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Introduction

Theorem

Malgrange-Ehrenpreis theorem: Every linear partial differential operator (not identically
vanishing) with constant coefficients possesses a fundamental solution in the space of
distributions.

Corollary

Every partial differential operator (not identically vanishing) with constant coefficients is
locally solvable. And regularity properties of the solutions can be deduced by examining
the fundamental solution.

Proofs:
– Non-constructive proofs using Hahn-Banach theorem.
– Elementary proof based on L2 theory.
– Constructive proofs.
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Assumptions and notations

D(Rn),D′(Rn),S(Rn),S ′(Rn), E(Rn), E ′(Rn) are usual.

∂α = ∂α1 ...∂αn , and |α| = α1 + ...+ αn for a multi-index α ∈ Nn
0 .

P (∂) =
∑

|α|≤m cα∂
α is an operator of degree m.

Pm(∂) =
∑

|α|=m cα∂
α is the principal part of P (∂).

Fourier transform:

F : S(Rn) → S(Rn), F(φ)(x) =

∫
Rn

e−iξ·xφ(ξ)dξ .

By duality or density, this yields the isomorphism

F : S ′(Rn) → S ′(Rn), ⟨FT, φ⟩ := ⟨T,Fφ⟩ , ∀φ ∈ S(Rn) .

For ζ ∈ Cn, T ∈ D′(Rn), S ∈ S ′(Rn), U ∈ E ′(Rn), the following hold in D′(Rn):

P (∂)(eζ·xT ) = eζ·x(P (∂ + ζ)T ) ;

P (∂)F−1S = F−1
ξ (P (iξ)S) ;

(eζ·xU) ∗ (eζ·xT ) = eζ·x(U ∗ T ) .
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The Malgrange-Ehrenpreis theorem

Fundamental Solution: A distribution E ∈ D′(Rn) is called a fundamental solution of a
differential operator P (∂) ∈ C[∂1, ..., ∂n] iff P (∂)E = δ.

Lemma

If λ0, ..., λm ∈ C are pairwise different, then aj = Πm
k=0,k ̸=j(λj − λk)

−1 is the unique
solution of

m∑
j=0

ajλ
k
j =

{
0, if k = 0, ...,m− 1,

1, if k = m .

Proof: Vandermonde’s determinant is not 0, implies the uniqueness.
For p(z) = Πm

j=0(z − λj), p
′(λj) = Πm

k=0,k ̸=j(λj − λk) = a−1
j , by Residue theorem,

m∑
j=0

ajλ
k
j =

m∑
j=0

λk

p′(λj)
=

1

2πi
lim

N→∞

∫
|z|=N

zk

p(z)
dz =

{
0, if k = 0, ...,m− 1,

1, if k = m .
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The Malgrange-Ehrenpreis theorem

Theorem

Let P (ξ) =
∑

|α|≤m cαξ
α be a not identically vanishing polynomial in Rn of degree m. If

η ∈ Rn with Pm(η) ̸= 0, the real numbers λ0, ..., λm are pairwise different, and
aj = Πm

k=0,k ̸=j(λj − λk)
−1, then

E =
1

Pm(2η)

m∑
j=0

aje
λjη·xF−1

ξ

(
P (iξ + λjη)

P (iξ + λjη)

)

is a fundamental solution of P (∂), i.e. P (∂)E = δ .

Proof: (1) The expression within the brackets, is indeed, a tempered distribution and so
E is well defined.
For λ ∈ R fixed, N = {ξ ∈ Rn : P (iξ + λη) = 0} has Lebesgue measure 0. By a linear
change of coordinates, we can assume that Pm(1, 0, ..., 0) ̸= 0, and since
Nξ′ := {ξ1 ∈ R : P (i(ξ1, ξ

′) + λη) = 0} are finite for ξ′ ∈ Rn−1, we get by Fubini’s

theorem that
∫
N
dξ =

∫
Rn−1

(∫
Nξ′

dξ1
)
dξ′ = 0. Which means

S(ξ) =
P (iξ + λη)

P (iξ + λη)
∈ L∞(Rn) ⊂ S ′(Rn) .
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The Malgrange-Ehrenpreis theorem

(2) Verifying that P (∂)E = δ.

For S ∈ S ′(Rn), ζ ∈ Cn, we have

P (∂)(eζ·xF−1S) = eζ·xP (∂ + ζ)F−1S = eζxF−1
ξ (P (iξ + ζ)S) .

