging subsequence. However,
we can say more—the whole sequence converges to zero.

Denote by µij the H-distribution corresponding to (some sub)sequences (of)
(u1
n, u

2
n) and (v1

n, v
2
n).

Since (∂1u
1
n + ∂2u

2
n) is bounded in Lp(R2), and (∂2v

1
n − ∂1v

2
n) is bounded in

Lp
′
(R2), they are weakly precompact, while the only possible limit is zero, so

∂1u
1
n + ∂2u

2
n ⇀ 0 in Lp , and

∂2v
1
n − ∂1v

2
n ⇀ 0 in Lp

′
.
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From the compactness of the Riesz potential I1 mentioned above, we conclude
that for ϕ ∈ Cc(R

2) and ψ ∈ Cκ(Sd−1) the following limit holds in Lp(R2):

A
ψ(ξ/|ξ|) ξ1|ξ|

(ϕu1
n) +A

ψ(ξ/|ξ|) ξ2|ξ|
(ϕu2

n) = Aψ(ξ/|ξ|)
|ξ|

(∂1(ϕu1
n) + ∂2(ϕu2

n))→ 0 .

Multiplying it first by ϕv1
n and then by ϕv2

n, integrating over R2 and passing to
the limit, we conclude from the existence theorem that:

ξ1µ
11 + ξ2µ

21 = 0, and ξ1µ
12 + ξ2µ

22 = 0 .

Next, take
wjn = ϕAψ(ξ/|ξ|)

|ξ|
(ϕujn) ∈W1,p′(Rd), j = 1, 2.

From the last limits on the preceeding slide we get

〈(ϕv1
n,−ϕv2

n),∇wjn〉 = −〈rot (ϕv1
n, ϕv

2
n), wjn〉 → 0 as n→∞,

for j = 1, 2. Rewriting it in the integral formulation, we obtain again from the
existence theorem:

ξ2µ
11 − ξ1µ12 = 0, ξ2µ

21 − ξ1µ22 = 0.

From the algebraic relations above, we can easily conclude

ξ1
(
µ11 + µ22) = 0 and ξ2

(
µ11 + µ22) = 0,

implying that the distribution µ11 + µ22 is supported on the set
{ξ1 = 0} ∩ {ξ2 = 0} ∩ S1 = ∅, which implies µ11 + µ22 ≡ 0.
After inserting ψ ≡ 1 in the definition of H-distribution, we immediately reach
the conclusion.
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This proof is similar to the L2 case, but it should be noted that we had used
only a non-diagonal block of 4× 4 H-measure, which corresponds to the only
available 2× 2 H-distribution.

There is no reason to limit oneself to two dimensions; take (un) and (vn)

converging weakly to zero in Lp(Rd)d and Lp
′
(Rd)d, and by µ denote d× d

matrix H-distribution corresponding to some chosen subsequences of (un) and
(vn).

Theorem. Let (un) and (vn) be vector valued sequences converging to zero

weakly in Lp(Rd)d and Lp
′
(Rd)d, respectively. Assume the sequence (div un)

is bounded in Lp(Rd), and the sequence (rot vn) is bounded in Lp
′
(Rd)d×d.

Then the sequence (un · vn) converges to zero in the sense of distributions (or
vaguely in the sense of Radon measures).

The results carry on to loc spaces as well. back to Overview
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Semiclassical measures [Gérard, 1991]

Theorem. If un ⇀ 0 in L2(Ω;Cr), ωn → 0+, then there exists a
subsequence (un′) and µ(ωn)

sc ∈Mb(Ω×Rd; Mr(C)) such that for any
ϕ1, ϕ2 ∈ C∞c (Ω) and ψ ∈ S(Rd)

lim
n′

∫
Rd

(
ϕ̂1un′(ξ)⊗ ϕ̂2un′(ξ)

)
ψ(ωn′ξ) dξ =

〈
µ(ωn)
sc , ϕ1ϕ̄2 � ψ

〉
.

Measure µ(ωn)
sc we call the semiclassical measure with characteristic length

(ωn) corresponding to the (sub)sequence (un′).

Definition (un) is (ωn)-oscillatory if
(∀ϕ ∈ C∞c (Ω)) limR→∞ lim supn

∫
|ξ|> R

ωn

|ϕ̂un(ξ)|2 dξ = 0 .

