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Microlocal defect functionals



H-measures vs. defect measures
H-measures or microlocal defect measures represent a generalisation of defect
measures. Besides the space variables, they depend on the dual variables as
well.

An H-measure is a Radon measure on the cospherical bundle

Ω× Sd−1 ⊆ T ∗Ω ' Ω×Rd

over a domain Ω ⊆ Rd, and it is associated to a weakly converging sequence in
L2

loc(Ω).

Consider a plain wave:
un(x) = ϕ(x)e

2πi x
εn
·k
,

where ϕ ∈ L2
loc(Rd), k ∈ Rd \ {0}, and εn → 0+. This sequence weakly

converges in L2
loc(Rd) to 0 (but not strongly, except in the trivial case ϕ = 0).

Defect measure is the limit of |un|2 = |ϕ|2 in the space of (unbounded) Radon
measures with respect to the weak-∗ topology — |ϕ|2λd.
On the other hand, the H-measure is

|ϕ|2λd � δ k
|k|
,

where δ k
|k|

(the Dirac measure at point k/|k|) is a measures in the dual space

(variable ξ).

Hence, the direction of oscillation is inherent in the H-measure.
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H-measures vs. semiclassical (Wigner) measures

In the example the H-measure does not distinguish between sequences with
different frequencies 1

εn
. We need to incorporate a scale.

Semiclassical measures are Radon measures on the cotangential bundle
Ω×Rd. They depend upon a characteristic length (ωn), ωn → 0+ — more
suitable where such a characteristic length naturally appears (e.g. in highly
oscillating problems for partial differential equations).

The scale brings new issues: if (ωn) is chosen inappropriately, we can lose
information.

For example, if limn
ωn
εn

= +∞, the semiclassical measure associated to the
plane wave is equal to zero measure. This in particular implies that, in contrast
to H-measures, a zero semiclassical measure does not necessarily guarantee the
strong convergence of the associated sequence (the so-called (ωn)-oscillatory
property needs to be satisfied as well).

H-measures and semiclassical measures are in a general relation (neither is a
generalisation of the other) and either has some advantages and disadvantages.
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One-scale H-measures

One-scale H-measures are a true extension of H-measures and semiclassical
measures.

Crucial is a proper choice of the domain for dual variables.
For a fine tuning with characteristic lengths the set has to be thick enough, but
we need to allow for directions to be detected also at the origin and infinity.
This can be achieved with a radial compactification of Rd \ {0}, denoted by
K0,∞(Rd), which is homeomorphic to the d-dimensional spherical shell.

∞e

e0e

Rd

Σ∞

Σ0
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Compactification of Rd
∗ = Rd \ {0}

J := R ◦ T : Rd
∗ → Sd(0,r1)

ξ0 = 0

ξ0

Rd

ξ0 = 1

0

ξ T (ξ)

J (ξ) = R(T (ξ))
ξ2 . . . ξd

ξ1

ξ0

R(Rd \K[0, r0]) =
{

(ζ0, ζ) ∈ Sd : 0 < ζ0 < r1

}
=: Sd(0,r1)

and its closure in the ambient euclidean space R1+d

Cl Sd(0,r1) =
{

(ζ0, ζ) ∈ Sd : 0 6 ζ0 6 r1

}
=: Sd[0,r1] ,

which is diffeomorphic to the compactification K0,∞(Rd).
to Fourier multipliers
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Overview of MDF

one-scale
H-distributions

H-distributions semiclassical
distributions

microlocal com-
pactness forms

Young measures

one-scale
H-measures

semiclassical me-
asures (aka Wig-

ner measures)
multi-scale
H-measures

H-measures
(aka microlocal

defect measures)
defect measures

parabolic, ultra-
parabolic, frac-

tional and adap-
tive H-measures

Variants with a characteristic length

Variants on L2 space

Variants with
anisotropic scaling

in variables

to Existence theorem
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Compactification of Rd
∗ = Rd \ {0}

For the compactifying map J we take the composition of the translation from
the origin in the radial direction for r0 > 0:

Rd
∗ 3 ξ

T7−→ |ξ|+ r0

|ξ| ξ ∈ Rd \K[0, r0] ,

and a compactifying map of the radial compactification.
For the latter, we first identify Rd with the hypersurface ξ0 = 1 in R1+d

ξ0,ξ
, and

then apply the modified stereographic projection based on the line through the
origin (instead of the South Pole). More precisely, the radial compactification
map R maps ξ to the intersection of [0, 1] 3 t 7→ (t, tξ) (the line through (1, ξ)
and (0, 0) in R1+d) and the upper half of the unit sphere centred at the origin:
Sd+ := {(ζ0, ζ) ∈ Sd : ζ0 > 0}. Since the intersection occurs at

t = (1 + |ξ|2)−
1
2 , we have that R : Rd → Sd+ is given by

R(ξ) =
( 1√

1 + |ξ|2
,

ξ√
1 + |ξ|2

)
.
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J := R ◦ T : Rd
∗ → Sd

(0,r1)

R(Rd \K[0, r0]) =
{

(ζ0, ζ) ∈ Sd : 0 < ζ0 < r1

}
=: Sd(0,r1)

and

J (ξ) =

(
1√

1 + (|ξ|+ r0)2
,

|ξ|+ r0√
1 + (|ξ|+ r0)2

ξ

|ξ|

)
.

ξ0 = 0
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Fourier multipliers

Functions from Cκ(Sd−1), as well as those from S(Rd) can be identified as
functions on K0,∞(Rd).

