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Why measures in partial differential equations?

Consider a pde like:

ut − κuxx = f on R+ × [0, L] .

We seek a function u taking prescribed values at the boundary of the above
region. Nothing to do with any measures.

The same goes with the wave equation, or −4u = f .

Suppose we want to solve (possibly nonlinear) equation: A[u] = f .
Here, A is some complicated partial differential operator, and the equation
contains some additional conditions (boundary and/or initial).

We might try the following procedure:
Approximate A by a sequence An of operators we know how to solve, and also
f by a sequence fn of nicer functions, if needed.

Then solve each of the problems: An[un] = fn, obtaining the solutions un.

It is only natural to expect that the limit u := limun will be a solution of the
original problem.

Of course, this is only a rough idea — in each particular case we have to be
more precise. In particular with the definition of various limits taken.
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An example: calculus of variations

Here we consider A as the derivative of an appropriate energy functional I,
and the solution u is characterised to be the minimiser (or maximiser) of I.

I(u) :=

∫ 1

0

(
u2

2
+
(

1− |u′|2
)2
)
dt −→ min ,

taking u ∈W1,4([0, 1]), with u(0) = u(1) = 0. Clearly, I(u) > 0.

However, I(u) = 0 would imply u = 0 and u′ = ±1, which is not possible.

As an approximating solution we can take a minimising sequence for I, i.e. a
sequence such that

lim I(un) = inf I = 0 .

Such a solution cannot be a function, but only a measure.

4



Typical examples of spaces in duality

If H is a Hilbert space, any continuous (bounded) linear functional l on it

l : H −→ C, ‖l‖ = sup
u∈H

|l(u)|
‖u‖ <∞

can be identified by a v ∈ H, such that

l(u) = 〈 v | u 〉 .

For H = L2, we take 〈 v | u 〉 =
∫
vu.

If B is a Banach space, we have its dual B′. For B = Lp, we also have a
representation by v ∈ Lp

′
, where 1/p+ 1/p′ = 1, for 1 6 p <∞:

l(u) = 〈v, u〉 =

∫
vu .

General theory gives us nice properties for duals of separable Banach spaces:
sequences describe the weak topology of bounded sets, where

vn −⇀ v ⇐⇒ (∀u ∈ B) 〈vn, u〉 −→ 〈v, u〉 .

Furthermore, any bounded sequence has a weakly converging subsequence.
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What for p = 1 and p = ∞?

Actually, the above topologies are weak ∗ topologies, as each is defined on a
dual, by the original space. As for 1 < p <∞ the spaces are reflexive, they are
also weak topologies.

For p =∞, we just have to avoid calling it weak topology, and use the name
weak ∗.
The true problem is with p = 1. For bounded sets (i.e. on spaces of finite
measure), there is a complicated criterion, which is difficult to use.
In practice, we often use the fact that bounded Radon measures Mb = (C0)′

behave in a similar way as L∞, and enclose L1 in that space.
For f ∈ L1 we take fdx as a measure, where dx denotes the Lebesgue measure
(the volume).

When pdes are solved by variational techniques, L1 terms usually appear under
the integral sign. And we have to pass to the limit.
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What are H-measures?

Mathematical objects introduced by:
◦ Luc Tartar, motivated by intended applications in homogenisation (H), and

◦ Patrick Gérard, whose motivation were certain problems in kinetic theory
(and who called these objects microlocal defect measures).

Start from un −⇀ 0 in L2(Rd), ϕ ∈ Cc(R
d), and take the Fourier transform:

ϕ̂un(ξ) =

∫
Rd

e−2πix·ξ(ϕun)(x)dx

As ϕun is supported on a fixed compact set K, so |ϕ̂un(ξ)| 6 C.
Furthermore, un −⇀ 0, and from the definition ϕ̂un(ξ) −→ 0 pointwise.

By the Lebesgue dominated convergence theorem applied on bounded sets

ϕ̂un −→ 0 strong, i.e. strongly in L2
loc(Rd) .

On the other hand, by the Plancherel theorem: ‖ϕ̂un‖L2(Rd) = ‖ϕun‖L2(Rd).

If ϕun 6⇀ 0 in L2(Rd), then ϕ̂un 6⇀ 0; some information must go to infinity.
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Limit is a measure
How does it go to infinity in various directions? Take ψ ∈ C(Sd−1), and
consider:

lim
n

∫
Rd

ψ(ξ/|ξ|)|ϕ̂un|2dξ =

∫
Sd−1

ψ(ξ)dνϕ(ξ) .

The limit is a linear functional in ψ, thus an integral over the sphere of some
nonnegative Radon measure (a bounded sequence of Radon measures has an
accumulation point), which depends on ϕ. How does it depend on ϕ?

Theorem. (un) a sequence in L2(Rd;Rr), un
L2

−−⇀ 0 (weakly), then there is

a subsequence (un
′
) and µ on Rd × Sd−1 such that:

lim
n′→∞

∫
Rd

F
(
ϕ1un

′)
⊗F

(
ϕ2un

′)
ψ

(
ξ

|ξ|

)
dξ = 〈µ, ϕ1ϕ̄2ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .
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Existence of H-measures

Theorem. If un −⇀ 0 in L2
loc(Rd;Rr), then there exists its subsequence

and a complex matrix Radon measure distribution of order zero µ on
Rd × Sd−1 such that for any ϕ1, ϕ2 ∈ Cc(R

d) and ψ ∈ C(Sd−1) one has

lim
n′

∫
Rd

ϕ̂1un′ ⊗ ϕ̂2un′ψ(ξ/|ξ|) dξ = 〈µ, (ϕ1ϕ̄2)� ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ̄(x, ξ) .

There are some other variants: (ultra)parabolic, fractional, one-scale, . . .
Multiplication by b ∈ L∞(Rd), a bounded operator Mb on L2(Rd):
(Mbu)(x) := b(x)u(x) , norm equal to ‖b‖L∞(R2).

Fourier multiplier Aa, for a ∈ L∞(R2): Âau = aû.
The norm is again equal to ‖a‖L∞(R2).

Delicate part: a is given only on S1.
We extend it by the projection p: if α is a function defined on a compact
surface, we take a := α ◦ p , i.e.

a(τ, ξ) := α
( τ

r(τ, ξ)
,

ξ

r(τ, ξ)

)
The precise scaling is contained in the projections, not the surface.
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First commutation lemma

Lemma. (general form of the first commutation lemma — Luc Tartar)
If b ∈ C0(Rd) and a ∈ L∞(Rd) satisfy the condition

(∀ ρ, ε ∈ R+)(∃M ∈ R+) |a(ξ)− a(η)| 6 ε (a.e. (ξ,η) ∈ Y (M,ρ)) ,

then C := [Aa,Mb] is a compact operator on L2(Rd).

For given M,ρ ∈ R+ denote the set

Y = Y (M,ρ) = {(ξ,η) ∈ R2d : |ξ|, |η| >M & |ξ − η| 6 ρ} .

η

ξ

%

Y
M

[Some improvements in N.A., M. Mǐsur, D. Mitrović (MJOM, 2018); older
results by H. O. Cordes (JFA, 1975)]

10



The importance of First commutation lemma

If we take un = (un, vn), and consider µ = µ12, we have

lim
n′

∫
Rd

ϕ̂1un′ ϕ̂2vn′ψ dξ = lim
n′
〈Aψ(ϕ1un′)|ϕ2vn′〉

= lim
n′

∫
Rd
Aψ(ϕ1un′)ϕ2vn′ dx

= lim
n′

∫
Rd
Aψ(un′)ϕ1ϕ2vn′ dx = 〈µ, (ϕ1ϕ̄2)� ψ〉 .

Thus the limit is a bilinear functional in ϕ1ϕ̄2 and ψ, and we have the bound:∣∣∣ ∫
Rd
Aψ(un′)ϕ1ϕ2vn′dx

∣∣∣ 6 C‖ψ‖C(Sd−1)‖ϕ1ϕ2‖C0(Rd) .

This form makes sense even for p < 2 (for p > 2 we use the fact that
un ∈ L2

loc(Rd)).
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A class of symbols (L. Tartar)

Actually, we can consider more general operators than Aa and Mb. We can
consider the symbols of the form

s(x, ξ) =
∑
m

αm(ξ)bm(x) ,

with
∑
m ‖αm‖C(Sd−1)‖bm‖C0(Rd) = k <∞.

To such a symbol s, a standard operator Ss ∈ L(L2(Rd); L2(Rd)) is assigned
by

Ss =
∑
m

AαmMb ,

with ‖Ss‖L(L2(Rd);L2(Rd)) 6 k.

Clearly, Ss does not depend on the above decomposition, as

Ŝsu(ξ) =

∫
Rd

e−2πix·ξs(x, ξ/|ξ|)u(x) dx ,

for u in a dense set of L2(Rd) (e.g. S).
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A class of symbols (cont.)

Any operator A ∈ L(L2(Rd); L2(Rd)), which differs from Ss only by a
compact operator, is an operator of symbol s, like

Ls =
∑
m

MbmAαm ,

where ‖Ls‖L(L2(Rd);L2(Rd)) 6 k. Neither Ls depends on the decomposition.

Theorem. If un −⇀ 0 in L2
loc(Rd;Rr), then there exists its subsequence and

an H-measure µ, which is a Hermitian non-negative r × r matrix of
distributions of order zero on Rd × Sd−1 such that for any ϕ1, ϕ2 ∈ Cc(R

d)
and any operators Ls1 , Ls2 ∈ L(L2(Rd); L2(Rd)), with symbols s1, s2 one has

lim
n′

∫
Rd

Ls1(ϕ1u
j
n′)Ls2(ϕ2ukn′) dξ = 〈µjk, ϕ1s1ϕ2s2〉 .