Theorem.

un
L2
loc−−→ 0 ⇐⇒ µ(ωn)

sc = 0 & (un) is (ωn)− oscillatory .

Another definition via Wigner’s transform [Lions & Paul, 1993].
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Oscillations - one characteristic length (first example)

α > 0, k ∈ Zd \ {0},

un(x) := e2πinαk·x L2
loc−−⇀ 0 , n→∞ ,

but
|un(x)| = 1 =⇒ un 9 0 in L2

loc(Rd) .

ν = λ

µH = λ� δ k
|k|

µ(ωn)
sc = λ�


δ0 , limn n

αωn = 0
δck , limn n

αωn = c ∈ 〈0,∞〉
0 , limn n

αωn =∞
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(ωn)-concentrating property

(un) is (ωn)-oscillatory if
(∀ϕ ∈ C∞c (Ω)) limR→∞ lim supn

∫
|ξ|> R

ωn

|ϕ̂un(ξ)|2 dξ = 0 .

(un) is (ωn)-concentrating if
(∀ϕ ∈ C∞c (Ω)) limR→∞ lim supn

∫
|ξ|6 1

Rωn

|ϕ̂un(ξ)|2 dξ = 0 .

Lema.
(un) ωn-concentrating ⇐⇒ µ(ωn)

sc (Ω× {0}) = 0 .

Teorem. If un −⇀ u in L2
loc(Ω) is (ωn)-oscillatory and (ωn)-concentrating,

then u = 0 and
〈µH , ϕ� ψ〉 =

〈
µ(ωn)
sc , ϕ� ψ

( ·
| · |

)〉
.

For an arbitrary bounded sequence (un) in L2
loc(Ω) is there a characteristic

length ωn → 0+ such that (un) is
• (ωn)-oscillatory?
• (ωn)-concentrating?
• both (ωn)-oscillatory and (ωn)-concentrating?

[Erceg & Lazar (2018)]
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Localisation principle for semiclassical measures

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and

Pnun :=
∑
|α|6m

ε|α|n ∂α(Aαun) = fn in Ω ,

where
• εn → 0+

• Aα ∈ C(Ω; Mr(C))
• fn −→ 0 in L2

loc(Ω;Cr).
Then we have

pµ>sc = 0 ,

where p(x, ξ) =
∑
|α|6m ξαAα(x), and µsc is semiclassical measure with

characteristic length (εn), corresponding to (un).

Problem: µsc = 0 is not enough for the strong convergence!
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Oscillations - two characteristic lengths (second example)

0 < α < β, k, s ∈ Zd \ {0},

un(x) := e2πinαk·x L2
loc−−⇀ 0 , n→∞

vn(x) := e2πinβ s·x L2
loc−−⇀ 0 , n→∞

µH (µ
(ωn)
sc ) is H-measure (semiclassical measure with characteristic length

(ωn), ωn ↘ 0) corresponding to (un + vn).

µH = λ�
(
δ k
|k|

+ δ s
|s|

)

µ(ωn)
sc = λ�


2δ0 , limn n

βωn = 0
(δcs + δ0) , limn n

βωn = c ∈ 〈0,∞〉
δ0 , limn n

βωn =∞ & limn n
αωn = 0

δck , limn n
αωn = c ∈ 〈0,∞〉

0 , limn n
αωn =∞
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Compatification of Rd \ {0}

∞e

e0e

Rd

Σ∞

Σ0

Σ0 := {0e : e ∈ Sd−1}

Σ∞ := {∞e : e ∈ Sd−1}

K0,∞(Rd) := Rd \ {0} ∪ Σ0 ∪ Σ∞

Corollary. a) C0(Rd) ⊆ C(K0,∞(Rd)).
b) ψ ∈ C(Sd−1), ψ ◦ π ∈ C(K0,∞(Rd)), where π(ξ) = ξ/|ξ|.
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One-scale H-measures

Theorem. If un ⇀ 0 in L2(Ω;Cr), ωn → 0+, then there exists a
subsequence (un′) and µ(ωn)

sc ∈Mb(Ω×Rd; Mr(C)) such that for any
ϕ1, ϕ2 ∈ C∞c (Ω) and ψ ∈ S(Rd)

lim
n′

∫
Rd

(
̂(ϕ1un′)(ξ)⊗ ̂(ϕ2un′)(ξ)

)
ψ(ωn′ξ) dξ =

〈
µsc, ϕ1ϕ̄2 � ψ

〉
.