Theorem. Any function from Cb
d
2
c+1(K0,∞(Rd)) satisfies Mihlin’s condition

|∂αψ(ξ)| 6 C

|ξ||α|
, ξ ∈ Rd

∗ ,

for each |α| 6 b d
2
c+ 1, when suitably restricted to Rd

∗.
In particular, for any p ∈ (1,∞), it holds (Aψu := (ψû)∨)

‖Aψ‖L(Lp(Rd)) 6 Cd,pCd‖ψ‖
C
b d
2
c+1

(K0,∞(Rd))
,

for ψ ∈ Cb
d
2
c+1(K0,∞(Rd)), where Cd,p is the constant from the Mihlin

theorem, while Cd is a constant depending only on d.
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First commutation lemma

Lema. Let ψ ∈ Cb
d
2
c+1(K0,∞(Rd)), ϕ ∈ C0(Rd), ωn → 0+, and denote

ψn(ξ) := ψ(ωnξ). Then the commutator of multiplication Bϕ by ϕ and the
Fourier multiplier Aψn can be expressed as a sum

Cn := [Bϕ,Aψn ] = C̃n +K ,

where for any p ∈ (1,∞) we have that K is a compact operator on Lp(Rd),
while C̃n → 0 in the operator norm on L(Lp(Rd)).
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Anisotropic distributions
Let Ω ⊆ Rdx × Rry, and l,m ∈ N0 ∪ {∞}.
Spaces of test functions:

Cl,m(Ω) , Cl,mK (Ω) and Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω) ,

and distributions D′l,m(Ω) := (Cl,mc (Ω))′.
The definition can easily be extended to differential manifolds without
boundary of dimension d.

Teorem. Let X and Y be differential manifolds, of dimension d and r, and
l,m ∈ N0 ∪ {∞}. Then the following statements hold:

i) If K ∈ D′l,m(X × Y ), then for each ϕ ∈ Clc(X) the linear form Kϕ,
defined by ψ 7→ 〈K,ϕ⊗ ψ〉, is a distribution of order not more than m on
Y . Furthermore, the mapping ϕ 7→ Kϕ, taking Clc(X) with its strict
inductive limit topology to D′m(Y ) with weak ∗ topology, is linear and
continuous.

ii) Let A : Clc(X)→ D′m(Y ) be a continuous linear operator, in the pair of
topologies as in (i) above. Then there exists a unique distribution of
anisotropic order K ∈ D′l,r(m+2)(X × Y ) such that for any ϕ ∈ Clc(X)

and ψ ∈ C
r(m+2)
c (Y ) one has

〈K,ϕ⊗ ψ〉 = 〈Kϕ, ψ〉 = 〈Aϕ,ψ〉 .

to manifolds with boundary
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Test functions

Let Ω ⊆ Rdx × Rry, and l,m ∈ N0 ∪ {∞}.

Cl,m(Ω) :=
{
f ∈ C(Ω) : (∀α ∈ Nd

0)(∀β ∈ Nr
0)

|α| 6 l& |β| 6 m =⇒ ∂α
x ∂

β
y f ∈ C(Ω)

}
,

In a standard way introduce the seminorms using a nested sequence of
compacts Kn.

Cl,mK (Ω) :=
{
f ∈ Cl,m(Ω) : supp f ⊆ K

}
is a Banach space for finite l,m, and a Fréchet space for at least one of them
infinite.

Cl,mc (Ω) :=
⋃
n∈N

Cl,mKn (Ω)

with the topology of strict inductive limit is a complete locally convex
topological vector space.
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Anisotropic distributions

The space of anisotropic distributions is the dual of Cl,mc (Ω)

D′l,m(Ω) := (Cl,mc (Ω))′ .

In fact

T ∈ D′l,m(Ω) ⇐⇒
{
T ∈ D′(Ω) , and

(∀K ⊂⊂ Ω)(∃C > 0)(∀ϕ ∈ C∞K (Ω)) |〈T, ϕ〉| 6 Cpl,mK (ϕ) ,

The definition can easily be extended to differential manifolds without
boundary of dimension d:
a locally Euclidean (of the fixed dimension d, i.e. locally diffeomorphic to Rd)
second countable Hausdorff topological space on which an equivalence class of
C∞ smooth atlases is given.
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Kernel theorem on manifolds without boundary

Teorem. Let X and Y be differential manifolds, of dimension d and r, and
l,m ∈ N0 ∪ {∞}. Then the following statements hold:

i) If K ∈ D′l,m(X × Y ), then for each ϕ ∈ Clc(X) the linear form Kϕ,
defined by ψ 7→ 〈K,ϕ⊗ ψ〉, is a distribution of order not more than m on
Y . Furthermore, the mapping ϕ 7→ Kϕ, taking Clc(X) with its strict
inductive limit topology to D′m(Y ) with weak ∗ topology, is linear and
continuous.
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Anisotropic distributions on manifolds with boundary

The definition of differential manifold with boundary differs from the notion of
a differential manifold without boundary only in that the former is
diffeomorphic either to Rd or to the closed half-space
ClRd

+ = {x = (x1, x2, . . . , xd) ∈ Rd : xd > 0}.

For simplicity, we shall consider only X = Ω ⊆ Rd open, and Y = K0,∞(Rd).

The space of distributions on K0,∞(Rd) of order l ∈ N ∪ {∞} we define by

D′l(K0,∞(Rd)) =
(
Cl(K0,∞(Rd))

)′
,

where the case l =∞ we shall also denote by D′(K0,∞(Rd)).
[This corresponds to supported distributions of R. Melrose.]

The space of anisotropic distributions on Ω×K0,∞(Rd) of order
(l,m) ∈ (N ∪ {∞})2 is defined by

D′l,m(Ω×K0,∞(Rd)) =
(
Cl,mc (Ω×K0,∞(Rd))

)′
.
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Kernel theorem on Ω×K0,∞(Rd)

Note that it is sufficient to introduce distributions on Ω× Sd[0,r1] since by

applying the pushforward (J−1)∗ we have a one-to-one correspondence with
distributions on Ω×K0,∞(Rd).

Corollary. Let Ω ⊆ Rd be open and l,m ∈ N0 ∪ {∞}. Furthermore, let
A : Clc(Ω)→ D′m(K0,∞(Rd)) be a continuous linear operator, taking Clc(Ω)
with its inductive limit topology and D′m(K0,∞(Rd)) with weak ∗ topology.
Then there exists a unique distribution of anisotropic order
K ∈ D′l,d(m+2)(Ω×K0,∞(Rd)) such that for any ϕ ∈ Clc(X) and

ψ ∈ Cd(m+2)(K0,∞(Rd)) one has

〈K,ϕ⊗ ψ〉 = 〈Aϕ,ψ〉 .
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One-scale H-measures

Ω ⊆ Rd open

, p ∈ 〈1,∞〉, 1
p

+ 1
p′ = 1

Teorem
If un ⇀ 0 in L2

loc(Ω), vn ⇀ 0 in L2
loc(Ω) and ωn → 0+, then there exist (un′),

(vn′) and µ
(ωn′ )
K0,∞

∈M(Ω×K0,∞(Rd)) such that for any ϕ1, ϕ2 ∈ Cc(Ω) and

ψ ∈ C(K0,∞(Rd))

lim
n′

∫
Rd

ϕ̂1un′(ξ)ϕ̂2vn′(ξ)ψ(ωn′ξ) dξ = 〈µ(ωn′ )
K0,∞

, ϕ1ϕ̄2 � ψ〉 .

