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Assumptions

◦ the plate is thin, but not very thin
(rougly, the thickness is 1–20% of the leading dimension)

◦ the plate thickness might vary only slowly
(so that the 3D stress effects are ignored)

◦ the plate is symmetric about mid-surface
◦ applied transverse loads are distributed over plate surface areas more than t2

(no concentrated loads)
◦ there is no significant extension of the mid-surface

There are no transverse shear deformations.
The variation of vertical displacement in the direction of thickness can be
neglected.
The planes perpendicular to the mid-surface will remain plane and
perpendicular to the deformed mid-surface.
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Kirchhoff-Love plate equation

The above leads to a linear elliptic problem, with homogeneous Dirichlet
boundary conditions: {

div div (M∇∇u) = f in Ω
u ∈ H2

0(Ω) ,

where:
◦ Ω ⊆ Rd is a bounded domain (d = 2 . . . for the plate)
◦ f ∈ H−2(Ω) is the external load
◦ u ∈ H2

0(Ω) is the vertical displacement of the plate
◦ M describes (non-homogeneous) properties of the material plate is made of;

more precisely, M is taken from the set:

M2(α, β; Ω) :=

{
N ∈ L∞(Ω;L(Sym,Sym)) : (∀S ∈ Sym)

N(x)S : S > αS : S (ae x) & N−1(x)S : S >
1

β
S : S (ae x)

}
This ensures the boundedness and coercivity, so we have the existence and
uniqueness of solutions via the Lax-Milgram lemma in a standard way.
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H-convergence

A sequence of tensor functions (Mn) in M2(α, β; Ω) H-converges to
M ∈M2(α′, β′; Ω) if for any f ∈ H−2(Ω) the sequence of solutions un of
problems {

div div (Mn∇∇un) = f in Ω
un ∈ H2

0(Ω)

coverges weakly to a limit u in H2
0(Ω), while the sequence (Mn∇∇un)

converges to M∇∇u weakly in the space L2(Ω; Sym).

general form for higher-order elliptic equations:
Žikov, Kozlov, Oleinik, Ngoan, 1979

for plates: N.A. & N. Balenović, 1999
revisited: K. Burazin & J. Jankov, 2019 (preprint)
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Compactness

Theorem. Let (Mn) be a sequence in M2(α, β; Ω). Then there is a
subsequence (Mnk ) and a tensor function M ∈M2(α, β; Ω) such that (Mnk )
H-converges to M.

Theorem. (compactness by compensation) Let the following convergences be
valid:

wn −⇀ w∞ in H2
loc(Ω) ,

Dn −⇀ D∞ in L2
loc(Ω; Sym) ,

with an additional assumption that the sequence (div divDn) is contained in a
precompact (for the strong topology) set of the space H−2

loc(Ω). Then we have

∇∇wn : Dn ∗−−⇀ ∇∇w∞ : D∞

in the space of Radon measures.
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Locality and irrelevance of boundary conditions

Theorem. (locality of H-convergence) Let (Mn) and (On) be two sequences of
tensors in M2(α, β; Ω), which H-converge to M and O, respectively. Let ω be
an open subset compactly embedded in Ω. If Mn(x) = On(x) in ω, then
M(x) = O(x) in ω.

Theorem. (irrelevance of boundary conditions) Let (Mn) be a sequence of
tensors in M2(α, β; Ω) that H-converges to M. For any sequence (zn) such
that

zn −⇀ z in H2
loc(Ω)

div div (Mn∇∇zn) = fn −→ f in H−2
loc(Ω),

the weak convergence Mn∇∇zn ⇀M∇∇z in L2
loc(Ω; Sym) holds.

8



Convergence of energies

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) that
H-converges to M. For any f ∈ H−2(Ω), the sequence (un) of solutions of{

div div (Mn∇∇un) = f in Ω
un ∈ H2

0 (Ω) .

satisfies Mn∇∇un : ∇∇un ⇀M∇∇u : ∇∇u weakly-∗ in the space of Radon

measures and

∫
Ω

Mn∇∇un : ∇∇un dx→
∫

Ω

M∇∇u : ∇∇u dx, where u is

the solution of the homogenised equation{
div div (M∇∇u) = f in Ω
u ∈ H2

0(Ω) .
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Ordering property . . .

Theorem. Let (Mn) and (On) be two sequences of tensors in M2(α, β; Ω)
that H-converge to the homogenised tensors M and O, respectively.
Furthermore, assume that, for any n,

(∀ ξ ∈ Sym) Mnξ : ξ 6 Onξ : ξ .

Then the homogenised limits are also ordered:

(∀ ξ ∈ Sym) Mξ : ξ 6 Oξ : ξ .

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) that either
converges strongly to a limit tensor M in L1(Ω;L(Sym,Sym)), or converges to
M almost everywhere in Ω. Then, Mn also H-converges to M.
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. . . and metrisability

Theorem. Let F = {fn : n ∈ N} be a dense countable family in H−2(Ω), M
and O tensors in M2(α, β; Ω), and (un), (vn) sequences of solutions to{

div div (M∇∇un) = fn
un ∈ H2

0(Ω)

and {
div div (O∇∇vn) = fn
vn ∈ H2

0(Ω)
.