Measure µ(ωn)
sc is called the semiclassical measure with characteristic length

(ωn) corresponding to the (sub)sequence (un′).

Luc Tartar: The general theory of homogenization: A personalized
introduction, Springer, 2009.
Luc Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems, S 8 (2015) 77–90.
N. A., Marko Erceg, Martin Lazar: Localisation principle for one-scale
H-measures, Journal of Functional Analysis 272 (2017) 3410–3454.
Marko Erceg, Martin Lazar: Characteristic scales of bounded L2

sequences, Asymptotic Analysis 109 (2018) 171–192.
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Idea of the proof

Tartar’s approach:

• vn(x, xd+1) := un(x)e
2πixd+1

ωn ⇀ 0 in L2
loc(Ω×R;Cr)

• νH ∈M(Ω×R× Sd; Mr(C))

• µ
(ωn)
K0,∞

is obtained from νH (suitable projection in xd+1 and ξd+1)

Our approach:
• First commutation lemma:

Lemma. Let ψ ∈ C(K0,∞(Rd)), ϕ ∈ C0(Rd), ωn → 0+, and denote
ψn(ξ) := ψ(ωnξ). Then the commutator can be expressed as a sum

Cn := [Bϕ,Aψn ] = C̃n +K ,

where K is a compact operator on L2(Rd), while C̃n −→ 0 in the operator
norm on L(L2(Rd)).

• standard procedure: (a variant of) the kernel theorem, separability, . . .
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Some properties of µK0,∞

Theorem.

a) µ∗K0,∞ = µK0,∞ , µK0,∞ > 0

b) un
L2
loc−→ 0 ⇐⇒ µK0,∞ = 0

c) trµK0,∞(Ω× Σ∞) = 0 ⇐⇒ (un) is (ωn)− oscillatory

Theorem. ϕ1, ϕ2 ∈ Cc(Ω), ψ ∈ C0(Rd), ψ̃ ∈ C(Sd−1), ωn → 0+,

a) 〈µ(ωn)
K0,∞

, ϕ1ϕ̄2 � ψ〉 = 〈µ(ωn)
sc , ϕ1ϕ̄2 � ψ〉 ,

b) 〈µ(ωn)
K0,∞

, ϕ1ϕ̄2 � ψ̃ ◦ π〉 = 〈µH , ϕ1ϕ̄2 � ψ̃〉 ,

where π(ξ) = ξ/|ξ|.

42



Localisation principle

Let Ω ⊆ Rd open, m ∈ N, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

where
• l ∈ 0..m
• εn → 0+

• Aα ∈ C(Ω; Mr(C))
• fn ∈ H−mloc (Ω;Cr) such that

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) (C(εn))

Lemma. a) (C(εn)) is equivalent to

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 + |ξ|l + εm−ln |ξ|m
−→ 0 in L2(Rd;Cr) .

b) (∃ k ∈ l..m) fn −→ 0 in H−kloc (Ω;Cr) =⇒ (εk−ln fn) satisfies (C(εn)).
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Localisation principle ∑
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) . (C(εn))

Theorem. [Tartar (2009)] Under previous assumptions and l = 1, one-scale
H-measure µK0,∞ with characteristic length (εn) corresponding to (un) satisfies

supp (pµ>K0,∞) ⊆ Ω× Σ0 ,

where

p(x, ξ) :=
∑

16|α|6m

(2πi)|α|
ξα

|ξ|+ |ξ|mAα(x) .

Theorem. [N.A., Erceg, Lazar (2017)] Under previous assumptions,
one-scale H-measure µK0,∞ with characteristic length (εn) corresponding to

(un) satisfies
pµ>K0,∞ = 0 ,

where

p(x, ξ) :=
∑

l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAα(x) .
44



Localisation principle - final generalisation

Theorem. Take εn > 0 bounded, un ⇀ 0 in L2
loc(Ω;Cr) and∑

l6|α|6m

ε|α|−ln ∂α(Aα
n un) = fn ,

where Aα
n ∈ C(Ω; Mr(C)), Aα

n −→ Aα uniformly on compact sets, and
fn ∈ H−mloc (Ω;Cr) satisfies (C(εn)).
Then for ωn → 0+ such that c := limn