The measure µ
(ωn′ )
K0,∞

is called the one-scale H-measure with characteristic

length (ωn′) associated to the (sub)sequences (un′) and (vn′).

Aψ(u) = (ψû)∨, ψn(ξ) := ψ(ωnξ)

Determine E such that
— Aψ : Lp(Rd) −→ Lp(Rd) is continuous
— The First commutation lemma is valid
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Existence of one-scale H-distributions

Teorem. Let Ω ⊆ Rd be open. If un ⇀ 0 in Lploc(Ω) and (vn) is bounded in
Lqloc(Ω) (for some p ∈ (1,∞) and q > p′, where 1/p+ 1/p′ = 1), and if
ωn → 0+, then there exist subsequences (un′), (vn′), and a complex valued

(supported) distribution ν
(ωn′ )
K0,∞

∈ D′0,κ(Ω×K0,∞(Rd)), where κ := d(b d
2
c+ 3),

such that for any ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ Cκ(K0,∞(Rd)), one has:

lim
n′→∞

∫
Rd

Aψn′ (ϕ1un′)(x)(ϕ2vn′)(x) dx = lim
n′→∞

∫
Rd

(ϕ1un′)(x)Aψ̄n′ (ϕ2vn′)(x) dx

=
〈
ν

(ωn′ )
K0,∞

, ϕ1ϕ̄2 ⊗ ψ
〉
,

(1)

where ψn = ψ(ωn·). The distribution ν
(ωn′ )
K0,∞

we call the one-scale

H-distribution (with the characteristic length (ωn′)) associated to
(sub)sequences (un′) and (vn′).
Moreover, for p = 2 the one-scale H-distribution above is the one-scale
H-measures with characteristic length (ωn′) associated to (sub)sequences (un′)
and (vn′).
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Immediate properties of one-scale H-distributions

Changing the order of sequences; (vn) and (un) determine the distribution〈
ν̄K0,∞ ,Ψ

〉
=
〈
νK0,∞ , Ψ̄

〉
.

Supports: if un, vn are supported in closed sets F1, F2 ⊆ Ω, then any one-scale
distribution they determine is supported in (F1 ∩ F2)×K0,∞(Rd).

Lema. Let un ⇀ 0 in Lploc(Ω), for some p ∈ (1,∞). Then the following
statements are equivalent:

(a) un → 0 (strongly) in Lploc(Ω).

(b) For every bounded sequence (vn) in Lp
′

loc(Ω) and every ωn → 0+, (un)
and (vn) form an (ωn)-pure pair and the corresponding one-scale
H-distribution is zero.

(c) For vn = |un|p−2un and some ωn → 0+, (un) and (vn) form an
(ωn)-pure pair and the corresponding one-scale H-distribution is zero.
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Localisation principle for one-scale H-distributions . . .

Theorem. Let un ⇀ 0 in Lploc(Ω;Cr) satisfy∑
|α|6m

ε|α|n ∂α(Aαun) = fn ,

where (εn) is a sequence of positive real numbers, Aα
n ∈ C(Ω; Mq×r(C)), such

that for any α ∈ Nd
0 the sequence Aα

n → Aα in the space C(Ω; Mq×r(C)) (in
other words, Aα

n converges locally uniformly to Aα), while (fn) is a sequence
of functions in W−m,ploc (Ω;Cr) satisfying (εn)-local compactness condition

(∀ϕ ∈ C∞c (Ω)) A 1
1+|εnξ|m

(ϕfn) −→ 0 in Lp(Rd;Cr) .

Moreover, let (vn) be a bounded sequence in Lp
′

loc(Ω;Cr) and let ωn → 0+ be
a sequence of positive reals such that c := limn

ωn
εn

exists (in [0,∞]).
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Localisation principle for one-scale H-distributions (cont.)

Then any one-scale H-distribution ν
(ωn)
K0,∞

associated to (sub)sequences (of)

(un) and (vn) with characteristic length (ωn) satisfies:

pc(x, ξ)νK0,∞ = 0 ,

where, with respect to the value of c, we have

i) c = 0 :

p0(x, ξ) =
∑
|α|=m

(2πi)m
ξα

1 + |ξ|mAα(x) ,

ii) c ∈ (0,∞) :

pc(x, ξ) =
∑
|α|6m

(2πi

c

)|α| ξα

1 + |ξ|mAα(x) ,

iii) c =∞ :

p∞(x, ξ) =
1

1 + |ξ|mA0(x) .

to localisation for H-measures
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Localisation principle for one-scale H-measures (c = 1)

∑
l6|α|6m

ε|α|−ln ∂α(Aαun) = fn in Ω ,

(∀ϕ ∈ C∞c (Ω))
ϕ̂fn

1 +
∑m
s=l ε

s−l
n |ξ|s

−→ 0 in L2(Rd;Cr) .

Theorem. Under previous assumptions, one-scale H-measure µK0,∞ with

characteristic length (εn) corresponding to (un) satisfies

pµK0,∞ = 0 ,

where

p(x, ξ) :=
∑

l6|α|6m

(2πi)|α|
ξα

|ξ|l + |ξ|mAα(x) .
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Localisation principle for H-measures

Theorem. If un
L2

−−⇀ 0 (weakly), then there is a subsequence (un
′
) and µ on

Rd × Sd−1 such that:

lim
n′→∞

∫
Rd

F
(
ϕ1un

′)
⊗F

(
ϕ2un

′)
ψ

(
ξ

|ξ|

)
dξ = 〈µ, ϕ1ϕ̄2ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ) .

∑
k

∂k
(
Akun

)
+ Bun = fn , Ak Hermitian, fn

H−1
loc−−→ 0 (strongly).