P. Gérard used a different approach, by using classical symbols. However, it is
important to have symbols of lower regularity, as they come in applications
from coefficients in PDEs.

We can consider Ω ⊆ Rd as a domain, or even a manifold (with a volume
form).
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Symmetric systems ∑
k

Ak∂ku + Bu = f , Ak Hermitian

Assume:

un
L2

−−⇀ 0 (weakly),

fn
H−1

loc−−→ 0 (strongly).

If supports of un, fn are contained inside Ω, we can extend them by zero to Rd.

Theorem. (localisation property) If un −⇀ 0 in L2(Rd)
r

defines µ,
and if un satisfies:

∂k
(
Akun

)
→ 0 in the space H−1

loc(Rd)r ,

then for P(x, ξ) := ξkA
k(x) on Ω× Sd−1 it holds:

P(x, ξ)µ> = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.)
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Second commutation lemma

Xm :=
{
w ∈ F(L1(Rd)) : (∀α ∈ Nd

0) |α| ≤ m =⇒ w(α) ∈ F(L1(Rd))
}

is a Banach space with the norm:

‖w‖Xm :=

∫
Rd

(
1 + 4π2|ξ|2

)m/2∣∣ŵ(ξ)
∣∣ dξ .

Xm ⊆ Cm(Rd), and the derivatives up to order m vanish in infinity (they are
in C0(Rd)).
On the other hand, Hs(Rd) ⊆ Xm, for s > m+ d

2
.

Xm is an algebra with respect to the multiplication of functions; it holds:

‖f ∗ g‖L1 ≤ ‖f‖L1‖g‖L1

‖f̂ · ĝ‖X0 ≤ ‖f̂‖X0‖ĝ‖X0

Xm
loc(Ω) : the space of all functions u such that ϕu ∈ Xm, for ϕ ∈ C∞c (Ω).

Lemma. Let Aα, Mb be standard operators, with symbols α, b, such that
α ∈ C1(Sd−1) and b ∈ X1.
Then C := [Aα,Mb] ∈ L

(
L2(Rd),H1(Rd)

)
, and ∇C has a symbol

(∇ξα · ∇xb)ξ.
(we extend α to a homogeneous function on Rd

∗ := Rd \ {0})
Skip 2nd comm lemma
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A smaller class of symbols (L. Tartar)

Corollary. Under the above assumptions,

AαMb∂ju = Mb∂j(Aαu) + Lu, u ∈ L2(Rd) ,

where L has a symbol ξj{α, b}.

Actually, we can consider more general operators than Aα and Mb. We can
consider the symbols of the form

s(x, ξ) =
∑
m

αm(ξ)bm(x) ,

with
∑
m ‖αm‖C1(Sd−1)‖bm‖X1 <∞,

and standard operators Ss =
∑
mAαmMb.

Lemma. If S1, S2 are standard operators with symbols s1, s2 as above, then

∂

∂xj
[S1, S2] has symbol ξj{s1, s2} .
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Propagation property for symmetric systems

Ak∂ku + Bu = f , Ak Hermitian

Theorem. Let Ak ∈ C1
0(Ω; Mr×r).

If (un, fn) satisfy the above for n ∈ N, and un, fn −⇀ 0 in L2(Ω),
then for any ψ ∈ C1

0(Ω× Sd−1), the H-measure associated to sequence
(un, fn):

µ =

[
µ11 µ12

µ21 µ22

]
,

satisfies: 〈
µ11, {P, ψ}+ ψ∂kA

k − 2ψS
〉

+ 〈2Re trµ12, ψ〉 = 0 ,

where S := 1
2
(B + B∗), while the Poisson bracket is:

{φ,Q} = ∇ξφ · ∇xQ−∇xφ · ∇ξQ. [Recall: P = ξkA
k ]

µ is associated to the pair of sequences (un, fn), the block µ11 is determined
by un, µ22 with fn, while the non-diagonal blocks correspond to the product of
un and fn.
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The equation for H-measure

Corollary. In the sense of distributions on Ω×Sd−1 the H-measure µ satisfies:

∂lP · ∂lµ11 − ∂
l
t(∂lP · µ11) + (d− 1)(∂lP · µ11)ξl

+ (2S− ∂lAl) · µ11 = 2Re trµ12 ,

where ∂lt := ∂l − ξlξk∂k is the tangential gradient on the unit sphere.

This allows us to investigate the behaviour of H-measures as solutions of
initial-value problems, with appropriate initial conditions.
Besides the wave equations, there are applications to Maxwell’s and Dirac’s
systems, even to the equations that change their type (like the Tricomi
equation).
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The wave equation

(ρu′)′ − div (A∇u) = g .

It can be written as an equivalent symmetric system (t = x0 and ∂0 := ∂
∂t

):

∂0(ρ∂0u)−
d∑

i,j=1

∂i(a
ij∂ju) = g .

By introducing: vj := ∂ju, for j ∈ 0..d, we obtain (Schwarz’ symmetries!):
ρ 0 · · · 0
0
... A
0

 ∂0v +

d∑
i=1


0 −ai1 · · · −aid
−ai1

... 0
−aid

 ∂iv

+


b0 b1 · · · bd

0
... 0
0

 v =


g
0
...
0

 .

The symbol of differential operator is:

P(x, ξ) = ξkA
k(x) =

[
ξ0ρ −(Aξ′)>

−Aξ′ ξ0A

]
.
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Transport of H-measures associated to the wave equation

From the localisation property we can conclude that µ = (ξ ⊗ ξ)ν. For the
right hand side of the equation we have:

〈γ, ϕ1ϕ̄2ψ〉 := lim
n

∫
Rd+1

ϕ̂1v0,n(ξ)ϕ̂2gn(ξ)ψ

(
ξ

|ξ|

)
dξ .

Theorem. On Rd+1 × Sd measure ν satisfies (Q := ρξ2
0 −Aξ′ · ξ′):

∇ξQ·∇x(ξ0ν)−Q∂0ν+
(
ξ⊗ξ−I

)
∇xQ·∇ξ(ξ0ν)+(d+2)

(
∇xQ·ξ

)
(ξ0ν) = 2Re γ

The equation can be written in a nicer form:

{Q, ξ0ν}+ (∇xQ · ξ)
[
ξ · ∇ξ(ξ0ν) + (d+ 2)(ξ0ν)

]
−Q∂0ν = 2Re γ .
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Recent Tartar’s result (2017)

Theorem. Let un ∈ C0(0, T ; H1(Ω)) ∩ C1(0, T ; L2(Ω)) be a sequence of
solutions of a ”wave equation”

(ρ(un)′)′ − div (A∇un) + Sk∂ku
n −→ 0 in L2

loc(〈0, T 〉 × Ω) ,

with ρ,A in X1
loc ∩C2, ρ > 0 and A real positive definite (or replace it with its

symmetric part, and subsume the lower order terms in the last term), and Sk

be standard operators with symbols sk.
If un −⇀ 0 in H1

loc(〈0, T 〉 × Ω), then ∇un corresponds to an H-measure
µ = (ξ ⊗ ξ)π, then

Qπ = 0 ,

and 〈
π, {Ψ, Q}+ (ξks

k + ξks̄
k)Ψ

〉
= 0 ,

for Ψ ∈ C1
c(〈0, T 〉 × Ω× Sd).
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An explicit example


utt − uxx = 0

u(0, ·) = v

ut(0, ·) = w .

We have used D’Alembert’s formula for solution, our approach and the
approach of P. Gérad, obtaining the same result in this special case (which is
treatable by both methods, and explicit calculations).
Physically important quantity is energy density:

d(t, x) :=
1

2
(u2
t + u2

x) ,

as well as the energy at time t: e(t) :=

∫
R

d(t, x) dx.

After simple calculations we get

4d(t, x) =
(
v′(x+ t) + w(x+ t)

)2

+
(
v′(x− t)− w(x− t)

)2

.

Assume that the physical system is modelled by the above wave equation on
the microscale. In order to pass to the macroscale, in the spirit of Tatar’s
programme, we have to pass to the weak limit.
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Oscillating initial data
Let (vn) and (wn) be sequences of initial data, determining the sequence of
solutions (un), such that:

vn
H1(R)−−−⇀ 0 and wn

L2(R)−−−⇀ 0 .

It follows that
un−−⇀0 ,

but dn −⇀ d > 0 weakly ∗ in the space of Radon measures; in general d is not
zero.
Applying the div -rot lemma we arrive at equipartition of energy, i.e.
u2
t − u2

x −⇀ 0;
the kinetic and potential energy are balanced at the macroscopic level.

In order to determine the solution completely, let us take periodically
modulated initial conditions (we work in spaces H1

loc(R) and L2
loc(R)):

vn(x) :=
1

n
sin(nx) and wn(x) := sin(nx) .

Simple calculations lead us to: dn(t, x) = 1 + cos 2nx sin 2nt −⇀ 1 ,
weak ∗ in the space of Radon measures, therefore in the space of distributions
as well.

Even though the sequence of solutions (un) weakly converges to zero, the
energy density is 1, equally distributed to kinetic and potential energy.
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How this can be computed in general?
Two interesting quadratic forms:

q(x; v) :=
1

2
[ρ(x)v2

0 + A(x)v · v] ,

Q(x; v) :=
1

2
[ρ(x)v2

0 −A(x)v · v] .

Convergence of initial data and uniformly compact support imply:

un
∗−⇀ 0 in L∞(R; H1) ∩W1,∞(R; L2).

The energy density is dn = q(∇un).
Goal: compute the distributional limit dn, i.e. the limit

Dn =

∫
〈0,T 〉×Rd

dnφdtdx .