εn
ωn
∈ [0,∞], the corresponding

one-scale H-measure µK0,∞ with characteristic length (ωn) satisfies

pµ>K0,∞ = 0 ,

where

p(x, ξ) :=


∑
|α|=l

ξα

|ξ|l+|ξ|mAα(x) , c = 0∑
l6|α|6m(2πic)|α| ξα

|ξ|l+|ξ|mAα(x) , c ∈ 〈0,∞〉∑
|α|=m

ξα

|ξ|l+|ξ|mAα(x) , c =∞
Moreover, if there exists ε0 > 0 such that εn > ε0, n ∈ N, we can take

p(x, ξ) :=
∑
|α|=m

ξα

|ξ|mAα(x) .

As a corollary from the previous theorem we can derive localisation principles
for H-measures and semiclassical measures.

45



One-scale H-measures

Ω ⊆ Rd open, p ∈ 〈1,∞〉, 1
p

+ 1
p′ = 1

Teorem
If un ⇀ 0 in L2

loc(Ω), vn ⇀ 0 in L2
loc(Ω) and ωn → 0+, then there exist (un′),

(vn′) and µ
(ωn′ )
K0,∞

∈M(Ω×K0,∞(Rd)) such that for any ϕ1, ϕ2 ∈ Cc(Ω) and

ψ ∈ C(K0,∞(Rd))

lim
n′

∫
Rd

ϕ̂1un′(ξ)ϕ̂2vn′(ξ)ψ(ωn′ξ) dξ = 〈µ(ωn′ )
K0,∞

, ϕ1ϕ̄2 � ψ〉 .

The measure µ
(ωn′ )
K0,∞

is called the one-scale H-measure with characteristic

length (ωn′) associated to the (sub)sequences (un′) and (vn′).

Aψ(u) = (ψû)∨, ψn(ξ) := ψ(ωnξ)

Determine E such that
— Aψ : Lp(Rd) −→ Lp(Rd) is continuous
— The First commutation lemma is valid
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Smooth compactification of Rd
∗

∞e

e0e

Rd

Σ∞

Σ0

Σ0 := {0e : e ∈ Sd−1}

Σ∞ := {∞e : e ∈ Sd−1}

K0,∞(Rd) := Rd
∗ ∪ Σ0 ∪ Σ∞

T radial translation for r0

Rd
∗ 3 ξ

T7−→ |ξ|+ r0

|ξ| ξ ∈ Rd \K[0, r0] .
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Modified stereographic projection R

Denote SdI :=
{

(ζ0, ζ) ∈ Sd : ζ0 ∈ I
}

, I ⊆ [−1, 1].

Identify Rd with hyperplane ξ0 = 1 in R1+d, and project it to the open upper
unit hemisphere Sd〈0,1]; simple calculation gives us

R : Rd → Sd〈0,1] , R(ξ) =
( 1√

1 + |ξ|2
,

ξ√
1 + |ξ|2

)
.

Compactification: J := R ◦ T
Since R(Rd \K[0, r0]) = Sd〈0,1], where r1 := (1 + r2

0)−1/2, we have

J : Rd
∗ → Sd〈0,1] , J (ξ) =

(
1√

1 + (|ξ|+ r0)2
,

|ξ|+ r0√
1 + (|ξ|+ r0)2

ξ

|ξ|

)
.

J is a C∞-dipheomorphism, its inverse J−1 : Sd〈0,1] → Rd
∗ being

J−1(ζ0, ζ) =
ζ

ζ0
− r0

ζ

|ζ| .

(Sd[0,r1],J ) is a compactification of Rd
∗ (as Sd[0,r1] = Cl Sd〈0,1]).
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Extension of J

It remains to relate K0,∞(Rd) := Rd
∗ ∪ Σ0 ∪ Σ∞ and Sd[0,r1].

Since

[0,∞〉 3 x 7→ 1√
1 + (x+ r0)2

is strictly decreasing, for any sequence (ξn) in Rd
∗ we have

lim
n

∣∣∣J (ξn)−
(
r1, r0r1

ξn
|ξn|

)∣∣∣ = 0 ⇐⇒ lim
n
|ξn| = 0 ,

lim
n

∣∣∣J (ξn)−
(
0,

ξn
|ξn|

)∣∣∣ = 0 ⇐⇒ lim
n
|ξn| = +∞ .