If supports of un, fn are contained inside Ω, we can extend them by zero to Rd.

Theorem. (localisation property) If un −⇀ 0 in L2(Rd)
r

defines µ,
and if un satisfies:∑

k

∂k
(
Akun

)
→ 0 in the space H−1

loc(Rd)r ,

then for P(x, ξ) :=
∑
k ξkA

k(x) on Ω× Sd−1 it holds: P(x, ξ)µ = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.

25



Localisation principle for H-measures

Theorem. If un
L2

−−⇀ 0 (weakly), then there is a subsequence (un
′
) and µ on

Rd × Sd−1 such that:

lim
n′→∞

∫
Rd

F
(
ϕ1un

′)
⊗F

(
ϕ2un

′)
ψ

(
ξ

|ξ|

)
dξ = 〈µ, ϕ1ϕ̄2ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ) .

∑
k

∂k
(
Akun

)
+ Bun = fn , Ak Hermitian, fn

H−1
loc−−→ 0 (strongly).

If supports of un, fn are contained inside Ω, we can extend them by zero to Rd.

Theorem. (localisation property) If un −⇀ 0 in L2(Rd)
r

defines µ,
and if un satisfies:∑

k

∂k
(
Akun

)
→ 0 in the space H−1

loc(Rd)r ,

then for P(x, ξ) :=
∑
k ξkA

k(x) on Ω× Sd−1 it holds: P(x, ξ)µ = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.

25



Localisation principle for H-measures

Theorem. If un
L2

−−⇀ 0 (weakly), then there is a subsequence (un
′
) and µ on

Rd × Sd−1 such that:

lim
n′→∞

∫
Rd

F
(
ϕ1un

′)
⊗F

(
ϕ2un

′)
ψ

(
ξ

|ξ|

)
dξ = 〈µ, ϕ1ϕ̄2ψ〉

=

∫
Rd×Sd−1

ϕ1(x)ϕ̄2(x)ψ(ξ) dµ(x, ξ) .

∑
k

∂k
(
Akun

)
+ Bun = fn , Ak Hermitian, fn

H−1
loc−−→ 0 (strongly).

If supports of un, fn are contained inside Ω, we can extend them by zero to Rd.

Theorem. (localisation property) If un −⇀ 0 in L2(Rd)
r

defines µ,
and if un satisfies:∑

k

∂k
(
Akun

)
→ 0 in the space H−1

loc(Rd)r ,

then for P(x, ξ) :=
∑
k ξkA

k(x) on Ω× Sd−1 it holds: P(x, ξ)µ = 0 .

Thus, the support of H-measure µ is contained in the set{
(x, ξ) ∈ Ω× Sd−1 : detP(x, ξ) = 0

}
of points where P is a singular matrix.

25



Localisation principle for H-measures

Theorem. Let un −⇀ 0 in L2
loc(Ω;Cr), and let for a given m ∈ N∑

|α|6m

∂α(Aαun) −→ 0 strongly in H−mloc (Ω; Cq) ,

where Aα ∈ C(Ω; Mq×r(C)) and ∂α = ∂α1

∂x1
. . . ∂

αd

∂xd
denotes partial derivatives

in variable x in the physical space.
Then for the associated H-measure µ we have

pprµ = 0 ,

where the principal symbol of the differential operator is

ppr(x, ξ) :=
∑
|α|=m

(2πi)m
( ξ

|ξ|

)α
Aα(x) .

This result implies that the support of µ is contained in the set

Σppr :=
{

(x, ξ) ∈ Ω× Sd−1 : rankppr(x, ξ) < r
}

of points where ppr(x, ξ) is not left invertible.
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Small-amplitude homogenisation of elastic plate



Assumptions for Kirchhoff-Love plates

◦ the plate is thin, but not very thin
(rougly, the thickness is 1–20% of the leading dimension)

◦ the plate thickness might vary only slowly
(so that the 3D stress effects are ignored)

◦ the plate is symmetric about mid-surface
◦ applied transverse loads are distributed over plate surface areas (no

concentrated loads)
◦ there is no significant extension of the mid-surface

There are no transverse shear deformations.
The variation of vertical displacement in the direction of thickness can be
neglected.
The planes perpendicular to the mid-surface will remain plane and
perpendicular to the deformed mid-surface.
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Kirchhoff-Love plate equation

The above leads to a linear elliptic problem, with homogeneous Dirichlet
boundary conditions: {

div div (M∇∇u) = f in Ω
u ∈ H2

0(Ω) ,

where:
◦ Ω ⊆ Rd is a bounded domain (d = 2 . . . for the plate)
◦ f ∈ H−2(Ω) is the external load
◦ u ∈ H2

0(Ω) is the vertical displacement of the plate
◦ M describes (non-homogeneous) properties of the material plate is made of. At

a point it is a linear operator from symmetric matrices to symmetric matrices,
and we take M from the set:

M2(α, β; Ω) :=

{
N ∈ L∞(Ω;L(Sym,Sym)) : (∀S ∈ Sym)

N(x)S : S > αS : S (ae x) & N−1(x)S : S >
1

β
S : S (ae x)

}
This ensures the boundedness and coercivity, so we have the existence and
uniqueness of solutions via the Lax-Milgram lemma in a standard way.
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Homogenisation: H-convergence

A sequence of tensor functions (Mn) in M2(α, β; Ω) H-converges to
M ∈M2(α′, β′; Ω) if for any f ∈ H−2(Ω) the sequence of solutions un of
problems {

div div (Mn∇∇un) = f in Ω
un ∈ H2

0(Ω)

coverges weakly to a limit u in H2
0(Ω), while the sequence (Mn∇∇un)

converges to M∇∇u weakly in the space L2(Ω; Sym).