Results:
— Gilles Francfort & François Murat (1992): in linear case, C∞ coefficients
— Patrick Gérard (1996): constant coefficients, nonlinearity with up, p 6 5
— N. A. & Martin Lazar (2002): for symmetric hyperbolic systems

We have attempted to do the same for semilinear wave equation (d = 3, p = 3),
with variable coefficients. The difficulties led to the study of mixed-norm
Lebesgue spaces, and also prompted the introduction of H-distributions.
For nonlinear equations the L2 theory usually does not work; one should try the
Lp spaces.

Back to 2nd comm lemma
24



A general view

We can unify the results: consider equations of the form

P0(%P0un) + P1 ·AP1un = 0 ,

where P0 and P1 stand for (pseudo)differential operators in time and space
variables, with (principal) symbols p0 and p1, and Q = %p2

0 +Ap1 · p1 being the
symbol of the differential operator defining the left-hand side of the equation.
For the H-measure µ̃ associated to (P0un,P1un), converging weakly in L2 to
0, µ̃ is of the form

µ̃ =
p⊗ p

|p|2 ν̃ ,

where ν̃ := trµ̃ is a scalar measure, and the localisation principle reads

Qν̃ = 0 .

Finally, the propagation principle states〈ξmν̃
|p|2 , {φ,Q}

〉
+
〈 ν

|p|2 , p ∂mQ
〉

= 0 .

This covers both the classical and the parabolic case.
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Good bounds: the Hörmander-Mihlin theorem

ψ : Rd → C is a Fourier multiplier on Lp(Rd) if

F̄(ψF(θ)) ∈ Lp(Rd) , for θ ∈ S(Rd),

and
S(Rd) 3 θ 7→ F̄(ψF(θ)) ∈ Lp(Rd)

can be extended to a continuous mapping Aψ : Lp(Rd)→ Lp(Rd).

Theorem. [Hörmander-Mihlin] Let ψ ∈ L∞(Rd) have partial derivatives of
order less than or equal to κ = [ d

2
] + 1. If for some k > 0

(∀r > 0)(∀α ∈ Nd
0) |α| 6 κ =⇒

∫
r
2
6|ξ|6r

|∂αψ(ξ)|2dξ 6 k2rd−2|α| ,

then for any p ∈ 〈1,∞〉 and the associated multiplier operator Aψ there exists
a Cd (depending only on the dimension d) such that

‖Aψ‖Lp→Lp 6 Cd max

{
p,

1

p− 1

}
(k + ‖ψ‖∞) .

For ψ ∈ Cκ(Sd−1), extended by homogeneity to Rd, we can take k = ‖ψ‖Cκ .
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Existence of H-distributions (main theorem)

Theorem. If un −⇀ 0 in Lp(Rd) and vn
∗−−⇀ v in Lq(Rd) for some

q > max{p′, 2}, then there exist subsequences (un′), (vn′) and a complex
valued distribution µ ∈ D′(Rd × Sd−1), such that for every ϕ1, ϕ2 ∈ C∞c (Rd)
and ψ ∈ Cκ(Sd−1) we have:

lim
n′

∫
Rd
Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx = lim

n′

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

= 〈µ, ϕ1ϕ2ψ〉 ,

where Aψ : Lp(Rd)→ Lp(Rd) is the Fourier multiplier operator with symbol
ψ ∈ Cκ(Sd−1).

We call the functional µ the H-distribution corresponding to (a subsequence
of) (un) and (vn).

Of course, for q ∈ 〈1,∞〉 the weak ∗ convergence coincides with the weak
convergence.
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Some remarks

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

In Theorem we distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2
and we can take q > 2; this covers the L2 case (including un = vn).
The assumptions of Theorem imply that un, vn −⇀ 0 in L2

loc(Rd), resulting in
a distribution µ of order zero (a Radon measure, not necessary bounded),
instead of a more general distribution.
The real improvement in Theorem is for p < 2.

For applications, of interest is to extend the result to vector-valued functions.
For un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix valued
distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

In contrast to H-measures, we cannot consider H-distributions corresponding to
the same sequence, but only to a pair of sequences, and H-distribution would
correspond to non-diagonal blocks for H-measures.
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First commutation lemma

ψ ∈ Cκ(Sd−1) satisfies the conditions of the Hörmander-Mihlin theorem.
Therefore, Aψ and B are bounded operators on Lr(Rd), for any r ∈ 〈1,∞〉.
We are interested in the properties of their commutator, C = AψB −BAψ.
If p < r, we can apply the classical interpolation inequality:

‖Cvn‖p 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/p = α/2 + (1− α)/r.
As C is compact on L2(Rd) by Tartar’s First commutation lemma, while it is
bounded on Lr(Rd), we get the claim.

For the most interesting case, where p = r, we need a better result: the
Krasnosel’skij theorem (in fact, its extension to unbounded domains
[N.A., M. Mǐsur, D. Mitrović (2018)]).

Lemma. Assume that linear operator A is compact on L2(Rd) and bounded
on Lr(Rd), for some r ∈ 〈1,∞〉 \ {2}. Then A is also compact on any
Lp(Rd), where 1/p = θ/2 + (1− θ)/r, for a θ ∈ 〈0, 1〉.

Therefore, the commutator C is compact on all Lp(Rd), p ∈ 〈1,∞〉.
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Proof of the theorem

Theorem. If un −⇀ 0 in Lp(Rd), on a subsequnce we have:

lim
n′→∞

∫
Rd
Aψ(ϕ1un′)(ϕ2vn′)dx = lim

n′→∞

∫
Rd

(ϕ1un′)Aψ(ϕ2vn′)dx

= 〈µ, ϕ1ϕ2ψ〉.

The adjoint A∗ψ is actually the multiplier operator Aψ̄; this gives us the first
equality (we use the sesquilinear dual product)

Lp

〈
Aψ(ϕ1un′), ϕ2vn′

〉
Lp
′ =

Lp

〈
ϕ1un′ ,Aψ(ϕ2vn′)

〉
Lp
′ .

As un −⇀ 0 in Lp(Rd), while for a fixed v ∈ Lq(Rd) we have

ϕ1Aψ̄(ϕ2v) ∈ Lp
′
(Rd) ,

so by the Hörmander-Mihlin theorem it follows that

lim
n→∞

∫
Rd

ϕ1unAψ(ϕ2v)dx = 0 .

However, we have a product of two weakly converging sequences.
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Proof of the theorem (cont.)

Write Rd =
⋃
l∈NKl, where Kl are increasing compacts; therefore

suppϕ2 ⊆ Kl for some l ∈ N. We have (χl := χKl):

lim
n→∞

∫
Rd

ϕ1unAψ(ϕ2vn)dx = lim
n→∞

∫
Rd

ϕ1unAψ̄[ϕ2χl(vn − v)]dx

= lim
n→∞

∫
Rd

ϕ1ϕ2unAψ̄(χl(vn − v))dx

= lim
n→∞

∫
Rd

ϕ1ϕ2unAψ̄(χlvn)dx.

With ϕ = ϕ1ϕ2, we have bilinear functionals:

µn,l(ϕ,ψ) :=

∫
Rd
ϕunAψ̄(χlvn)dx .

Furthermore, by the Hörmander-Mihlin theorem:∣∣µn,l(ϕ,ψ)
∣∣ 6 ‖ϕun‖p‖Aψ̄(χlvn)‖p′ 6 C̃‖ψ‖Cκ(Sd−1)‖ϕ‖C0(Rd) ,

where C̃ depends on Lp(Kl), Lp
′
(Kl) bounds of the sequences (un), (vn).

Now we need a lemma.

32



Lemma on bilinear forms

Lemma. Let E, F be separable Banach spaces, (bn) an equibounded
sequence of bilinear forms on E × F (i.e. |bn(ϕ,ψ)| ≤ C‖ϕ‖E‖ψ‖F ).
Then there exists a subsequence (bnk ) and a bilinear form b (with the same
bound C) such that

(∀ϕ ∈ E)(∀ψ ∈ F ) lim
k
bnk (ϕ,ψ) = b(ϕ,ψ) .

To each bn we associate a bounded linear operator Bn : E −→ F ′ by

F ′〈Bnϕ,ψ 〉F := bn(ϕ,ψ) .

This defines a linear function, which is bounded:

‖Bnϕ‖F ′ = sup
ψ 6=0

|bn(ϕ,ψ)|
‖ψ‖F

≤ C‖ϕ‖E .

Let G ⊆ E be a countable dense subset; for each ϕ ∈ G the sequence (Bnϕ) is
bounded in F ′, so by the Banach theorem there is a subsequence such that

Bn1ϕ
∗−−⇀ β1 =: B(ϕ) .

By repeating this construction, and applying the Cantor diagonal procedure we
get a subsequence

(∀ϕ ∈ G) Bnkϕ
∗−−⇀ B(ϕ) ,

such that ‖B(ϕ)‖F ′ 6 C‖ϕ‖E .
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Proof of the lemma completed

Now it is standard to extend B to a bounded linear operator on the whole
space E. Clearly:

b(ϕ,ψ) := F ′〈Bϕ,ψ 〉F = lim
k

F ′〈Bnkϕ,ψ 〉F = lim
k
bnk (ϕ,ψ) .

Q.E.D.

Recall: CKl(R
d) := {ϕ ∈ C(Rd) : suppϕ ⊆ Kl}

Then we have:
Cc(R

d) =
⋃
l∈N

CKl(R
d) .

For each l ∈ N we apply Lemma to obtain operators

Bl ∈ L(CKl(R
d); (Cκ(Sd−1))′) .