It is thus natural to extend J to K0,∞(Rd) (hence also J−1 to Sd[0,r1]) by

J (0e) := (r1, r0r1e) , J (Σ0) = Sdr1

J (∞e) := (0, e) , J (Σ∞) = Sd0 .

[N.B.the sphere at infinity Σ∞ is mapped onto Sd0]
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Smooth test functions

By pulling back the Euclidean metric from Sd[0,r1] we can get topology on

K0,∞(Rd), thus defining C(K0,∞(Rd)).

Of course, this can be extended for κ ∈ N0 ∪ {∞}

Cκ(K0,∞(Rd)) :=
{
ψ ∈ C(K0,∞(Rd)) : ψ∗ := (J−1)∗ψ = ψ◦J−1 ∈ Cκ(Sd[0,r1])

}
For κ ∈ N0 they are separable Banach algebras (as Cκ(Sd[0,r1]) are), with the
norm ‖ψ‖Cκ(K0,∞(Rd)) := ‖ψ∗‖Cκ(Sd

[0,r1]
).

For κ =∞, the sequence of norms
(
‖ · ‖Cn(K0,∞(Rd))

)
n

makes

C∞(K0,∞(Rd)) into a Fréchet space.

Clearly, the restriction of these functions to Rd
∗ is of the same class. Is the

converse also true?

If such a continuous extension exists, it is unique, so we can identify each
function in Cκ(K0,∞(Rd)) with one and only one in Cκ(Rd

∗) (embedding).
The question is how to recognise the image of that embedding within Cκ(Rd

∗).
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A criterion
By identifying a neighbourhood of Σ0 with the product [0, 1〉 × Sd−1, using
J0(ξ) := (|ξ|, ξ

|ξ| ), and analogously J∞(ξ) := ( 1
|ξ| ,

ξ
|ξ| ) for Σ∞, one gets

Lemma. For any κ ∈ N0 ∪ {∞}, it is equivalent:
a) ψ ∈ Cκ(K0,∞(Rd))
b) ψ ∈ Cκ(Rd

∗) and there exist ψ̃0, ψ̃∞ ∈ Cκ([0, 1〉 × Sd−1) such that

ψ(ξ) = ψ̃0

(
|ξ|, ξ

|ξ|

)
, 0 < |ξ| < 1

ψ(ξ) = ψ̃∞
( 1

|ξ| ,
ξ

|ξ|

)
, |ξ| > 1 .

Corollary 1. Let ψ ∈ Cκ(Rd) and let ψ̃∞ ∈ Cκ([0, 1〉 × Sd−1) be such that
the last condition in Lemma holds. Then ψ ∈ Cκ(K0,∞(Rd)).

Corollary 2. Let ψ ∈ Cκ(K0,∞(Rd)). Then there exist unique functions
ψ0, ψ∞ ∈ Cκ(Sd−1) such that

ψ(ξ)− ψ0

( ξ

|ξ|

)
−→ 0 , |ξ| → 0 ,

ψ(ξ)− ψ∞
( ξ

|ξ|

)
−→ 0 , |ξ| → ∞ .

If for ψ ∈ C(Rd
∗) there exist ψ0, ψ∞ ∈ C(Sd−1) such that the above holds,

then ψ ∈ C(K0,∞(Rd)).
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Estimates on the norms and examples of functions

By using the generalised chain rule (Faá di Bruno) formula, we get

Lemma For any κ ∈ N0 there are cκ, Cκ > 0 such that for any
ψ ∈ Cκ(K0,∞(Rd))

cκ max
{
‖ψ̃0‖Cκ([0, 1

2
]×Sd−1), ‖ψ‖Cκ({ξ∈Rd: 1

4
6|ξ|64}), ‖ψ̃∞‖Cκ([0,2]×Sd−1)

}
6 ‖ψ‖Cκ(K0,∞(Rd))

6 Cκ max
{
‖ψ̃0‖Cκ([0, 1

2
]×Sd−1), ‖ψ‖Cκ({ξ∈Rd: 1

4
6|ξ|64}), ‖ψ̃∞‖Cκ([0,2]×Sd−1)

}
,

where functions ψ̃0, ψ̃∞ are given in previous Lemma.