This convergence comes indeed from a weak topology on
X =

⋃
M2(1/n, n; Ω), where we consider the maps M 7→ u, with weak

topology on H2
0(Ω), for any fixed f ∈ H−2(Ω), as well as M 7→M∇∇u, with

weak topology on L2(Ω; Sym).

for second order elliptic equations:
Tartar & Murat, 1977

general form for higher-order elliptic equations:
Žikov, Kozlov, Oleinik, Ngoan, 1979

for plates: N.A. & N. Balenović, 1999–2000
revisited: K. Burazin, J. Jankov (& M. Vrdoljak), 2018–21
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revisited: K. Burazin, J. Jankov (& M. Vrdoljak), 2018–21

31



Properties: Compactness

Theorem. Let (Mn) be a sequence in M2(α, β; Ω). Then there is a
subsequence (Mnk ) and a tensor function M ∈M2(α, β; Ω) such that (Mnk )
H-converges to M.

Theorem. (compactness by compensation) Let the following convergences be
valid:

wn −⇀ w∞ in H2
loc(Ω) ,

Dn −⇀ D∞ in L2
loc(Ω; Sym) ,

with an additional assumption that the sequence (div divDn) is contained in a
precompact (for the strong topology) set of the space H−2

loc(Ω). Then we have

∇∇wn : Dn ∗−−⇀ ∇∇w∞ : D∞

in the space of Radon measures.

to Dependence on parameters
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Locality and irrelevance of boundary conditions

Theorem. (locality of H-convergence) Let (Mn) and (On) be two sequences of
tensors in M2(α, β; Ω), which H-converge to M and O, respectively. Let ω be
an open subset compactly embedded in Ω. If Mn(x) = On(x) in ω, then
M(x) = O(x) in ω.

Theorem. (irrelevance of boundary conditions) Let (Mn) be a sequence of
tensors in M2(α, β; Ω) that H-converges to M. For any sequence (zn) such
that

zn −⇀ z in H2
loc(Ω)

div div (Mn∇∇zn) = fn −→ f in H−2
loc(Ω),

the weak convergence Mn∇∇zn ⇀M∇∇z in L2
loc(Ω; Sym) holds.
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Convergence of energies

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) that
H-converges to M. For any f ∈ H−2(Ω), the sequence (un) of solutions of{

div div (Mn∇∇un) = f in Ω
un ∈ H2

0 (Ω)

satisfies Mn∇∇un : ∇∇un ⇀M∇∇u : ∇∇u weakly-∗ in the space of Radon

measures and

∫
Ω

Mn∇∇un : ∇∇un dx→
∫

Ω

M∇∇u : ∇∇u dx, where u is

the solution of the homogenised equation{
div div (M∇∇u) = f in Ω
u ∈ H2

0(Ω) .
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Ordering property for symmetric tensors . . .

Theorem. Let (Mn) and (On) be two sequences of symmetric tensors in
M2(α, β; Ω) that H-converge to the homogenised tensors M and O,
respectively. Furthermore, assume that, for any n,

(∀ ξ ∈ Sym) Mnξ : ξ 6 Onξ : ξ .

Then the homogenised limits are also ordered:

(∀ ξ ∈ Sym) Mξ : ξ 6 Oξ : ξ .

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) that either
converges strongly to a limit tensor M in L1(Ω;L(Sym,Sym)), or converges to
M almost everywhere in Ω. Then, Mn also H-converges to M.
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. . . and metrisability

Theorem. Let F = {fn : n ∈ N} be a countable dense family in H−2(Ω), M
and O tensors in M2(α, β; Ω), and (un), (vn) sequences of solutions to{

div div (M∇∇un) = fn
un ∈ H2

0(Ω)

and {
div div (O∇∇vn) = fn
vn ∈ H2

0(Ω)
.

Then,

d(M,O) :=
∞∑
n=1

2−n
‖un − vn‖L2(Ω) + ‖M∇∇un −O∇∇vn‖H−1(Ω;Sym)

‖fn‖H−2(Ω)

is a metric on M2(α, β; Ω) and H-convergence is equivalent to the convergence
with respect to d.
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Correctors

Let (Mn) be a sequence of tensors in M2(α, β; Ω) that H-converges to a limit
M, and (wijn )16i,j6d a family of test functions satisfying

wijn ⇀
1

2
xixj in H2(Ω)

Mn∇∇wijn ⇀ · · · in L2
loc(Ω; Sym)

div div (Mn∇∇wijn )→ · · · in H−2
loc(Ω).

The sequence of tensors Wn defined by Wn
ijkm = [∇∇wkmn ]ij is called the

sequence of correctors.
It is unique, indeed:

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) that
H-converges to a tensor M. A sequence of correctors (Wn) is unique in the
sense that, if there exist two sequences of correctors (Wn) and (W̃n), their
difference (Wn − W̃n) converges strongly to zero in L2

loc(Ω;L(Sym, Sym)).
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Corrector result

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) which
H-converges to M. For f ∈ H−2

loc(Ω), let (un) be the solution of{
div div (Mn∇∇un) = f in Ω
un ∈ H2

0(Ω) ,

and let u be the weak limit of (un) in H2
0(Ω), i.e. the solution of the

homogenised equation {
div div (M∇∇u) = f in Ω
u ∈ H2

0(Ω) .

Then Rn := ∇∇un −Wn∇∇u→ 0 strongly in L1
loc(Ω; Sym).
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Smoothness with respect to a parameter p ∈ P

Theorem. Let Mn : Ω× P → L(Sym, Sym) be a sequence of tensors, such
that Mn(·, p) ∈M2(α, β; Ω), for p ∈ P . Assume that p 7→Mn(·, p) is of class
Ck from P to L∞(Ω;L(Sym,Sym)), with derivatives (up to order k) being
equicontinuous on every compact set K ⊆ P :

(∀K ∈ K(P ))(∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)(∀i ≤ k)

|p− q| < δ ⇒ ‖(Mn)(i)(·, p)− (Mn)(i)(·, q)‖L∞(Ω;L(Sym,Sym)) < ε.

Then there is a subsequence (Mnk ) such that for every p ∈ P

Mnk (·, p) H−−⇀M(·, p) in M2(α, β; Ω)

and p 7→M(·, p) is a Ck mapping from P to L∞(Ω;L(Sym, Sym)).