Furthermore, for the construction of Bl we can start with a defining
subsequence for Bl−1, so that the convergence will remain valid on
CKl−1(Rd), in such a way obtaining that Bl is an extension of Bl−1.
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Proof of the theorem completed

This allows us to define the operator B on Cc(R
d):

for ϕ ∈ Cc(R
d) we take l ∈ N such that suppϕ ⊆ Kl, and set Bϕ := Blϕ.

The definition is good, and we have a bounded operator in uniform norm:

‖Bϕ‖(Cκ(Sd−1))′ 6 C̃‖ϕ‖C0(Rd) .

It can be extended to the completion, the Banach space C0(Rd).
Now we can define µ(ϕ,ψ) := 〈Bϕ,ψ〉, which satisfies the Theorem.

Indeed, restrict B to C∞c (Rd); the restriction B̃ remains continuous.
(Cκ(Sd−1))′ is a subspace of D′(Sd−1), and we have a continuous operator
from C∞c (Rd) to D′(Sd−1), which by the Schwartz kernel theorem can be
identified to a distribution from D′(Rd × Sd−1).

However, the bounds we had indicate that we should have a better object than
just a distribution, say of order no more than κ = [d/2] + 1.

(Un)fortunately, the situation is much more complicated. Just to mention that
the specific examples of H-distributions that we have are all of order 0 in both
variables.
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A particular Nemyckij operator

Canonical choice of Lp
′

sequence corresponding to an Lp, p ∈ 〈1,∞〉, sequence
(un) is given by vn = Φp(un), where Φp is an operator from Lp(Rd) to

Lp
′
(Rd) defined by Φp(u) = |u|p−2u.

Φp is a nonlinear Nemytskij operator, continuous from Lp(Rd) to Lp
′
(Rd) and

additionally we have the following bound

‖Φp(u)‖Lp′ (Rd) 6 ‖u‖
p/p′

Lp(Rd)
.

It maps bounded sets in Lploc(Rd) topology to bounded sets in Lp
′

loc(Rd)
topology. Hence for an Lp bounded sequence (un), we get that (Φp(un)) is

weakly precompact in Lp
′

loc(Rd).

It is continuous from Lploc(Rd) to Lp
′

loc(Rd).
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Example: concentration

u ∈ Lpc(R
d), and define un(x) = n

d
p u(n(x− z)) for some z ∈ Rd.

Simple change of variables: ‖un‖Lp(Rd) = ‖u‖Lp(Rd) and un −⇀ 0 in Lp(Rd).

Indeed, the sequence is bounded, while for ϕ ∈ Cc(R
d)∫

Rd
un(x)ϕ(x)dx =

∫
Rd

nd/pu(n(x− z))ϕ(x)dx

=

∫
Rd

nd/p−du(y)ϕ(y/n+ z)dy

=
1

nd/p′

∫
Rd

u(y)χsuppu(y)ϕ(y/n+ z)dy

6
(vol(suppu)

nd

)1/p′

‖u‖Lp(Rd) max
Rd
|ϕ|.

Passing to the limit, we get our claim.

The H-distribution corresponding to sequences (un) and (Φp(un)) is given by
δz � ν, where ν is a distribution on Cκ(Sd−1) defined for ψ ∈ Cκ(Sd−1) by

〈ν, ψ〉 =

∫
Rd

u(x)Aψ̄(|u|p−2u)(x)dx.

This distribution might be a Radon measure; we do not know for sure.
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Localisation principle

Theorem. Take un ⇀ 0 in Lp(Rd), fn → 0 in W−1,q
loc (Rd), for some

q ∈ 〈1, d〉, such that
div (a(x)un(x)) = fn(x) .

Take an arbitrary (vn) bounded in L∞(Rd), and by µ denote the
H-distribution corresponding to a subsequence of (un) and (vn). Then

(a(x) · ξ)µ(x, ξ) = 0

in the sense of distributions on Rd × Sd−1, (x, ξ) 7→ a(x) · ξ being the symbol
of the linear PDO with Cκ0 coefficients.

In order to prove the theorem, we need a particular multiplier, the so called
(Marcel) Riesz potential I1 := A|2πξ|−1 , and the Riesz transforms Rj := A ξj

i|ξ|
.

Note that ∫
I1(φ)∂jg =

∫
(Rjφ)g, g ∈ S(Rd).

Using the density argument and that Rj is bounded on Lp(Rd), we conclude
∂jI1(φ) = −Rj(φ), for φ ∈ Lp(Rd).
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Compactness by compensation: L2 case

It is well known that weak convergences are ill behaved under nonlinear
transformations. Only in some particular cases of compensation it is even
possible to pass to the limit in a product of two weakly converging sequences.

The prototype of this compensation effect is Murat-Tartar’s div-rot lemma.

For simplicity consider 2D case, (u1
n, u

2
n) and (v1

n, v
2
n) converging to zero

weakly in L2(R2), such that (∂xu
1
n + ∂yu

2
n) and (∂yv

1
n − ∂xv2

n) are both
contained in a compact set of H−1

loc(R
2) (which then implies that they converge

to zero strongly in H−1
loc(R

2)).

We can define Un :=

[
un
vn

]
, which (on a subsequence) defines a 4× 4

H-measure µ. By the localisation principle, as the above relations can be
written in the form (A1,A2 are 4× 4 constant matrices with all entries zero
except A1

11 = A2
12 = A2

33 = 1 and A1
34 = −1)

A1∂1Un + A2∂2Un → 0 strongly in H−1
loc(R

2)4 ,

the corresponding H-measure satisfies (ξ1A
1 + ξ2A

2)µ = 0. After
straightforward calculations this shows that u1

nv
1
n + u2

nv
2
n −⇀ 0 weak ∗ in the

sense of Radon measures (and therefore in the sense of distributions as well).
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What for sequences in Lp?
For the above we have used only the non-diagonal blocks µ12 = µ∗21 of

µ =

[
µ11 µ12

µ21 µ22

]
,

corresponding to products of uin and vjn; in fact, the calculation shows that
µ11

12 + µ22
12 = 0, which gives the above result.

Assume now (u1
n, u

2
n) and (v1

n, v
2
n) converging to zero weakly in Lp(R2) and

Lp
′
(R2), and (∂1u

1
n + ∂2u

2
n) bounded in Lp(R2), while (∂2v

1
n − ∂1v

2
n) in

Lp
′
(R2) (thus precompact in W−1,p

loc (R2), and W−1,p′

loc (R2)).

Then (u1
nv

1
n + u2

nv
2
n) is bounded in L1(R2), so also in Mb (Radon measures),

and by weak ∗ compactness it has a weakly converging subsequence. However,
we can say more—the whole sequence converges to zero.

Denote by µij the H-distribution corresponding to (some sub)sequences (of)
(u1
n, u

2
n) and (v1

n, v
2
n).

Since (∂1u
1
n + ∂2u

2
n) is bounded in Lp(R2), and (∂2v

1
n − ∂1v

2
n) is bounded in

Lp
′
(R2), they are weakly precompact, while the only possible limit is zero, so

∂1u
1
n + ∂2u

2
n ⇀ 0 in Lp , and

∂2v
1
n − ∂1v

2
n ⇀ 0 in Lp

′
.
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From the compactness of the Riesz potential I1 mentioned above, we conclude
that for ϕ ∈ Cc(R

2) and ψ ∈ Cκ(Sd−1) the following limit holds in Lp(R2):

A
ψ(ξ/|ξ|) ξ1|ξ|

(ϕu1
n) +A

ψ(ξ/|ξ|) ξ2|ξ|
(ϕu2

n) = Aψ(ξ/|ξ|)
|ξ|

(∂1(ϕu1
n) + ∂2(ϕu2

n))→ 0 .

Multiplying it first by ϕv1
n and then by ϕv2

n, integrating over R2 and passing to
the limit, we conclude from the existence theorem that:

ξ1µ
11 + ξ2µ

21 = 0, and ξ1µ
12 + ξ2µ

22 = 0 .

Next, take
wjn = ϕAψ(ξ/|ξ|)

|ξ|
(ϕujn) ∈W1,p′(Rd), j = 1, 2.

From the last limits on the preceeding slide we get

〈(ϕv1
n,−ϕv2

n),∇wjn〉 = −〈rot (ϕv1
n, ϕv

2
n), wjn〉 → 0 as n→∞,

for j = 1, 2. Rewriting it in the integral formulation, we obtain again from the
existence theorem:

ξ2µ
11 − ξ1µ12 = 0, ξ2µ

21 − ξ1µ22 = 0.

From the algebraic relations above, we can easily conclude

ξ1
(
µ11 + µ22) = 0 and ξ2

(
µ11 + µ22) = 0,

implying that the distribution µ11 + µ22 is supported on the set
{ξ1 = 0} ∩ {ξ2 = 0} ∩ S1 = ∅, which implies µ11 + µ22 ≡ 0.
After inserting ψ ≡ 1 in the definition of H-distribution, we immediately reach
the conclusion.
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This proof is similar to the L2 case, but it should be noted that we had used
only a non-diagonal block of 4× 4 H-measure, which corresponds to the only
available 2× 2 H-distribution.

There is no reason to limit oneself to two dimensions; take (un) and (vn)

converging weakly to zero in Lp(Rd)d and Lp
′
(Rd)d, and by µ denote d× d

matrix H-distribution corresponding to some chosen subsequences of (un) and
(vn).

Theorem. Let (un) and (vn) be vector valued sequences converging to zero

weakly in Lp(Rd)d and Lp
′
(Rd)d, respectively. Assume the sequence (div un)

is bounded in Lp(Rd), and the sequence (rot vn) is bounded in Lp
′
(Rd)d×d.