So,

P (∂)

(
eλη·xF−1

(
P (iξ + λη)

P (iξ + λη)

))
= eλη·xF−1

(
P (iξ + λη)

)
= eλη·xP (−∂ + λη)δ .

Hence,

P (∂)

(
eλη·xF−1

(
P (iξ + λη)

P (iξ + λη)

))
= eλη·xP (−∂ + λη)δ = P (−∂ + 2λη)(eλη·xδ)

= P (−∂ + 2λη)δ
(
eλη·xδ = δ

)
=

(
λmPm(2η) +

m−1∑
k=0

λkQk(∂)

)
δ (Taylor)
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The Malgrange-Ehrenpreis theorem

For Tk := Qk(∂)δ ∈ E ′(Rn), we have

P (∂)

(
eλη·xF−1

(
P (iξ + λη)

P (iξ + λη)

))
= λmPm(2η)δ +

m−1∑
k=0

λkTk .

So by linearity and previous lemma,

P (∂)

(
m∑

j=0

aje
λjη·xF−1

(
P (iξ + λjη)

P (iξ + λjη)

))
=

m∑
j=0

ajλ
m
j Pm(2η)δ +

m−1∑
k=0

m∑
j=0

ajλ
k
jTk

= Pm(2η)δ + 0

Thus,

P (∂)E = δ .
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Benifits

1 With fundamental solution in hand, by convolution, we are able to find the solution
of inhomogeneous linear partial differential equations.

Not only for f ∈ D(Rn),
infact, for f ∈ E ′(Rn), we have

P (∂)(E ∗ f) = P (∂)E ∗ f = δ ∗ f = f .

2 For each T ∈ E ′(Rn) \ {0} with finite support, there exists a fundamental solution
E ∈ D′(Rn). i.e. T ∗ E = δ.

3 More recently(2017), a generalisation of this theorem has been done for fractional
PDEs by Dumitru Baleanu and Arran Fernandez.

S.K. Soni (UNIZG) Fundamental solutions of linear partial differential operators with constant coefficients 8/ 9



Benifits

1 With fundamental solution in hand, by convolution, we are able to find the solution
of inhomogeneous linear partial differential equations. Not only for f ∈ D(Rn),
infact, for f ∈ E ′(Rn), we have

P (∂)(E ∗ f) = P (∂)E ∗ f = δ ∗ f = f .

2 For each T ∈ E ′(Rn) \ {0} with finite support, there exists a fundamental solution
E ∈ D′(Rn). i.e. T ∗ E = δ.

3 More recently(2017), a generalisation of this theorem has been done for fractional
PDEs by Dumitru Baleanu and Arran Fernandez.

S.K. Soni (UNIZG) Fundamental solutions of linear partial differential operators with constant coefficients 8/ 9



Benifits

1 With fundamental solution in hand, by convolution, we are able to find the solution
of inhomogeneous linear partial differential equations. Not only for f ∈ D(Rn),
infact, for f ∈ E ′(Rn), we have

P (∂)(E ∗ f) = P (∂)E ∗ f = δ ∗ f = f .

2 For each T ∈ E ′(Rn) \ {0} with finite support, there exists a fundamental solution
E ∈ D′(Rn). i.e. T ∗ E = δ.

3 More recently(2017), a generalisation of this theorem has been done for fractional
PDEs by Dumitru Baleanu and Arran Fernandez.

S.K. Soni (UNIZG) Fundamental solutions of linear partial differential operators with constant coefficients 8/ 9



Benifits

1 With fundamental solution in hand, by convolution, we are able to find the solution
of inhomogeneous linear partial differential equations. Not only for f ∈ D(Rn),
infact, for f ∈ E ′(Rn), we have

P (∂)(E ∗ f) = P (∂)E ∗ f = δ ∗ f = f .

2 For each T ∈ E ′(Rn) \ {0} with finite support, there exists a fundamental solution
E ∈ D′(Rn). i.e. T ∗ E = δ.

3 More recently(2017), a generalisation of this theorem has been done for fractional
PDEs by Dumitru Baleanu and Arran Fernandez.

S.K. Soni (UNIZG) Fundamental solutions of linear partial differential operators with constant coefficients 8/ 9



And...

...thank you for your attention :)

Peter Wagner: A new constructive proof of the Malgrange-Ehrenpreis Theorem, The
American Mathematical Monthly 116:5 (2009) 457-462.
https://doi.org/10.1080/00029890.2009.11920961
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