In particular, the above is valid for k =∞ and k = ω (the analytic functions).
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Small-amplitude homogenisation

Consider a sequence of problems{
div div (Mn(· ; γ)∇∇un) = f in Ω
un ∈ H2

0(Ω) ,

where we assume that the coefficients are a small perturbation of a given
continuous tensor function A0, for small γ

Mn(· ; γ) := A0 + γBn + γ2Cn + o(γ2) ,

where Bn,Cn
∗−−⇀ O in L∞(Ω;L(Sym,Sym)). For small γ, in fact, we can

assume that the function is analytic in γ.
Then (after passing to a subsequence if needed)

Mn(· ; γ)
H−−−⇀M(· ; γ) = A0 + γB0 + γ2C0 + o(γ2) ;

the limit being measurable in x, and analytic in γ.

The goal is to obtain the explicit formula for the leading terms B0 and C0 in
the expansion of the homogenisation limit.
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Small-amplitude homogenisation procedure
Take u ∈ H2

0(Ω) and define fγ := div div (M(· ; γ)∇∇u), depending analytically
on γ.

Using fγ , let unγ be the solution (for each n and γ) of{
div div (Mn(· ; γ)∇∇unγ ) = fγ in Ω

unγ ∈ H2
0(Ω) ,

which analytically depends on γ, hence one can write

unγ := un0 + γun1 + γ2un2 + o(γ2) .

As Mn(· ; γ)
H−−⇀M(· ; γ), we have weak convergences in L2(Ω; Sym):

(∗)
Enγ := ∇∇unγ −⇀ ∇∇u
Dn
γ := Mn(· ; γ)Enγ −⇀M(· ; γ)∇∇u .

Enγ and Dn
γ are analytic in γ and consequently each can be expanded in the

Taylor series:
Enγ = En0 + γEn1 + γ2En2 + o(γ2)

Dn
γ = Dn

0 + γDn
1 + γ2Dn

2 + o(γ2) .

For γ = 0, the uniqueness of solution implies un0 = u. Moreover, this gives us

En0 = ∇∇u and Dn
0 = A0∇∇u .
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Small-amplitude homogenisation procedure (cont.)

After inserting the above expansions into (∗) and equating the terms with
equal powers of γ, one can conclude that En1 ,E

n
2 −⇀ 0 in L2(Ω; Sym), and

Dn
1 = A0E

n
1 + Bn∇∇u.

Since En1 −⇀ 0 in L2(Ω; Sym), while Bn
∗−−⇀ O in L∞(Ω;L(Sym, Sym)):

Dn
1 −⇀ 0 in L2(Ω; Sym) .

Similarly, by using

Dn
γ = Mn(· ; γ)Enγ −⇀M(· ; γ)∇∇u = (A0 + γB0 + γ2C0 + o(γ2))∇∇u ,

after equating the terms standing by γ1, we obtain that

Dn
1 −⇀ B0∇∇u in L2(Ω; Sym) .

The limits are equal, so B0∇∇u = 0.
Since u ∈ H2

0(Ω) can be arbitrary, we conlude that B0 = O.
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The corrector can be expressed by H-measure

Analogously, equating the terms standing by γ2 gives:

Dn
2 = A0E

n
2 + BnEn1 + Cn∇∇u −⇀ C0∇∇u in L2(Ω; Sym) .

On the other hand, as En2 −⇀ 0 in L2(Ω; Sym) and Cn
∗−−⇀ O in

L∞(Ω;L(Sym, Sym)), we have

Dn
2 −⇀ lim

n
BnEn1 = C0∇∇u in L2(Ω; Sym) .

Obviously, identifying the corrector of order 2 in γ requires the computation of
the weak limit of (BnEn1 ), the product of two weakly convergent sequences.

And such limits can be expressed by using H-measures.

For a physical plate, we assume that Ω is a bounded region, so L∞ weak ∗
topology is stronger than L2 weak, and we are indeed in the situation where
both sequences converge weakly in L2 to zero.
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The H-measure

Let µ̃ be the H-measure corresponding to the sequence [Bn En1 ]>:

µ̃ =

[
µ σ
ρ ν

]
,

which is defined as a (d4 + d2)× (d4 + d2) Hermitian nonnegative matrix
Radon measure.

More precisely, block µ is the H-measure associated to (a subsequence of)
(Bn), while σ = ρ∗ is the H-measure corresponding to the product BnEn1 . For
simplicity, by vn := [Bn En1 ]> we denote the (d4 + d2)× 1 column matrix, but
we still use the original four indices for Bn and two for En1 , avoiding explicit
writing of the appropriate bijection from {1, . . . , d}4

⋃
{1, . . . , d}2 to

{1, . . . , d4 + d2}, as such notation will be needed again for interpretation of the
limit. All indices have range in {1, . . . , d}.
After computing this limit, we write it as C0∇∇u, and thus identify C0. Our
goal is to use the localisation principle for H-measures to express that limit,
i.e. the measure σ, from the H-measure µ. To this end we need to choose
certain expressions relating En1 and Bn.
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Computing the H-measure

Firstly, we insert the expansions for Mn(· ; γ),M(· ; γ) and unγ into BVP{
div div (Mn(· ; γ)∇∇unγ ) = fγ = div div (M(· ; γ)∇∇u) in Ω

unγ ∈ H2
0(Ω) ,

and after comparing expressions corresponding to the first power of γ, we
obtain

div div (A0E
n
1 + Bn∇∇u) = div div (B0∇∇u).

Due to B0 = O we have

(+) div div (A0E
n
1 + Bn∇∇u) = 0 ,

as well as Schwarz’s symmetries:

(++) ∂r∂s(E
n
1 )kl − ∂k∂l(En1 )rs = 0 .

Additionally assume that ∇∇u is continuous, and apply the Localisation
principle to relations (+) and (++).
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Localisation on (+)
For chosen i, j ∈ {1, . . . , d}, after defining matrix Aij ∈M1×(d4+d2)(R) by

Aij :=
[
ABij AE

ij
1

]
,

where each ABij is a 1× d4 matrix with entries[
ABij

]
vwkl

:=

{
∂k∂lu, if (v, w) = (i, j)
0, otherwise ,

and each AE
ij
1 is a 1× d2 matrix with entries given by[

AE
ij
1

]
kl

:= [A0]ijkl.