Then,

d(M,O) :=
∞∑
n=1

2−n
‖un − vn‖L2(Ω) + ‖M∇∇un −O∇∇vn‖H−1(Ω;Sym)

‖fn‖H−2(Ω)

is a metric on M2(α, β; Ω) and H-convergence is equivalent to the convergence
with respect to d.
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Correctors

Let (Mn) be a sequence of tensors in M2(α, β; Ω) that H-converges to a limit
M, and (wijn )1≤i,j≤d a family of test functions satisfying

wijn ⇀
1

2
xixj in H2(Ω)

Mn∇∇wijn ⇀ · · · in L2
loc(Ω; Sym)

div div (Mn∇∇wijn )→ · · · in H−2
loc(Ω).

The sequence of tensors Wn defined by Wn
ijkm = [∇∇wkmn ]ij is called the

sequence of correctors.

It is unique, indeed:

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) that
H-converges to a tensor M. A sequence of correctors (Wn) is unique in the
sense that, if there exist two sequences of correctors (Wn) and (W̃n), their
difference (Wn − W̃n) converges strongly to zero in L2

loc(Ω;L(Sym, Sym)).
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Corrector result

Theorem. Let (Mn) be a sequence of tensors in M2(α, β; Ω) which
H-converges to M. For f ∈ H−2

loc(Ω), let (un) be the solution of{
div div (Mn∇∇un) = f in Ω
un ∈ H2

0(Ω) ,

and let u be the weak limit of (un) in H2
0(Ω), i.e. the solution of the

homogenised equation {
div div (M∇∇u) = f in Ω
u ∈ H2

0(Ω) .

Then Rn := ∇∇un −Wn∇∇u→ 0 strongly in L1
loc(Ω; Sym).
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Smoothness with respect to a parameter

Theorem. Let Mn : Ω× P → L(Sym, Sym) be a sequence of tensors, such
that Mn(·, p) ∈M2(α, β; Ω), for p ∈ P . Assume that p 7→Mn(·, p) is of class
Ck from P to L∞(Ω;L(Sym,Sym)), with derivatives (up to order k) being
equicontinuous on every compact set K ⊆ P :

(∀K ∈ K(P )) (∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)(∀i ≤ k)

|p− q| < δ ⇒ ‖(Mn)(i)(·, p)− (Mn)(i)(·, q)‖L∞(Ω;L(Sym,Sym)) < ε.

Then there is a subsequence (Mnk ) such that for every p ∈ P

Mnk (·, p) H−−⇀M(·, p) in M2(α, β; Ω)

and p 7→M(·, p) is a Ck mapping from P to L∞(Ω;L(Sym,Sym)).

In particular, the above is valid for k =∞ and k = ω (the analytic functions).
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Small-amplitude homogenisation

Consider a sequence of problems{
div div (Mn

γ∇∇un) = f in Ω
un ∈ H2

0(Ω) ,

where we assume that the coefficients are a small perturbation of a given
continuous tensor function A0, for small γ

Mn
γ := A0 + γBn + γ2Cn + o(γ2) ,

where Bn,Cn
∗−−⇀ O in L∞(Ω;L(Sym,Sym)). For small γ we, in fact, we

can assume that the function is analytic in γ.
Then (after passing to a subsequence if needed)

Mn
γ

H−−−⇀M∞γ = A0 + γB0 + γ2C0 + o(γ2) ;

the limit being measurable in x, and analytic in γ.
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Periodic case
◦ Let Y be the d-dimensional torus, M ∈ L∞(Y ;L(Sym, Sym)) ∩M2(α, β;Y )
◦ Assume Mn(x) := M(nx),x ∈ Ω ⊆ Rd (projection of Rd to Y assumed)
◦ H2(Y ) consists of 1-periodic functions, with the norm taken over the

fundamental period
◦ H2(Y )/R is equipped with the norm ‖∇∇ · ‖L2(Y )

◦ Eij , 1 6 i, j 6 d are Md×d matrices defined as

[Eij ]kl =


1, if i = j = k = l
1
2
, if i 6= j, (k, l) ∈ {(i, j), (j, i)}

0, otherwise.

Theorem. (Mn) H-converges to a constant tensor M∞ ∈M2(α, β; Ω)
defined as

m∞klij =

∫
Y

M(x)(Eij +∇∇wij(x)) : (Ekl +∇∇wkl(x)) dx,

where (wij) is the family of unique solutions in H2(Y )/R of{
div div (M(x)(Eij +∇∇wij(x))) = 0 in Y
x→ wij(x) is Y -periodic.
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Small-amplitude assumptions

Theorem. Let A0 ∈ L(Sym; Sym) be a constant coercive tensor,
Bn(x) := B(nx), x ∈ Ω, where Ω ⊆ Rd is a bounded, open set, and B is a

Y-periodic, L∞ tensor function, satisfying

∫
Y

B(x) dx = 0. Then

Mn
γ (x) := A0 + γBn(x), x ∈ Ω

H-converges (for any small γ) to a tensor Mγ := A0 + γ2C0 + o(γ2) ,
where

C0Emn : Ers = (2πi)2
∑
k∈J

amn−kBk(k⊗ k) : Ers+

+ (2πi)4
∑
k∈J

amnk ars−kA0(k⊗ k) : k⊗ k +

+ (2πi)2
∑
k∈J

ars−kBkEmn : k⊗ k ,

with m,n, r, s ∈ {1, 2, · · · , d}, J := Zd \ {0}, and

amnk = − BkEmnk · k
(2πi)2A0(k⊗ k) : (k⊗ k)

, k ∈ J,

and Bk are the Fourier coefficients of function B.
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Conjecture in the general case

Theorem. The effective conductivity matrix M∞γ admits the expansion

M∞γ (x) = A0(x) + γ2C0(x) + o(γ2) ,

where the quadratic correction C0 can be computed from the H-measure
associated to a subsequence of Bn.
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Thank you for your attention.
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