Then the sequence (un · vn) converges to zero in the sense of distributions (or
vaguely in the sense of Radon measures).

The results carry on to loc spaces as well.
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An application suggested by Darko Mitrović

For scalar conservation law with discontinuous flux, the most up to date
existence result for the equation

ut + div f(t,x, u) = 0

is obtained under the assumptions

max
λ∈R
|f(t,x, λ)| ∈ L2+ε(Rd

+) .

Using the H-distributions, it is possible to prove an existence result for the
given equation under the assumption

max
λ∈R
|f(t,x, λ)| ∈ L1+ε(Rd

+) .
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H-measures and Microlocal energy density for hyperbolic systems
Weak convergence methods in pde-s
What are H-measures?
Existence of H-measures
A class of symbols
Propagation property

H-distributions
Existence
Proof of the main theorem
Examples
Localisation principle

Schwartz kernel theorem and anisotropic distributions
Functions of anisotropic smoothness
Definition and tensor products
Conjectures
Schwartz kernel theorem: statement and strategies
The proof
Consequence for H-distributions

Lebesgue spaces with mixed norm
Mixed-norm Lebesgue spaces
Boundedness of pseudodifferential operators of class S0

1,δ

A compactness result

44



Functions of anisotropic smoothness
Let X and Y be open sets in Rd and Rr (or C∞ manifolds), Ω ⊆ X × Y .

By Cl,m(Ω) we denote the space of functions f on Ω, such that for any
α ∈ Nd

0 and β ∈ Nr
0, if |α| 6 l and |β| 6 m,

∂α,βf = ∂α
x ∂

β
y f ∈ C(Ω) .

Cl,m(Ω) becomes a Fréchet space if we define a sequence of seminorms

pl,mKn (f) := max
|α|6l,|β|6m

‖∂α,βf‖L∞(Kn) ,

where Kn ⊆ Ω are compacts, such that Ω = ∪n∈NKn and Kn ⊆ IntKn+1.

For a compact set K ⊆ Ω we define a subspace of Cl,m(Ω)

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
.

This subspace inherits the topology from Cl,m(Ω), which is, when considered
only on the subspace, a norm topology determined by

‖f‖l,m,K := pl,mK (f) ,

and Cl,mK (Ω) is a Banach space (it can be identified with a proper subspace of
Cl,m(K)). However, if m =∞ (or l =∞), then we shall not get a Banach
space, but a Fréchet space. As in the isotropic case, an increasing sequence of
seminorms that makes Cl,∞Kn (Ω) a Fréchet space is given by (pl,kKn), k ∈ N0.
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Functions of anisotropic smoothness (cont.)

We can also consider the space

Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω) ,

of all functions with compact support in Cl,m(Ω), and equip it by a stronger
topology than the one induced from Cl,m(Ω): by the topology of strict
inductive limit.

More precisely, it can easily be checked that

Cl,mKn (Ω) ↪→ Cl,mKn+1
(Ω) ,

the inclusion being continuous. Also, the topology induced on Cl,mKn (Ω) by that

of Cl,mKn+1
(Ω) coincides with the original one, and Cl,mKn (Ω) (as a Banach space

in that topology) is a closed subspace of Cl,mKn+1
(Ω). Then we have that the

strict inductive limit topology on Cl,mc (Ω) induces on each Cl,mKn (Ω) the original

topology, while a subset of Cl,mc (Ω) is bounded if and only if it is contained in
one Cl,mKn (Ω), and bounded there. Cl,mc (Ω) is a barelled space.

Of course, C∞c (Ω) ↪→ Cl,mc (Ω) is a continuous and dense imbedding.

46



Distributions of anisotropic order

Definition. A distribution of order l in x and order m in y is any linear
functional on Cl,mc (Ω), continuous in the strict inductive limit topology. We
denote the space of such functionals by D′l,m(Ω).

Clearly, C∞c (Ω) ↪→ Cl,mc (Ω) ↪→ D′(Ω), with continuous and dense imbeddings,
thus Cl,mc (Ω) is a normal space of distributions, hence its dual D′l,m(Ω) forms a
subspace of D′(Ω). If we equip it with a strong topology, it is even
continuously imbedded in D′(Ω).

Lemma. Let X and Y be C∞ manifolds. For a linear functional u on
Cl,mc (X × Y ), the following statements are equivalent

a) u ∈ D′l,m(X × Y ),

b) (∀K ∈ K(X × Y ))(∃C > 0)(∀Ψ ∈ Cl,mK (X × Y )) |〈u,Ψ〉| 6 Cpl,mK (Ψ).

Statement (b) of previous lemma implies:

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∀ϕ ∈ ClK(X))(∀ψ ∈ CmL (Y ))

|〈u, ϕ� ψ〉| 6 CplK(ϕ)pmL (ψ) .

The reverse implication would have significantly greater practical use.

47



Tensor product of distributions

In order to better understand the properties of elements of D′l,m(Ω), we shall
relate them to tensor products.
The first step is to consider the algebraic tensor product Clc(X)� Cmc (Y ), the
vector space of all (finite) linear combinations of functions of the form
(φ� ψ)(x,y) := φ(x)ψ(y). This is a vector subspace of Cl,mc (X × Y ).

Theorem. Let X and Y be C∞ manifolds, u ∈ D′l(X) and v ∈ D′m(Y ). Then(
∃!w ∈ D′l,m(X×Y )

)(
∀ϕ ∈ Clc(X)

)(
∀ψ ∈ Cmc (Y )

)
〈w,ϕ�ψ〉 = 〈u, ϕ〉〈v, ψ〉.

Furthermore, for any Φ ∈ Cl,mc (X × Y ), function V : x 7→ 〈v,Φ(x, ·)〉 is in
Clc(X), while U : y 7→ 〈u,Φ(·,y)〉 is in Cmc (Y ), and we have that

〈w,Φ〉 = 〈u, V 〉 = 〈v, U〉.
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Simple operations

Lemma. If u ∈ D′l,m(X × Y ) then, for any ψ ∈ Cl,m(X × Y ), ψu is a well
defined distribution of order at most (l,m).

Theorem. Let u ∈ D′l,m(X × Y ) and take F ⊆ X × Y relatively compact set
such that suppu ⊆ F . Then there exists unique linear functional ũ on
Q := {ϕ ∈ Cl,m(X × Y ) : F ∩ suppϕ b X × Y } such that

a) (∀ϕ ∈ Cl,mc (X × Y )) 〈ũ, ϕ〉 = 〈u, ϕ〉,
b) (∀ϕ ∈ Cl,m(X × Y )) F ∩ suppϕ = ∅ =⇒ 〈ũ, ϕ〉 = 0.

The domain of ũ is largest for F = suppu.
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First conjecture

Let X,Y be C∞ manifolds and u a linear functional on Cl,mc (X × Y ). If
u ∈ D′(X × Y ) and satisfies

(∀K ∈ K(X))(∀L ∈ K(Y )(∃C > 0)(∀ϕ ∈ C∞K (X))(∀ψ ∈ C∞L (Y ))

|〈u, ϕ� ψ〉| 6 CplK(ϕ)pmL (ψ) ,

then u can be uniquely extended to D′l,m(X × Y ).

If it were true, then the H-distribution µ would belong to D′0,κ(Rd × Sd−1),
i.e. it would be a distribution of order 0 in x and of order not more than κ in ξ.

Indeed, from the proof of the existence theorem, we already have
µ ∈ D′(Rd × Sd−1) and the following bound with ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| 6 C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl (Rd) ,

where C does not depend on ϕ and ψ.
It is not true!

We need a more complicated result.
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Schwartz kernel theorem

Theorem. Let X and Y be two differentiable manifolds, of dimension d and r.
a) Let K ∈ D′l,m(X × Y ). Then for each ϕ ∈ Clc(X) the linear form Kϕ, defined

by ψ 7→ 〈K,ϕ� ψ〉, is a distribution of order not more than m on Y .
Furthermore, the mapping ϕ 7→ Kϕ, taking Clc(X) with its inductive limit
topology to D′m(Y ) with weak ∗ topology, is linear and continuous.

b) Let A : Clc(X)→ D′m(Y ) be a continuous linear operator, in the pair of
topologies as above. Then there exists unique distribution K ∈ D′(X × Y )
such that for any ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y )

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉.

Furthermore, K ∈ D′l,r(m+2)(X × Y ).
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Different strategies of proof

◦ regularisation? (Schwartz)

◦ constructive proof? (Simanca, Gask, Ehrenpreis)

◦ nuclear spaces? (Trèves)

◦ structure theorem, on manifolds (Dieudonné)

To remarks, skipping the proof.

52



From kernel to operator (a)

ϕ ∈ Clc(X); prove the continuity of Kϕ on Cmc (Y ) (it is clearly linear since the
tensor product is bilinear, while K is linear).

i.e. for H ∈ K(Y ), mapping ψ 7→ 〈Kϕ, ψ〉 is a cont. lin. funct. on CmH(Y ).

We can assume X and Y to be open subsets of Rd and Rr.
Indeed, first take an open covering of Y , consisting of chart domains, and a
partition of unity (fα) subordinate to that covering such that∑
α fα(y) = 1,y ∈ H (note that the sum is finite).

Similarly for ϕ, thus limiting ourselves to domains of a pair of charts.

By [Gösser, Kunzinger & al., Chapter 3.1.4], we can identify distributions
localised on chart domains with distributions on subsets of Rd and Rr. Thus,
in what follows we shall assume that X and Y are open subsets of Rd and Rr.