It is easy to check that the assumptions of the Localisation principle are
fulfilled for m = 2. Therefore(

d∑
i,j=1

(2πi)2 ξiξj
|ξ|2 Aij(x)

)
µ̃ = 0

and from here we can conclude that
d∑

i,j,k,l=1

ξiξjµ̄
pqrs
ijkl ∂k∂lu+

d∑
i,j,k,l=1

ξiξjρ
kl
pqrs[A0]ijkl = 0 .
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Localisation on (++)

For fixed k, l, r, s ∈ {1, . . . , d}, (k, l) 6= (r, s), define Aij ∈M1×(d4+d2)(R) by

Aij :=
[
0 AE

ij
1

]
,

where AE
ij
1 is a 1× d2 matrix whose entries are given by

[
AE

ij
1

]
vw

=


1, if (i, j, v, w) = (r, s, k, l)
−1, if (i, j, v, w) = (k, l, r, s)
0, otherwise

.

Again, the Localisation principle with m = 2 gives us(
d∑

i,j=1

(2πi)2 ξiξj
|ξ|2 Aij(x)

)
µ̃ = 0 ,

which yields
ξrξsρ

kl
pqrs = ξkξlρ

rs
pqrs .

The above is trivially satisfied for (k, l) = (r, s).
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Combining two relations
By multiplying the relation obtained from (+) by ξrξs and summing over r, s

d∑
i,j,k,l,r,s=1

ξiξjξrξsµ̄
pqrs
ijkl ∂k∂lu+

d∑
i,j,k,l,r,s=1

ξiξjξrξsρ
kl
pqrs[A0]ijkl = 0.

By using the other relation, we can rewrite it in an equivalent form

d∑
i,j,k,l,r,s=1

ξiξjξrξsµ̄
pqrs
ijkl ∂k∂lu+

d∑
i,j,k,l,r,s=1

ξiξjξkξlρ
rs
pqrs[A0]ijkl = 0 ,

which, after division by

d∑
i,j,k,l=1

[A0]ijklξiξjξkξl = A0(ξ ⊗ ξ) : (ξ ⊗ ξ) > 0

yields

d∑
r,s=1

ρ̄rspqrs = −
d∑

i,j,k,l,r,s=1

ξiξjξrξs
A0(ξ ⊗ ξ) : (ξ ⊗ ξ)

µpqrsijkl ∂k∂lu .

Recall that limn B
nEn1 = C0∇∇u weakly in L2(Ω), and thus also weak ∗ in

the space of Radon measures.
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Hermitian character of H-measures

As σ = ρ∗ is the H-measure corresponding to the product BnEn1 , for an
arbitrary ϕ ∈ Cc(Ω), we have in components∫
Ω

ϕ(x)

d∑
r,s=1

[C0(x)]pqrs∂r∂su(x) dx =

〈
d∑

r,s=1

[C0]pqrs∂r∂su, ϕ

〉

=

〈
d∑

r,s=1

σ̄pqrsrs , ϕ� 1

〉

=

∫
Ω×Sd−1

ϕ(x)d

(
d∑

r,s=1

σ̄pqrsrs

)
(x, ξ)

=

∫
Ω×Sd−1

ϕ(x)d

(
d∑

r,s=1

(
ρ>
)pqrs
rs

)
(x, ξ)

=

∫
Ω×Sd−1

ϕ(x)d

(
d∑

r,s=1

ρrspqrs

)
(x, ξ) .
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The result

Finally, inserting the expression for
∑d
r,s=1 ρ̄

rs
pqrs from before

d∑
r,s=1

∫
Ω

[C0]pqrsϕ∂r∂su dx = −
∫

Ω×Sd−1

d∑
i,j,k,l,r,s=1

ξiξjξkξl
A0(ξ ⊗ ξ) : (ξ ⊗ ξ)

ϕ∂r∂su dµ
ijrs
pqkl(x, ξ).

By varying u ∈ C2(Ω) (e.g. choosing ∇∇u constant on the support of ϕ), one
easily deduces the result which is stated in the following theorem.

Theorem. The tensor M(· ; γ) admits the expansion

M(· ; γ) := A0 + γ2C0 + o(γ2) ,

where the second-order H-correction C0 ∈ L∞(Ω;L(Sym, Sym)) satisfies∫
Ω

[C0]pqrsϕdx = −
d∑

i,j,k,l=1

〈
µijrspqkl,

ϕξiξjξkξl
A0(ξ ⊗ ξ) : (ξ ⊗ ξ)

〉
.
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Sequences not converging to zero

If we take Bn
∗−−⇀ B0 in L∞(Ω;L(Sym,Sym)) and Cn

∗−−⇀ C0 in
L∞(Ω;L(Sym, Sym)), we get

M(· ; γ) := A0 + γB0 + γ2(C0 + C0) + o(γ2),

where C0 is given in the Theorem.
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Periodic case
◦ Let Y be the d-dimensional torus, M ∈ L∞(Y ;L(Sym, Sym)) ∩M2(α, β;Y )
◦ Assume Mn(x) := M(nx),x ∈ Ω ⊆ Rd (projection of Rd to Y assumed)
◦ H2(Y ) consists of 1-periodic functions, with the norm taken over the

fundamental period
◦ H2(Y )/R is equipped with the norm ‖∇∇ · ‖L2(Y )

◦ Eij , 1 6 i, j 6 d are Md×d matrices defined as

[Eij ]kl =


1, if i = j = k = l
1
2
, if i 6= j, (k, l) ∈ {(i, j), (j, i)}

0, otherwise.