Corollary. Let π(ξ) := ξ
|ξ| be the projection on Rd

∗ along rays to the unit

sphere Sd−1.

a)
{
ψ ◦ π : ψ ∈ Cκ(Sd−1)

}
⊆ Cκ(K0,∞(Rd)), κ ∈ N0 ∪ {∞}.

b) S(Rd) ⊆ C∞(K0,∞(Rd)).
c) (∀m, l ∈ N0 , l 6 m)(∀α ∈ Nd

0 , l 6 |α| 6 m)

ξ 7→ ξα

|ξ|l+|ξ|m ∈ C∞(K0,∞(Rd)).

d) (∀m ∈ N) ξ 7→ 1+|ξ|m

(1+|ξ|2)
m
2
, ξ 7→ (1+|ξ|2)

m
2

1+|ξ|m ∈ C∞(K0,∞(Rd)).
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Symbols for Fourier multipliers

(Hörmander-)Mihlin theorem
If for ψ ∈ L∞(Rd) there exists C > 0 such that (κ = [ d

2
] + 1)

(∀ ξ ∈ Rd
∗)(∀α ∈ Nd

0) |α| 6 κ =⇒ |∂αψ(ξ)| 6 C

|ξ||α|
,

then ψ is a Fourier multiplier for any p ∈ 〈1,∞〉. Moreover, we have

‖Aψ‖L(Lp(Rd)) 6 Cd max
{
p,

1

p− 1

}
C .

Theorem. Any ψ ∈ C[ d
2

]+1(K0,∞(Rd)) satisfies Mihlin’s condition; it holds

‖Aψ‖L(Lp(Rd)) 6 Cd,pCd‖ψ‖
C

[ d
2
]+1

(K0,∞(Rd))
,

where Cd,p is the constant from Mihlin’s theorem, while Cd depends only on d.

Thus the linear mapping C[ d
2

]+1(K0,∞(Rd)) 3 ψ 7→ Aψ ∈ L(Lp(Rd)) is
continuous.
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Commutation lemma

multiplication by ϕ ∈ L∞(Rd): Bϕu := ϕu bounded on Lp(Rd), p ∈ [0,∞]

Fourier multiplier of ψ ∈ C[ d
2

]+1(K0,∞(Rd)): Aψu := F̄(ψû)

Taking ωn → 0+, and ψn(ξ) := ψ(ωnξ), the sequence of commutators

Cn := [Bϕ,Aψn ] := BϕAψn −AψnBϕ

is bounded in L(Lp(Rd)), for any p ∈ 〈1,∞〉.

Lemma. For ϕ ∈ C0(Rd) and assumptions as above, Cn = C̃n +K, where K
is a compact operator, while C̃n −→ 0 in the operator norm on Lp(Rd).

If ψ ∈ L∞(Rd) satisfies Mihlin’s condition with C, then for any a > 0 the
same is true also for ψa := ψ(a·) (the same constant C!).
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Anisotropic distributions on manifolds without boundary
For simplicity, let Ω ⊆ Rdx × Rry be open.
The general case on differentiable manifolds without boundary X and Y then
easily follows using the local nature of distributions and the fact that every
differentiable manifold is locally diffeomorphic to some Euclidean space.

For l,m ∈ N0 ∪ {∞} consider Cl,m(Ω){
f : Ω→ C : (∀α ∈ Nd

0)(∀β ∈ Nr
0) |α| 6 l, |β| 6 m =⇒ ∂α

x ∂
β
y f ∈ C(Ω)

}
.

Kn nested compacts in Ω =
⋃
n∈NKn; define (sequence for either l,m =∞)

pl,mKn (f) := max
|α|6l,|β|6m

‖∂α,βf‖L∞(Kn) .

For l,m ∈ N0 ∪ {∞} these seminorms turn Cl,m(Ω) into a separable Fréchet
space with the topology of uniform convergence on compact sets of functions
and their derivatives up to order l in x and m in y, while C∞c (Ω) is dense in it.
For a compact set K ⊆ Ω and finite l and m, its subspace

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
is a Banach space, and its inherited topology from Cl,m(Ω) is a norm topology
determined by

‖f‖l,m,K := pl,mK (f) .
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Anisotropic distributions . . . (cont.)