We shall therefore show that there exists a constant C > 0 such that for any
ψ ∈ CmH(Y ) it holds

|〈Kϕ, ψ〉| 6 C max
|β|6m

‖∂βψ‖L∞(H) ,

for m finite, while for m =∞ we should modify the above to

(∃m′ ∈ N)(∃C > 0)(∀ψ ∈ C∞H (Y )) |〈Kϕ, ψ〉| 6 C max
|β|6m′

‖∂βψ‖L∞(H) .
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From kernel to operator (a)(cont.)

K is a distribution of anisotropic order on X × Y :

(∀M ∈ K(X × Y ))(∃C̃ > 0)(∀Ψ ∈ Cl,mc (X × Y ))

supp Ψ ⊆M =⇒ |〈K,Ψ〉| 6 C̃ max
|α|6l,|β|6m

‖∂α,βΨ‖L∞(M) ,

with obvious modifications if either l or m is infinite,

by taking M to be of the form L×H, with L ∈ K(X), and Ψ = ϕ� ψ such
that suppϕ ⊆ L, we have

|〈Kϕ, ψ〉| = |〈K,ϕ� ψ〉| 6 C̃ max
|α|6l,|β|6m

‖∂αϕ� ∂βψ‖L∞(L×H)

6 C̃ max
|α|6l

‖∂αϕ‖L∞(L) max
|β|6m

‖∂βψ‖L∞(H) 6 C max
|β|6m

‖∂βψ‖L∞(H) ,

and therefore Kϕ ∈ D′m(Y ).
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From kernel to operator (a)(cont.)

The linearity of mapping ϕ 7→ Kϕ readily follows from the bilinearity of tensor
product and the linearity of K.

For continuity, take an arbitrary L ∈ K(X) and an arbitrary ψ ∈ Cmc (Y ). We
need to show the existence of C̄ > 0 such that

|〈Kϕ, ψ〉| 6 C̄ max
|α|6l

‖∂αϕ‖L∞(L) .

However, we have already shown that above: just take

C̄ = C̃ max
|β|6m

‖∂βψ‖L∞(H) .

Therefore, the mapping ϕ 7→ Kϕ, from Clc(X) to D′m(Y ) is linear and
continuous.
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From operator to kernel (b): uniqueness and overview

Let us first prove the uniqueness. By formula

〈K,ϕ�ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 ,

a continuous functional K on C∞c (X)� C∞c (Y ) is defined. As it is defined on
a dense subset of C∞c (X × Y ), such K is uniquely determined on the whole
C∞c (X × Y ).

The proof of existence will be divided into two steps. In the first step we
assume that X and Y are open subsets of Rd and Rr, and additionally, that
the range of A is C(Y ) ⊆ D′m(Y ) (understood as distributions which can be
identified with continuous functions). This will allow us to write explicitly the
action of Aϕ on a test function ψ ∈ Cmc (Y ), which will finally enable us to
define the kernel K. In the second step, we shall use a partition of unity and
the structure theorem of distributions to reduce the problem to the first step.
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From operator to kernel (b): existence under additional assumptions

Additionally assume that X and Y are open and bounded subsets of euclidean
spaces, and that for each ϕ ∈ Clc(X), Aϕ ∈ C(Y ).

Its action on a test function ψ ∈ Cmc (Y ) is given by

〈Aϕ,ψ〉 =

∫
Y

(Aϕ)(y)ψ(y)dy .

Continuity of A implies that A : Clc(X) −→ C(Y ) is continuous when the
range is equipped with the weak ∗ topology inherited from D′m(Y ).

As the latter is a Hausdorff space, that operator has a closed graph, but this
remains true even when we replace the topology on C(Y ) by its standard
Fréchet topology [Narici & Beckenstein, Exercise 14.101(a)], which is stronger.

Now we can apply the Closed graph theorem [Narici & Beckenstein, Theorem
14.3.4(b)], as Clc(X) is barreled, as a strict inductive limit of barreled spaces,
to conclude that A : Clc(X) −→ C(Y ) is continuous with usual strong
topologies on its domain and range.
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(b): existence under additional assumptions (cont.)

For y ∈ Y consider a linear functional Fy : Clc(X) −→ C defined by

Fy(ϕ) = (Aϕ)(y) .

Since Aϕ is a continuous function, Fy is well-defined and continuous as a
composition of continuous mappings, thus a distribution in D′l(X).

Take a test function Ψ ∈ Cl,0c (X × Y ), and fix its second variable (get a
function from Clc(X)) and apply Fy; we are interested in the properties of this
mapping:

y 7→ Fy(Ψ(·,y)) =
(
AΨ(·,y)

)
(y) .

Clearly, it is well defined on Y , with a compact support contained in the
projection πY (supp Ψ). Furthermore, we have:∣∣∣Fy(Ψ(·,y))

∣∣∣ =
∣∣∣(AΨ(·,y)

)
(y)
∣∣∣ 6 ‖AΨ(·,y)‖L∞(πY (supp Ψ))

6 C‖Ψ(·,y)‖Cl
πY (supp Ψ)

(X) 6 C‖Ψ‖Cl,0supp Ψ(X×Y )
.
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(b): existence under additional assumptions (cont.)

We show sequential continuity: take a sequence yn → y in Y . Denote
H = πX(supp Ψ) and let L ⊆ Y be a compact such that yn,y ∈ L; Ψ is
uniformly continuous on compact H × L.

This is also valid for ∂α
x Ψ, where |α| 6 l, thus Ψ(·,yn) −→ Ψ(·,y) in Clc(X).

As A is continuous, the convergence is carried to C(Y ), i.e. to uniform
convergence on compacts of a sequence of functions AΨ(·,yn) to AΨ(·,y).
In particular,(AΨ(·,yn))(ȳ)− (AΨ(·,y))(ȳ) is arbitrary small independently of
ȳ ∈ L, for large enough n.

On the other hand, AΨ(·,y) is uniformly continuous, thus
(AΨ(·,y))(ȳ)− (AΨ(·,y))(y) is small for large n, independetly of ȳ ∈ L. In
other terms, we have the required convergence

Fyn(Ψ(·,yn)) −→ Fy(Ψ(·,y)) .

A continuous function with compact support is summable, so we can define K
on Cl,0c (X × Y ):

〈K,Ψ〉 =

∫
Y

Fy(Ψ(·,y)) dy ,

which is obviously linear in Ψ, as Fy is.
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(b): existence under additional assumptions (cont.)

For continuity of K, we cannot follow [Dieudonné, 23.9.2], as our spaces are
not Montel.

However, we can check that K is continuous at zero (modifications for l =∞):

(∀H ∈ K(X))(∀L ∈ K(Y ))(∃C > 0)(∀Ψ ∈ Cl,0c (X × Y ))

supp Ψ ⊆ H × L =⇒ |〈K,Ψ〉| 6 C‖Ψ‖
C
l,0
K×L(X×Y )

.

The continuity of A : Clc(X) −→ C(Y ), for Ψ supported in H ×L and the fact
that the support of AΨ(·,y) is contained in L gives us the estimate∣∣∣∣∫

Y

Fy(Ψ(·,y)) dy

∣∣∣∣ 6 (volL)C‖Ψ‖
C
l,0
K×L(X×Y )

,

as needed.

Finally, it is easy to check that for ϕ ∈ C∞c (X) and ψ ∈ C∞c (Y ), we have:

〈K,ϕ� ψ〉 =

∫
Y

Fy(ϕ� ψ(y))dy =

∫
Y

Fy(ϕ)ψ(y)dy

=

∫
Y

(Aϕ)(y)ψ(y)dy = 〈Aϕ,ψ〉 .
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(b) existence in general: reduction to charts

Let (Uα) and (Vβ) be covers consisting of relatively compact open sets.

It is sufficient to show existence of distributions Kαβ on Uα × Vβ , which satisfy

〈Aϕ,ψ〉 = 〈Kαβ , ϕ� ψ〉 , ϕ ∈ C∞c (Uα), ψ ∈ C∞c (Vβ) .

Indeed, the uniqueness of K ∈ D′(X × Y ) then follows from the fact that two
distributions Kαβ and Kγδ will coincide on open sets (Uα ∩Uγ)× (Vβ ∩ Vδ) of
X × Y , while the existence of K will be a result of the localisation theorem
[Dieudonné, 17.4.2].

Furthermore, if we assume that Uα and Vβ lie within domains of some charts of
X and Y , in the light of results of [Gösser, Kunzinger & al., Chapter 3.1.4], we
can identify the distributions localised to these chart domains with distributions
on open subsets of Rd, respectively Rr. Thus, without loss of generality, we
assume that U and V are relatively compact open subsets of Rd and Rr.
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(b) existence in general: the structure theorem
Consider Ã : Clc(U)→ D′m(V ) defined by: for ϕ ∈ Clc(U) and ψ ∈ Cmc (V )

〈Ãϕ, ψ〉 = 〈Aϕ,ψ〉 .

Ã is well-defined, and by the assumptions continuous.

Take a relatively compact open neighbourhood W of ClV in Y and pick a
smooth cut-off function ρ being one on ClV and supported in W .

For ϕ ∈ Clc(U), ρÃϕ ∈ D′m(W ) and has a compact support. Next we use the
Structure theorem for distributions: from its proof [Friedlander & Joshi,
Theorem 5.4.1], we can write

ρÃϕ =
(
∂m+2

1 . . . ∂m+2
r

) (
Em+2 ∗ (ρÃϕ)

)
,

where Em+2 is the fundamental solution of ∂m+2
1 . . . ∂m+2

r (derivatives in y),
i.e. it satisfies the equation

(
∂m+2

1 . . . ∂m+2
r

)
Em+2 = δ0 (explicit formula for

Em+2 in loc.cit.), and Em+2 ∗ (ρÃϕ) is a continuous function.