Theorem. (Mn) H-converges to a constant tensor M∞ ∈M2(α, β; Ω)
defined as

m∞klij =

∫
Y

M(x)(Eij +∇∇wij(x)) : (Ekl +∇∇wkl(x)) dx,

where (wij) is the family of unique solutions in H2(Y )/R of{
div div (M(x)(Eij +∇∇wij(x))) = 0 in Y
x→ wij(x) is Y -periodic.
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Small-amplitude assumptions

Theorem. Let A0 ∈ L(Sym; Sym) be a constant coercive tensor,
Bn(x) := B(nx), x ∈ Ω, where Ω ⊆ Rd is a bounded, open set, and B is a

Y-periodic, L∞ tensor function, satisfying

∫
Y

B(x) dx = 0. Then

Mn
γ (x) := A0 + γBn(x), x ∈ Ω

H-converges (for any small γ) to a tensor Mγ := A0 + γ2C0 + o(γ2) ,

where

C0Emn : Ers = (2πi)2
∑
k∈J

amn−kBk(k⊗ k) : Ers+

+ (2πi)4
∑
k∈J

amnk ars−kA0(k⊗ k) : k⊗ k +

+ (2πi)2
∑
k∈J

ars−kBkEmn : k⊗ k ,

with m,n, r, s ∈ {1, 2, · · · , d}, J := Zd \ {0}, and

amnk = − BkEmnk · k
(2πi)2A0(k⊗ k) : (k⊗ k)

, k ∈ J,

and Bk are the Fourier coefficients of function B.
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Result by applying H-measures

The corresponding H-measure of the sequence (Bn) can be explicitly computed

µpqklijrs = λ(x)
∑
k∈Zd

[B̄k]pqkl[Bk]ijrs δ k
|k|

(ξ),

where λ denotes the Lebesgue measure on Rd and Bk, k ∈ Zd, are Fourier
coefficients of function B. After inserting this expression in the formula in the
Theorem, we can easily calculate C0 explicitly:

C0 = −
∑
k∈Zd

Bk(k⊗ k)⊗ B>k (k⊗ k)

A0(k⊗ k) : (k⊗ k)
,

where the tensor product of two matrices A,B ∈Md(C) is the fourth-order
tensor with entries

[A⊗B]ijkl = aijbkl.

This coincides with the result obtained via explicit formula for the
homogenisation limit of a periodic sequence of tensors describing material
properties in the Kirchhoff-Love model.
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Vibrating plate equation

Take Ω ⊆ Rd a bounded open set, T > 0 and ρ− > 0, and denote
V := H2

0(Ω), H := L2(Ω), while V ′ = H−2(Ω).
For given M ∈M2(α, β; Ω) and ρ ∈ L∞(Ω; [ρ−, ρ+]), as well as v ∈ V , w ∈ H
and f ∈ L1(0, T ;H) on the right-hand side, consider the initial–boundary value
problem: 

ρu′′ + div div (M∇∇u) = f
u(0, ·) = v
u′(0, ·) = w

,

where we seek u ∈ L2(0, T ;V ) such that u′ ∈ L2(0, T ;H).

This problem has a unique solution satisfying u′′ ∈ L1(0, T ;V ′) as well. In
fact, the solution belongs to the space C([0, T ];V ), with u′ ∈ C([0, T ];H), and
satisfies the estimate

(∀ t ∈ [0, T ]) ‖u(t)‖V + ‖u′(t)‖H 6 C ,

where the constant C depends on α, β, ρ−, ρ+, f, v, w.
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Homogenisation

Consider a sequence of such problems and let us show that the limit of their
solutions satisfies an analogous equation. In fact, one has

Theorem. Assume that (ρn) and (Mn) are sequences in L∞(Ω; [ρ−, ρ+]) and
M2(α, β; Ω) respectively, such that

ρn
L∞(Ω)∗−−−−−⇀ ρ∞ and Mn H−−−⇀M∞ .

Let un be the solution of the initial boundary value problem
ρnu′′n + div div (Mn∇∇un) = fn

un(0, ·) = vn
ρnu′n(0, ·) = wn ,

with boundary conditions given by un ∈ L2([0, T ];V ) and u′n ∈ L2([0, T ];H),
where we assume that vn −⇀ v∞ in V , and wn −⇀ w∞ in H; the forcing term
fn we take from a bounded set in the space L2(0, T ;H), assuming fn −⇀ f∞.

Then we have

un
∗−−⇀ u∞ in L∞(0, T ;V ) and u′n

∗−−⇀ u′∞ in L∞(0, T ;H),

where u∞ is the solution of the above problem for n =∞.
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Sketch of the proof

Take ϕ ∈ C∞c (〈0, T 〉) and define Un(x) :=
∫ T

0
un(t,x)ϕ(t) dt (and the same

for n =∞). Clearly (by choosing test functions of the form ϕ� ψ)

Un −⇀ U∞ in H2
loc(Ω) .

Which equation does U∞ satisfy?

By multiplying the equation with ϕ and integrating

ρn
∫ T

0

u′′nϕdt+ div div
(
Mn∇∇

∫ T

0

unϕdt
)

=

∫ T

0

fnϕdt ,

therefore div div
(
Mn∇∇Un

)
= gn, where we take

gn(x) :=

∫ T

0

ϕ(t)fn(t,x) dt− ρn(x)

∫ T

0

un(t,x)ϕ′′(t) dt .

Defining g∞ as gn, with n =∞, we have the convergence gn −→ g∞ in
H−2

loc(Ω). Indeed, for the first integral just take test functions of the form
ϕ� ψ, while the second is a consequence of compact embedding.
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Sketch of the proof

Take ϕ ∈ C∞c (〈0, T 〉) and define Un(x) :=
∫ T

0
un(t,x)ϕ(t) dt (and the same

for n =∞). Clearly (by choosing test functions of the form ϕ� ψ)

Un −⇀ U∞ in H2
loc(Ω) .

Which equation does U∞ satisfy?

By multiplying the equation with ϕ and integrating

ρn
∫ T

0

u′′nϕdt+ div div
(
Mn∇∇

∫ T

0

unϕdt
)

=

∫ T

0

fnϕdt ,

therefore div div
(
Mn∇∇Un

)
= gn, where we take

gn(x) :=

∫ T

0

ϕ(t)fn(t,x) dt− ρn(x)

∫ T

0

un(t,x)ϕ′′(t) dt .

Defining g∞ as gn, with n =∞, we have the convergence gn −→ g∞ in
H−2

loc(Ω). Indeed, for the first integral just take test functions of the form
ϕ� ψ, while the second is a consequence of compact embedding.
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Sketch of the proof (cont.)

Using the H-convergence of Mn

Mn∇∇Un −⇀M∞∇∇U∞ in L2
loc(Ω;Md×d) ,

so by varying ϕ one has

Mn∇∇un −⇀M∞∇∇u∞ in L2
loc(〈0, T 〉 × Ω;Md×d) ,

We can now pass to the limit in the variational form of the equation, using the
earlier mentioned form of compactness by compensation, thus obtaining the
claim.
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Thank you for your attention!
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