If l =∞ or m =∞, we shall not get a Banach space, but a Fréchet space.
Finally, the set of all Cl,m(Ω) functions with compact support

Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω) ,

we equip with the topology of strict inductive limit, obtaining a complete
topological space.

Any continuous linear functional on Cl,mc (Ω) we call a distribution of
anisotropic order, and such functionals form a vector space
D′l,m(Ω) := (Cl,mc (Ω))′.

Since Ω ⊆ Rd is open and K0,∞(Rd) is compact (hence closed), we can
interpret Ω×K0,∞(Rd) as a smooth manifold with boundary. Again, it is
enough to define distributions on Ω×Sd[0,r1], and then use pushforward (J−1)∗.〈

(J−1)∗ν,Φ
〉

=
〈
ν,Φ

(
·,J−1(·)

)〉
,

where ν is a distribution on Ω× Sd[0,r1].
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Richard Melrose presents three different definitions of distributions on even
more general manifolds (with corners).
For a smooth compact manifold with corners X let us denote by ΩX a C∞ line
bundle over X consisting of densities (1-densities). The spaces(

C∞c (IntX; ΩX)
)′
,
(
C∞(X; ΩX)

)′
, and

(
C∞0 (X; ΩX)

)′
are called distributions in the interior, supported distributions and extendible
distributions, respectively. Here C∞0 (X; ΩX) denotes smooth functions which
vanish, with all derivatives, at the boundary of X.

Since Sd〈0,1] is open in Rd, on Sd[0,r1] we have a canonical way how to integrate
differential d-forms, thus in our situation densities can be omitted.
Furthermore, we want to take C∞(Sd[0,r1]) (i.e. C∞(K0,∞(Rd))) for the space
of test functions in the dual space, thus we shall always use supported
distributions on Sd[0,r1] (and hence on K0,∞(Rd)).

Since C∞c (Sd[0,r1]) = C∞(Sd[0,r1]), one can see supported distributions as a
natural extension of (standard) distributions to compact sets. Thus, we shall
keep the same notation: D′(Sd[0,r1]) = (C∞(Sd[0,r1]))

′. Moreover, it is
straightforward to see that our notion of anisotropic distributions can be
generalised to supported distributions.

Therefore, we shall use the following notation:
Dl,m(Ω×K0,∞(Rd)) := (Cl,mc (Ω×K0,∞(Rd)))′.
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The kernel theorem

Lemma. Let X and Y be smooth manifolds without boundary, of dimension d
and r, and l,m ∈ N0 ∪ {∞}, and B a continuous bilinear form on
Clc(X)× Cmc (Y ).
Then there exists a unique distribution of anisotropic order
ν ∈ D′l,r(m+2)(X × Y ) such that(

∀f ∈ Clc(X)
)(
∀g ∈ Cmc (Y )

)
B(f, g) = 〈ν, f ⊗ g〉 .

We extend it to Z ⊆ Rd
+ := {x = (x′, xd) ∈ Rd : xd ≥ 0}.

The restrictions of smooth functions from Rd to Rd
+ preserve smoothness.

The converse is also fulfilled, but we cannot use a simple extension by reflection,
which suffices for continuous functions but we use the Seeley extension which is
just a linear version of a more general result given by Whitney.

Lemma. For open Ω̃ ⊆ Rd let Ω := Ω̃ ∩Rd
+. Then there exists continuous

linear mapping E : C∞(Ω)→ C∞(Ω̃) such that for any ψ ∈ C∞(Ω) we have
E(ψ)|Ω = ψ.

Of course, if ψ has a compact support (in Ω), then we can choose E(ψ) such
that it has also compact support (in Ω̃).

58



The kernel theorem (cont.)

Now we can repeat standard arguments regarding constructions on manifolds
with boundary [N.A., M. Erceg, M. Lazar], obtaining the following result.

Theorem. Let Ω ⊆ Rd be open, l,m ∈ N ∪ {∞}, and B be a continuous
bilinear form on Clc(Ω)×Cm(K0,∞(Rd)). Then there exists a unique supported
distribution of anisotropic order ν ∈ D′l,d(m+2)(Ω×K0,∞(Rd)) such that(

∀f ∈ Clc(Ω)
)(
∀g ∈ Cd(m+2)(K0,∞(Rd))

)
B(f, g) = 〈ν, f ⊗ g〉 .