Denoting by Ẽm+2∗ the transpose of Em+2∗, for ϕ ∈ Clc(U) and ψ ∈ Cmc (W )〈
Em+2 ∗ (ρÃϕ), ψ

〉
=
〈
Ãϕ, ρẼm+2 ∗ ψ

〉
,

concluding that ϕ 7→ Em+2 ∗ (ρÃϕ) is continuous from Clc(U) to D′m(W ).
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(b) existence in general: reduction to special case

Now we can find R ∈ D′l,0(U ×W ) such that for all ϕ ∈ C∞c (U) and
ψ ∈ C∞c (W ) it holds 〈

Em+2 ∗ (ρÃϕ), ψ
〉

= 〈R,ϕ� ψ〉 .

Taking ϕ ∈ C∞c (U) and ψ ∈ C∞c (V ), we have〈
R,ϕ�

(
∂m+2

1 . . . ∂m+2
r

)
ψ
〉

=
〈
Em+2 ∗ (ρÃϕ),

(
∂m+2

1 . . . ∂m+2
r

)
ψ
〉

= (−1)r(m+2)
〈(
∂m+2

1 . . . ∂m+2
r

) (
Em+2 ∗ (ρÃϕ)

)
, ψ
〉

= (−1)r(m+2)
〈
ρÃϕ, ψ

〉
= (−1)r(m+2)

〈
Ãϕ, ρψ

〉
= (−1)r(m+2)〈Aϕ,ψ〉,

which gives 〈Aϕ,ψ〉 = (−1)r(m+2)
〈(
∂m+2

1 . . . ∂m+2
r

)
R,ϕ� ψ

〉
, where the

derivatives are taken with respect to the variable y. Since R was an element of
D′l,0(U ×W ), we conclude that A ∈ D′l,r(m+2)(U × V ).
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Remarks

Note that in part (b) we did not get K ∈ D′l,m(X × Y ), as one would expect.
The order with respect to x variable remained the same, but the order with
respect to y increased from m to r(m+ 2). Interchanging the roles of X and
Y , the same proof gives K ∈ D′d(l+2),m(X × Y ), where order with respect to y
remained the same, but order with respect to the x variable increased from l to
d(l+ 2). Since uniqueness of K ∈ D′(X × Y ) has already been determined, we
conclude that K ∈ D′l,r(m+2)(X × Y ) ∩ D′d(l+2),m(X × Y ). It might be
interesting to see some additional properties of that intersection.

If one used a more constructive proof of the Schwartz kernel theorem, for
example [Simanca, Theorem 1.3.4], one would end up increasing the order with
respect to both variables x and y. This occurs naturally, because one needs to
secure the integrability of the function which is used to define the kernel
function.

One interesting approach to the kernel theorem is given in [Trèves, Chapter
51]. This approach is based on deep results of functional analysis on tensor
products of nuclear spaces of Alexander Grothendieck. This approach might
result in further improvements of the preceeding theorem. This is a subject of
our current ongoing research.
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Consequence for H-distributions

By the previous theorem the H-distribution µ mentioned at the beginning
belongs to the space D′0,(d−1)(κ+2)(R

d × Sd−1), i.e. it is a distribution of order
0 in x and of order not more than (d− 1)(κ+ 2) in ξ.

Indeed, we already have µ ∈ D′(Rd × Sd−1) and the following bound with
ϕ := ϕ1ϕ2:

|〈µ, ϕ� ψ〉| 6 C‖ψ‖Cκ(Sd−1)‖ϕ‖CKl (Rd) ,

where C does not depend on ϕ and ψ.

Now we just need to apply the Schwartz kernel theorem given above to
conclude that µ is a continuous linear functional on C

0,(d−1)(κ+2)
c (Rd × Sd−1).

To mixed-norm case
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Thank you for your attention!
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Lebesgue spaces with mixed norm

For p ∈ [1,∞〉d, by Lp(Rd) denote the space of f on Rd with finite norm

‖f‖p =

(∫
R

· · ·
(∫

R

(∫
R

|f(x1, . . . , xd)|p1dx1

)p2/p1

dx2

)p3/p2

· · · dxd
)1/pd

,

and analogously for pi =∞.
These Banach spaces can be seen as vector-valued Lebesgue spaces in the sense

Lp(Rd) = Lpdxd(R; L
(p1,...,pd−1)
x1,...,xd−1 (Rd−1)) .

p′ = (p′1, . . . , p
′
d),

1

pi
+

1

p′i
= 1

Some facts:

(a) S ↪→ Lp(Rd),
(b) S is dense in Lp(Rd), for p ∈ [1,∞〉d,

(c) Lp′(Rd) is topological dual of Lp(Rd), for p ∈ [1,∞〉d,
(d) Lp(Rd) ↪→ S ′.
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Basic results

Some generalisations of classical results are still valid:

dominated convergence for Lp(Rd) spaces, p ∈ [1,∞〉d
Let (fn) be sequence of measurable functions. If fn −→ f (ss), and if there
exists G ∈ Lp(Rd) such that |fn| 6 G (ss), for n ∈ N, then ‖fn − f‖p −→ 0.

Minkowski ineaquality for integrals
For p ∈ [1,∞]d1 and f ∈ L(p,1,...,1)(Rd1+d2) we have∥∥∥∫

Rd2

f(x,y)dy
∥∥∥
p
6
∫
Rd2

‖f(·,y)‖pdy.

Hölder’s ineaquality and its converse
For p ∈ [1,∞]d we have∣∣∣ ∫

Rd
f(x)g(x)dx

∣∣∣ 6 ‖f‖p‖g‖p′ .
and

‖f‖p = sup
g∈Sp′

∣∣∣ ∫ fḡdx
∣∣∣ = sup

g∈Sp′∩S

∣∣∣ ∫ fḡdx
∣∣∣,

where Sp′ is a unit sphere in Lp′(Rd).
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Boundedness of pseudodifferential operators on classical spaces
(ρ, δ)-symbol of order m ∈ N (λ(ξ) =

√
1 + 4π2|ξ|2)

|∂α∂βa(x, ξ)| 6 Cα,βλ
m−ρ|β|+δ|α|(ξ),

and the associated operator a(·, D) : S −→ S

(a(x, D)ϕ)(x) =

∫
Rd

e2πix·ξa(x, ξ)ϕ̂(ξ) dξ.

Using the adjoint operator, it can be extended to an operator on S ′.
Classical boundedness results on Lebesgue spaces:
◦ L. Hörmander: for 0 6 δ 6 ρ 6 1 and δ < 1 the necessary condition is

m 6 −d(1− ρ)
∣∣∣1
2
− 1

p

∣∣∣ .
◦ C. Fefferman: for 1 < p <∞ this condition is also sufficient.

The strongest results are for ρ = 1, valid even for m = 0, which easily leads to
generalisations for Sobolev spaces (|γ| 6 k −m) via

(∂γa)(·, D) =
∑
|α|6k

aα(·, D)∂α .
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Notation

x = (x̄,x′), x̄ = (x1, . . . , xr), x
′ = (xr+1, . . . , xd), 0 6 r 6 d− 1,

Lp̄, p(Rd) = L(p̄,p,...,p)(Rd), ‖f‖p̄, p = ‖f‖(p̄, p,..., p), p̄ = (p1, . . . , pr).

x

x̄

x′

If r = 0: ‖f(·,x′)‖p̄ = |f(x′)|, ‖f‖p̄, p = ‖f‖Lp .

Distribution function:

λf (α) = λ(f ;α) = vol{x ∈ Rd : |f(x)| > α}.

(a) λf is non-increasing and right continuous.
(b) If |f | 6 |g|, then λf 6 λg.
(c) If |fn| ↗ |f |, then λfn ↗ λf .
(d) If f = g + h, it follows λ(f ;α) 6 λ(g; α

2
) + λ(h; α

2
).
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General framework

Theorem. Assume:
1) A,A∗ : L∞c (Rd)→ L1

loc(Rd) are formally adjoint linear operators.
2) For both T = A and T = A∗ there exist constants N > 1 and c1 > 0 satisfying

(∀ r ∈ 0..(d−1))(∀x′0 ∈ Rd−r)(∀ t > 0)

∫
|x′−x′0|∞>Nt

‖Tf(·,x′)‖p̄ dx
′ 6 c1‖f‖p̄,1 ,

for any function f in a subspace of L∞c (Rd) determined by properties:
(a) supp f ⊆ Rr × {x′ : |x′ − x′0|∞ 6 t} ,
(b)

∫
Rd−r f(x̄,x′) dx′ = 0 (a.e. x̄ ∈ Rr) .

3) For some q ∈ 〈1,∞〉 A has a continuous extension to an operator from Lq(Rd)
to itself with norm cq.

Then A has a continuous extension to an operator from Lp(Rd) to itself for
any p ∈ 〈1,∞〉d, with the norm

‖A‖Lp→Lp 6
d∑
k=1

ck
k−1∏
j=0

max(pd−j , (pd−j − 1)−1/pd−j )(c1 + cq)

6 c′
d−1∏
j=0

max(pd−j , (pd−j − 1)−1/pd−j )(c1 + cq),

where c and c′ are constants depending only on N and d.
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A few words about the proof

Note that we are using L∞c (Rd) as a dense subspace, and not C∞c (Rd), as we
have to use the Calderón-Zygmund decomposition.

The proof follows by repeated application of

Lemma. Assume that A,A∗ : L∞c (Rd)→ L1
loc(Rd) are linear operators

satisfying assumptions of the theorem.
If operator A has a continuous extension from Lp̄, q(Rd) to itself with norm cq,
for some p̄ ∈ 〈1,∞〉r and q ∈ 〈1,∞〉, then A has a continuous extension from
Lp̄, p(Rd) to itself for all p ∈ 〈1,∞〉, with norm

‖A‖ 6 c ·max(p, (p− 1)−1/p)(c1 + cq),

where c is a constant depending only on N and d.

If some of the consecutive pi-s are equal, we can get a bit better estimate.
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The boundedness

Teorem. Pseudodifferential operators of class S0
1,δ, δ ∈ [0, 1〉 are bounded on

Lp(Rd), p ∈ 〈1,∞〉d, with an estimate as in the previous theorem.

We have considered several venues for the proof:
◦ Using the techniques from N.A.& I. Ivec (2016) . . . work only for compactly

supported operators.
◦ Modifying the apporach in M. W. Wong’s book (1999), as it was done in J.

Aleksić, S. Pilipović & I. Vojnović (2017) . . . in the mixed norm case some
calculations did not work out.
◦ We followed Stein (1993): the representation of pseudodifferential operator

(a(x, D)ϕ)(x) = k(x, ·) ∗ ϕ ,

where the kernel k(x, ·) is a tempered distrubution such that k̂(x, ·) = a(x, ·).
Outside the origin kernel k(x, ·) is in fact a smooth function decreasing at
infinity; more precisely, the following theorem holds:

Teorem. If a ∈ Sm1,0, then k ∈ C∞(Rd ×Rd\{0})

|∂α∂βk(x, z)| 6 Cα,β,N |z|−d−m−|β|−N , z 6= 0,

for multiindices α and β, and N ∈ N0 such that d+m+ |β|+N > 0.
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The key lemma
The theorem is true also for 0 6 δ < 1, if α = 0!

Lemma. For each N > d there is a c > 0 such that for p̄ ∈ 〈1,∞〉r and any
f ∈

⋃
1<p< infty Lp(Rd) satisfying:

supp f ⊆ Rr × {x′ : |x′ − x′0|∞ 6 t}, x′0 ∈ Rd−r, t > 0,∫
f(x̄,x′)dx′ = 0 a.e. x̄,

it holds ∫
|x′−x′0|∞>Nt

‖a(·, D)f‖p̄x
′ 6 c‖f‖p̄,1.

x0

x̄

x′

2t 2Nt supp f

Figure 1. The support of function and the area of integration are disjoint

Corollary. a ∈ Sm1,δ, k > m, then a(·, D) : Wk,p(Rd) −→Wk−m,p(Rd) is
bounded.
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Boundedness of integral operators

Another application of the general theorem on

Af(x) =

∫
Rd

K(x,y)f(y) dy,

and it is a known fact that they are bounded on Lp(Rd) for p ∈ [1,∞] (the
Schur test) if the following sufficient conditions are satisfied:

(∃C1, C2 > 0)

∫
Rd
|K(x,y)| dx < C1 (a.e. y),

∫
Rd
|K(x,y)| dy < C2 (a.e. x).

Theorem. If kernel K of the integral operator satisfies

C1 :=

∫
Rd
‖K(·, · − y)‖L∞(Rd) dy <∞, C2 :=

∫
Rd
‖K(· − y, ·)‖L∞(Rd) dy <∞,

then it is bounded on Lp(Rd), p ∈ 〈1,∞〉d.
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Compactness
We consider

Hs,p(Rd) =
{
u ∈ S ′ : F−1((1 + 4π2|ξ|2)

s
2 û) ∈ Lp(Rd)

}
.

For two Banach spaces A0, A1 6 X, we can define a space (A0, A1)[θ] for
θ ∈ [0, 1] by complex interpolation.
First define a vector space F(A0, A1) consisting of all functions of complex
variable with values in A0 +A1, which are bounded and continuous on the
closed strip

S = {z ∈ C : 0 6 Re z 6 1} ,
and analytic on the open strip.

Moreover, the functions t 7→ f(j + it) are continuous from R into Aj , and
tend to zero as |t| −→ ∞. The norm is

‖f‖F = max
{

sup
t∈R
‖f(it)‖A0

, sup
t∈R
‖f(1 + it)‖A1

}
.

Then we define

(A0, A1)[θ] =
{
a ∈ A0 +A1 : a = f(θ) for some f ∈ F(A0, A1)

}
,

with the norm

‖a‖[θ] = inf{‖f‖F : f(θ) = a, f ∈ F(A0, A1)} .
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Main theorem

Theorem. Let s0, s1 ∈ R, 0 < θ < 1, and s = (1− θ)s0 + θs1. Then(
Hs0,p0(Rd),Hs1,p1(Rd)

)
[θ]

= Hs,p(Rd) ,

for any 1 < p0,p1 <∞, where 1/p = (1− θ)/p0 + θ/p1.

This, in turn, leads to a form of the Rellich-Kondrašov theorem for mixed-norm
spaces

Theorem. Let s0, s1 ∈ R, 0 < θ < 1, and s = (1− θ)s0 + θs1. Then(
Hs0,p0(Rd),Hs1,p1(Rd)

)
[θ]

= Hs,p(Rd) ,

for any 1 < p0,p1 <∞, where 1/p = (1− θ)/p0 + θ/p1.
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Hörmander-Mihlin’s theorem for mixed-norm spaces

Theorem. Let m ∈ L∞(Rd \ {0}) for some A > 0 and any |α| 6 [ d
2
] + 1

(a) either Mihlin’s condition |∂α
ξ m(ξ)| 6 A|ξ|−|α| or

(b) Hörmander’s condition

sup
R>0

R−d+2|α|
∫
R<|ξ|<2R

|∂α
ξ m(ξ)|2 dξ 6 A2 <∞ .

Then m lies in Mp, for any p ∈ 〈1,∞〉d, and we have the estimate

‖m‖Mp
6

d∑
k=1

ck
k−1∏
j=0

max{pd−j , (pd−j − 1)−1/pd−j}(A+ ‖m‖L∞)

6 c′
d−1∏
j=0

max{pd−j , (pd−j − 1)−1/pd−j}(A+ ‖m‖L∞) ,

where c and c′ are constants that depend only on d.

[N.A. & I. Ivec (2016)]
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First commutation lemma on mixed-norm Lebesgue spaces

Lemma. Let (vn) be bounded both in L2(Rd) and in Lr(Rd), for some
r ∈ [2,∞]d, and such that vn −⇀ 0 in D′. Then (Cvn), where the
commutator is defined by C := AψMϕ −MϕAψ, strongly converges to zero in
Lq(Rd), for any q ∈ [2,∞〉d such that there exists λ ∈ 〈0, 1〉 for which it holds

1

qi
=
λ

2
+

1− λ
ri

, i ∈ 1..d .
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H-distributions on mixed-norm Lebesgue spaces

Theorem. Let κ = [d/2] + 1 and p ∈ 〈1,∞〉d. If un −⇀ 0 weakly in

Lp
loc(Rd), vn

∗−⇀v in Lq
loc(Rd), for some q ∈ [2,∞]d such that q > p′, then

there exist subsequences (un′) and (vn′) and a complex distribution
µ ∈ D′(Rd × Sd−1), such that for φ1, φ2 ∈ C∞c (Rd) and ψ ∈ Cκ(Sd−1) one
has

lim
n′

Lp(Rd)

〈
Aψ(φ1un′), φ2vn′

〉
Lp′ (Rd)

= lim
n′

Lp(Rd)

〈
φ1un′ ,Aψ(φ2vn′)

〉
Lp′ (Rd)

= 〈µ, φ1φ2 � ψ〉 ,

where Aψ : Lp(Rd) −→ Lp(Rd) is the Fourier multiplier operator.

Back to consequences of Schwartz theorem

µ is the H-distribution corresponding to (a subsequence of) (un) and (vn).

If (un), (vn) are defined on Ω ⊆ Rd, extension by zero to Rd preserves the
convergence, and we can apply the Theorem. µ is supported on Cl Ω× Sd−1.

We distinguish un ∈ Lp(Rd) and vn ∈ Lq(Rd). For p > 2, p′ 6 2 and we can
take q > 2; this covers the L2 case (including un = vn).
The assumptions imply un, vn −⇀ 0 in L2

loc(Rd), resulting in a distribution µ
of order zero (an unbounded Radon measure, not a general distribution).
The novelty in Theorem is for p < 2.

For vector-valued un ∈ Lp(Rd;Ck) and vn ∈ Lq(Rd;Cl), the result is a matrix
valued distribution µ = [µij ], i ∈ 1..k and j ∈ 1..l.

The H-distribution would correspond to a non-diagonal block for an H-measure.
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The proof is based on First commutation lemma

If q < r, we can apply the classical interpolation inequality:

‖Cvn‖q 6 ‖Cvn‖α2 ‖Cvn‖1−αr ,

for α ∈ 〈0, 1〉 such that 1/q = α/2 + (1− α)/r. As C is compact on L2(Rd)
by Tartar’s First commutation lemma, while it is bounded on Lr(Rd), we get
the claim.

For the most interesting case, where q = r, we need a better result: the
Krasnosel’skij theorem (a variant of Riesz-Thorin theorem).

In fact, the commutator C is compact on all Lp(Rd), p ∈ 〈1,∞〉.
For that we need an extension of the Krasnosel’skij’s result to unbounded
domains [N.A., M. Mǐsur, D. Mitrović (2018)]

Lemma. Assume that linear operator A is compact on L2(Rd) and bounded
on Lr(Rd), for some r ∈ 〈1,∞〉 \ {2}. Then A is also compact on any Lp(Ω),
where 1/p = θ/2 + (1− θ)/r, for a θ ∈ 〈0, 1〉.
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