Alternatively, we could embed Sd[0,r1] into torus [R. Melrose], and then apply
directly the first representation.
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One-scale H-distributions

Teorem. If un −⇀ 0 in Lploc(Ω) and (vn) is bounded in Lqloc(Ω), for some
p ∈ 〈1,∞〉 and q > p′, and ωn → 0+, then there exist subsequences (un′),
(vn′) and a complex valued (supported) distribution

ν
(ωn′ )
K0,∞

∈ D′0,K(Ω×K0,∞(Rd)), where K := d(κ+ 2), such that for any

ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ CK(K0,∞(Rd)) we have

lim
n′

∫
Rd

Aψn′ (ϕ1un′)ϕ2vn′ dx = lim
n′

〈
ϕ2vn′ ,Aψn′ (ϕ1un′)

〉
=
〈
ν

(ωn′ )
K0,∞

, ϕ1ϕ̄2 � ψ
〉
,

where ψn := ψ(ωn·). The distribution ν
(ωn′ )
K0,∞

we call one-scale H-distribution

(with characteristic length (ωn′)) associated to (sub)sequences (un′) and (vn′).
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The existence of one-scale H-distributions: proof
For ψ ∈ Cκ(K0,∞(Rd)) and ϕ1, ϕ2 ∈ Cc(Ω) such that
suppϕ1, suppϕ2 ⊆ Km, we have

|
〈
ϕ2vn,Aψn(ϕ1un)

〉
| 6 Cm,d‖ϕ1‖L∞(Km)‖ϕ2‖L∞(Km)‖ψ‖Cκ(K0,∞(Rd)) ,

where Km are compacts such that Km ⊆ IntKm+1 and
⋃
mKm = Ω.

By the Cantor diagonal procedure (in a separable space) we get a trilinear form

L(ϕ1, ϕ2, ψ) = lim
n′

〈
ϕ2vn′ ,Aψn′ (ϕ1un′)

〉
,

which depends only on the product ϕ1ϕ̄2, by the Commutation lemma.
Indeed, take ζi ≡ 1 on suppϕi

lim
n′

〈
ϕ2vn′ ,Aψn′ (ϕ1un′)

〉
= lim

n′

〈
ϕ2vn′ , ϕ1Aψn′ (ζ1un)

〉
= lim

n′

〈
ϕ̄1ϕ2vn′ ,Aψn′ (ζ1un)

〉
= lim

n′

〈
ζ1ζ2vn′ , ϕ1ϕ̄2Aψn′ (ζ1un)

〉
= lim

n′

〈
ζ1ζ2vn′ ,Aψn′ (ϕ1ϕ̄2un)

〉
,

For ϕ ∈ Cc(Ω) and ψ ∈ CK(K0,∞(Rd)) we define

B(ϕ,ψ) := L(ϕ, ζ, ψ) .
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The existence of one-scale H-distributions: proof (cont.)

B is a continuous bilinear form on Cc(Ω)× CK(K0,∞(Rd)), satisfying
B(ϕ1ϕ̄2, ψ) = L(ϕ1, ϕ2, ψ).

Now we can apply the Kernel theorem, which gives us that there exists

ν
(ωn′ )
K0,∞

∈ D′0,K(Ω×K0,∞(Rd)) such that〈
ν

(ωn′ )
K0,∞

, ϕ1ϕ̄2 � ψ
〉

= B(ϕ1ϕ̄2, ψ)

= L(ϕ1ϕ̄2, ζ1ζ2, ψ)

= L(ϕ1, ϕ2, ψ) = lim
n′

〈
ϕ2vn′ ,Aψn′ (ϕ1un′)

〉
,

as required.
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Oscillations - two characteristic lengths (third example)

0 < α < β, k, s ∈ Zd \ {0},

un(x) := e2πi(nαs+nβk)·x L2
loc−−⇀ 0 , n→∞

µH = λ� δ k
|k|

µ
(ωn)
K0,∞

= λ�


δ
0

k
|k|

, limn n
βωn = 0

δck , limn n
βωn = c ∈ 〈0,∞〉

δ
∞

k
|k|

, limn n
βωn =∞

Lower order term nα and corresponding direction of oscillations s we cannot
resemble in any case.
Therefore, we need some new methods and/or tools.

• L. Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems - Series S 8 (2015) 77–90.

Still no satisfactory results.
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Thank you for your attention!
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